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A Potential Field Approach to Path Planning 

Abstract- We present a path-planning algorithm for the clas- 
sical mover’s problem in three dimensions using a potential 
field representation of obstacles. A potential function similar to 
the electrostatic potential is assigned to each obstacle, and the 
topological structure of the free space is derived in the form of 
minimum potential valleys. Path planing is done at two levels. 
First, a global planner selects a robot’s path from the minimum 
potential valleys and its orientations along the path that minimize 
a heuristic estimate of the path length and the chance of collision. 
Then a local planner modifies the path and orientations to derive 
the final collision-free path and orientations. If the local planner 
fails, a new path and orientations are selected by the global 
planner and subsequently examined by the local planner. This 
process is continued until a solution is found or there are no paths 
left to be examined. Our algorithm solves a much wider class of 
problems than other heuristic algorithms and at the same time 
runs much faster than exact algorithms (typically 5 to 30 min 
on a Sun 3/260). The algorithm fails on a small set of very hard 
problems involving tight free spaces. The performance of our 
algorithm is demonstrated on a variety of examples. 

I. INTRODUCTION 
HIS paper presents a solution to the classical mover’s T problem: Given a rigid robot and a space littered with 

rigid obstacles, find a motion connecting the starting and 
the goal configurations of the robot. Other variations of 
motion planning have also been studied, but we will limit 
our discussion to the classical mover’s problem. Surveys 
of motion-planning algorithms can be found in [16], [33]. 
Algorithms can be classified as being either exact or heuristic. 
Exact algorithms either find a solution or prove that none 
exists, and they tend to have high complexity. For example, 
the algorithm based on critical curves [28] runs in a double 
exponential time in the number of degrees of freedom of the 
robot. The run time is later improved to a single exponential 
time 161. Other exact algorithms [2], [8], [24] have similar 
time complexities and take days of computation for the three- 
dimensional world. Heuristic methods reduce the problem 
complexity by simplifying the shapes of objects and restricting 
the robot motion to smaller sets. Algorithms based on free- 
space decomposition are reported in [4], [27], and [29], and 
quadtree (octree) based algorithms are developed in [lo], [13], 
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and [17]. Most of these algorithms have two disadvantages. 
First, the allowed shapes are too restricted to be applicable in 
general cases. Second, they may fail to find a solution even 
if there is one. The disadvantages of the exact and heuristic 
algorithms have motivated us to develop an algorithm that is 
much faster than the exact algorithms at the expense of failing 
to find solutions for a small set of very hard problems, and at 
the same time allows much richer sets of object shapes and 
motion. 

In the potential field approach, obstacles are assumed to 
carry electric charges, and the resulting scalar potential field 
is used to represent the free space. Collisions between the ob- 
stacles and the robot are avoided by a repulsive force between 
them, which is simply the negative gradient of the potential 
field. Potential functions are independently investigated in [21] 
and [25]. In [19], potential functions are used for obstacle 
avoidance, but the most common use of the potential field 
approach is for local path planning. It is used for manipulator 
control in [18] and [23]. Thorpe [31] has used a potential-like 
cost function in designing an optimal path for a circular robot 
in two dimensions. Suh and Shin [30] reported a potential- 
based algorithm to find the optimal path for a point robot in 
two dimensions gave a brief sketch for the 3-D case. A path 
planner based on the potential field for a point robot moving 
amid star-shaped obstacles is described in [26]. It is our goal 
to develop a potential-based approach to path planning for the 
classical mover’s problem. 

Several motivations have lead to the use of the potential 
field representation. The potential field can be used to obtain 
a global representation of the space so that coarse planning 
can be done at the global level. A continuous potential field 
gives a good indication about the distances to and the shapes 
of obstacles so that necessary changes in robot position and 
orientation can be done in a smooth, continuous manner. When 
detecting collisions, combinatorial complexity of intersection 
detection performed with geometric representations is avoided. 
This is accomplished by eliminating the need for explicitly 
performing intersection detection through the use of a potential 
field that gives object distance information. By using an 
appropriate definition of the potential at a point, the influence 
of obstacles not in the vicinity of the point is eliminated. 

The algorithm described in this paper contains two modules, 
a global planner and a local planner, as done in [9]. The global 
planner uses a global description of the free space given by 
a network of the minimum potential valleys and selects a 
candidate path that is likely to be collision-free. The local 
planner then modifies the candidate path to avoid collisions 
and locally optimize the path length and smoothness of motion. 
If the local planner cannot find a solution, the global planner 
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computes another path for the local planner to examine. This 
process is repeated until a solution is found or the global 
planner can longer find a path. Both modules use the potential 
field representation. 

Sections I1 and 111 describe a potential field function and the 
global planner. The local planner is described in Section IV, 
and the performance of our algorithm is illustrated in Section 
V. Sections VI and VI1 evaluate our approach, highlight some 
salient features of the approach, and discuss how our algorithm 
can be extended. Details can be found in [15]. 

11. POTENTIAL FIELD AND MINIMUM POTENTIAL VALLEYS 

This section describes the use of potential functions to 
represent free space for use in path planning. We describe a 
specific potential function in Section 11-A, and then in Section 
11-B discuss how it is used in our algorithm to obtain a global 
space representation. 

Obstacles can be represented by specifying their surfaces or 
volumes. Transformation of the representation, into a form 
so as to bring out the topological structure of free space, 
constitutes a crucial part of path planning. Further, the rep- 
resentation should allow efficient detection of collisions. It is 
also desirable that the paths derived from the representation 
provide good guesses for the final solutions. Two often-used 
representations are the Voronoi diagram and the octree, and 
efficient algorithms are available to generate them [20], [32]. 
If a potential field representation of the free space is used, then 
the valleys of potential minima define the Voronoi diagram. 
Since our algorithm uses the potential field representation for 
modifying the candidate paths, we use the same representation 
for free space for uniformity. 

There are many choices of the potential function. The 
most common potential in physics is the Newtonian potential 
function, but it does not have an analytic expression even for 
an arbiirary polygon. A potential function that has an analytic 
expression and is thus more efficient to compute is developed 
below. 

A. A Simple Potential Function 
The following derivation of a simple potential function is 

valid in both two and three dimensions (regions generalize to 
volumes for 3D). Let 

g(z) 5 0, g E L", x E R" (1) 

be the set of inequalities describing a convex region, where L 
denotes the set of linear functions. Then the scalar function 

no. of bound. seg. 

f(x) = Si(.-> + 19i(It.>I (2) 
i=l  

is zero inside the region and grows linearly as the distance 
from the region increases [7]. Let us define a potential function 
P as 

Fig. 1. The potential function due to a 2-D triangular obstacle. The potential 
is arbitrarily large inside the obstacle and decreases roughly as the inverse of 
the distance outside the obstacle. 

where S is a small positive constant. The function p meets 
the requirements of the potential function needed for path 
planning; p(x) has its maximum value of 6-' inside the region 
and strictly decreases as the inverse of the distance outside 
the region. The graph of the potential function of a triangular 
object is shown in Fig. 1. When there are multiple obstacles 
present, the potential at any point is given by the maximum 
of the potentials due to individual obstacles. It is crucial to 
use maximum rather than the sum of the potentials as noted 
in [23]. When the sum is used as the combined potential, 
small local maxima of the potential may appear in free space 
away from obstacles. The minimum potential valleys (MPV) 
can then be defined as the set of saddle points and locally 
minimum points. In other words, if x E MPV, then there 
is at least one direction along which the potential achieves 
its minimum at z. It is desired to have local maxima of the 
potential only in the regions obstacles occupy so that the MPV 
structure captures the topological structure of the free space. 
The following propositions prove that MPV do possess this 
property. 

Proposition I :  Local maxima of the potential function 
d z )  = maximumJ=l, ..,no. of obstac]esP~(x) Occur Only On 
the obstacles. 

Proof: Suppose a local maximum occurs at xo in the free 
space. Then there exists a closed curve (surface) r surrounding 
zo such that p(zo) > p(x) for any z E I?. This implies p ( z 0 )  > 
maxza- ~ ( 5 )  = maxzEr max3 P, (z) 2 maxzEr ~ ~ ( 5 )  for 
any j. But this contradicts the monotonicity of pJ(x) in the 
free space. Therefore, there is no local maximum in the free 
space. 

Proposition 2: Any simply closed curve (surface) in the 
minimum potential valleys contains a local maximum of the 
potential function in its interior. 

Proof: Suppose on the contrary that there is in MPV a 
simply closed curve (surface) that does not contain a local 
maximum in its interior. Then the maximum occurs at a point 
xo E MPV. If xo E MPV, there is a direction along which 
the potential achieves its minimum at 20. For 20 to be a 
maximizing point of the closure of the interior, this direction 
cannot penetrate the interior and is parallel to the closed curve 
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(surface). By the continuity of the potential, this direction 
also provides a local minimum at a point $1 in the interior 
sufficiently close to $0. Then $1 EMPV, and this contradicts 
the assumption that the curve (surface) is simply closed. 

B. Generation of Minimum Potential Valleys 

The above definition of MPV makes it clear how MPV 
capture the topological structure of the free space. Since 
the number of points in MPV is infinite, computation of 
MPV is an intensive task. To limit the computation, we 
obtain a piecewise linear approximation of MPV as a graph 
whose nodes are certain points along MPV and whose edges 
correspond to straight line segments connecting nodes. We 
present an algorithm called MPV algorithm that generates this 
graph by beginning at the start and goal points, and recursively 
locating nodes by finding low potential sites along a circle 
(sphere) centered at each point. This algorithm is valid in any 
dimension, and we will use the term sphere regardless of the 
dimension. 

The MPV algorithm generates MPV in a sequential manner, 
beginning from the start, as well as the goal position of 
the robot. The basic idea is to identify various minimum 
potential branches emanating from the start and goal nodes by 
recursively drawing spheres centered at the nodes and tracking 
valleys. The algorithm maintains three queues, the ancestor 
queue A, the father queue F, and the son queue S. F contains 
nodes whose neighbor nodes are to be found, and it initially 
contains the start and the goal nodes. A and S are initially 
empty. Centered at each node in F ,  the largest sphere that 
does not intersect any obstacle (called the largest free sphere) 
is drawn, and a uniform’ grid of points is scattered on each 
sphere. 

The points on each grid are possible sons of the node at the 
center. The potential at each grid point is computed and the 
points are sorted according to their potentials. The points with 
potentials greater than a threshold* are deleted, since they are 
too close to the obstacles and the robot cannot be positioned 
at such locations. 

The point with the smallest potential is selected as a son 
node and is moved to S. An edge is created between the son 
and the father node so that the father is not generated again as 
a son of its own son. The largest free sphere centered at the 
son node is drawn, and all the grid points inside the sphere are 
deleted. Next, the point with the smallest potential among the 
remaining points is selected as a son node, and all the points 
that are in the largest free sphere centered at the node are 
deleted. This process of son node selection is continued until 
there are no more points. The distance between each son node 
and each node in F other than its own father is computed, 
and an edge is created if the distance is less than the distance 
from the son node to the obstacles. After all son nodes are 
generated, nodes in F are appended to A and the nodes in S 

‘In three dimensions, the grid will be uniform only if it is formed by vertices 
of a regular polyhedron. Otherwise, it could be made only approximately 
uniform. 

21n our case, the value used is the invetse of the minimum width of the 
robot, since the reference point of the robot is unlikely to move without a 
collision through these points. 

replace the nodes in F. The MPV algorithm will terminate if 
the free space is bounded. 

The MPV algorithm runs in less than 1 min for two 
dimensions, and about 10 min for three dimensions on a 
Sun 3/260 computer. It is especially slow when there is a 
narrow and long channel in the free space. It is, however, 
very robust to small variations in obstacle shapes and extends 
to higher dimensions with little modifications. See Fig. 4(a) for 
an example of MPV. Having obtained the MPV representation, 
our path-planning algorithm consists of two steps: global 
planning and local planning. 

111. GLOBAL PLANNER 
In this section, we discuss how the MPV representation is 

used for global planning. The global planner selects from the 
MPV graph the shortest path between the start and the goal 
nodes with the minimum heuristic estimate of the chance of 
collision (Path I in Fig. 4(a)). The local planner (Section IV) 
then moves the robot along this path, modifying the robot’s 
position and orientation as necessary to avoid collisions. When 
the robot cannot reach one node from another given node, 
the edge between the two nodes is deleted from the graph. 
The global planner then finds the shortest, safe path between 
the goal node and any of the nodes the robot has reached. 
This process is repeated until a solution is found (Path 111 
in Fig. 4(a)) or there is no path left in the graph. Dynamic 
programming or Dijkstra’s algorithm [22] can be used to find 
the minimum cost path. 

Heuristic Cost of Paths 
A cost function is used to denote the length and the difficulty 

of a path to be traversed by the robot. A path is given as a 
sequence of nodes and edges connecting them. The length and 
cost of an edge is the Euclidean distance between the nodes at 
the ends of the edge. The cost of a node measures the difficulty 
of placing the robot at the node location and is measured in 
terms of the distance to the nearest obstacle. We define the cost 
of a node to be infinite (a large number in the implementation) 
if the distance to the obstacles is less than one-half of the 
robot’s width, as the robot cannot go through the node at any 
orientation. If the distance is greater than one-half the longest 
dimension of the robot, the robot can go through the node 
at any orientation and the node cost is zero. For the distance 
values in between, a monotone curve connecting infinity and 
zero can be used. In computing the node cost, the distance 
may be approximated with l/p, the inverse of the potential to 
decrease the computation time. The total cost of a path is then 
the sum of the costs of the edges and the nodes in the path. 

The minimum cost path from the graph is a sequence of 
nodes that are relatively large distances apart. This path is 
interpolated with a number of points so that the distance 
between adjacent points is less than a threshold. This threshold 
represents the resolution of our algorithm; if the robot does not 
collide with obstacles at two adjacent points, it is assumed that 
the robot can move between these points without collisions. 
The interpolated path serves as the initial estimate of a path 
for the reference point of the robot, which is at the center 
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of the volume of the robot. The initial orientations of the 
robot along the path remain to be determined. Aligning the 
longest axis of the robot with the direction of the path 
minimizes the swept volume by the robot and thus minimizes 
the chance of collisions. This alignment completely specifies 
the robot’s orientation in two dimensions. In three dimensions, 
this specifies only two Euler angles. We select the remaining 
degree of freedom in orientation such that the second longest 
axis of the robot lies in the plane tangent to the minimum 
potential surface. This alignment is intended to serve as a 
heuristic for minimizing the total potential experienced by the 
robot, and thus on the average, for minimizing the chance 
of collisions. The derived path and orientations are used by 
the local planner to determine the final collision-free path and 
orientations. 

IV. LOCAL PLANNER 
The local planner uses the potential field in two ways. First, 

when the initial path and orientations involve collisions, the lo- 
cal planner modifies the robot’s configuration to minimize the 
potential on the robot and thus attempts to remove collisions. 
Second, even if the path and orientations are free of collisions, 
they may not be optimal in the sense of the shortest path and 
the minimum changes in orientation. The local planner uses the 
potential field as a penalty function in a numerical algorithm 
that optimizes the path length and orientation change. In 
the following discussion, the term “regions” generalizes to 
“volumes” in three dimensions. 

The local planner attempts to find a collision-free path and 
orientations in the neighborhood of the initial estimates. First, 
the robot is moved according to the initial configurations 
specified by the global planner, and the configurations cor- 
responding to collisions are identified. These configurations 
occur at groups of path locations, in regions called collision 
regions. The location associated with the central configuration 
in the sequence of collision configurations in a collision region 
is called the collision center of the collision region. Next, 
feasible, i.e., collision-free, configurations of the robot in the 
collision regions are found. This is done by selecting the con- 
figurations within the region that minimize the total potential 
on the robot. If the start and the goal configurations can be 
connected through a sequence of feasible configurations, this 
defines a feasible global solution path. If no such sequence 
is found, then the initial path is assumed not to lead to a 
solution. Moving the robot between two successive feasible 
configurations is done by an algorithm called the slide. It 
moves the robot along the initial path and makes incremental 
changes to robot’s configuration to maximize the clearance 
between the robot and the obstacles. Finally, a numerical 
algorithm is used to minimize the length of the collision- 
free path and the change in the orientation along the path. 
The local planning algorithm consists of the following steps, 
which are described below: finding feasible configurations in 
collision regions, selecting the best feasible configurations in 
collision regions, and finding a path connecting two feasible 
configurations using the slide algorithm. 

A. Feasible Configurations in Collision Regions 

There are usually an infinite number of feasible configura- 
tions in a collision region, corresponding to different locations 
and orientations of the robot within the collision region. To 
identify a sequence of feasible configurations through the 
region, it is sufficient to identify one such configuration and 
derive the rest from it. For this purpose, we obtain a set 
of topologically distinct, feasible orientations of the robot 
located at the collision center, which then serve as the seed 
configurations to derive the feasible path through the collision 
region. “Topologically distinct” here means that the robot 
cannot be rotated about the collision center from any one such 
orientation to another. The search for these configurations may 
be performed by random sampling of the orientation space 
[3], [12]. We instead use the following search method for this 
purpose at each collision center. 

In two dimensions, the robot is rotated with its center 
(reference point) fixed at the collision center. At a finite 
number of uniformly distributed orientations, the total potential 
on the robot is computed by integrating the potential over the 
boundary of the robot. (In our implementation, it is computed 
by summing up the potential at a collection of points on the 
robot’s boundary.) The orientations corresponding to the local 
minima in the total potential of the robot are identified. Then 
the center of the the robot is translated around the collision 
center to further lower the total potential on the robot. Some 
of these configurations may still involve collisions with the 
obstacles; only those without collisions are considered as 
feasible configurations. These configurations are not intended 
to have locally minimum potential. Rather, they are only 
required to be collision-free and inside the collision region to 
derive a collision-free sequence through the collision region. 
Note that a continual minimization of the potential beyond 
a single pass of rotation and translation will likely take the 
robot out of the collision region into free space, defeating the 
very purpose of finding feasible configurations in the collision 
region. 

Finding feasible configurations in three dimensions is more 
complicated than in two. In two dimensions the orientation 
space is one dimensional, and the orientations corresponding to 
local potential minima may represent topologically distinct ori- 
entations. In three dimensions, however, the three-dimensional 
orientation space makes it difficult to classify the feasible 
orientations into topologically distinct classes. Without solving 
this problem in a general way, we use the following ad hoc 
method to find feasible orientations in three dimensions. The 
longest axis of the robot is placed in a finite number of 
directions, and the robot is rotated about the longest axis to 
find orientations of locally minimum total potential on the 
robot. Then the position of the reference point is perturbed to 
further lower the potential. Finally, those orientations without 
collisions are selected as feasible configurations. 

B. Selecting Sequence of Feasible Configurations 

collision region, the local path planning problem is now 
reduced to the problem of finding a connected sequence of 

Once the feasible configurations are computed for each . 
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Collision 
region 1 Junction 

reaion 1 
Collision 
reaion 2 

candidate 
path 

Fig. 2. An example with two collision regions. The feasible configurations 
of the robot are shown in each region. 

feasible configurations, one from each collision region, from 
the start to goal configuration. Fig. 2 shows an example 
with two collision regions, and the feasible configurations 
in each region are shown. The slide algorithm first tries to 
find a collision-free path and orientations between the start 
configuration and one of the feasible configurations in the first 
collision region. To minimize the change in robot’s orientation, 
the feasible configuration with the closest orientation to the 
start orientation is selected first. If the robot cannot reach the 
selected feasible configuration, the slide algorithm is applied 
to the start configuration and the feasible configuration with 
the next closest orientation. When the robot reaches one of 
the feasible configurations in the first collision region, the 
slide algorithm is applied to that configuration and the feasible 
configuration with the closest orientation in the next collision 
region. This process of best-first search spans a forward tree 
in which the feasible configurations reachable from the start 
configuration are labeled as forward-reachable. If the goal 
configuration is forward-reachable, a solution is found. 

It often happens in a cluttered space that no feasible 
configuration in a collision region can be connected to other 
feasible configurations on both sides, although certain feasible 
configurations may be connected to one of the sides. In such 
a case, the robot has to sidetrack from the initial path into 
a relatively wide space to change its orientation from one 
feasible value to another topologically distinct value before 
coming back to the initial path to continue the journey toward 
the goal (see junction region 1 in Fig. 2). To do this, we add a 
sidetracking module to the local planning algorithm, described 
in Section IV-D. 

C.  Connecting Adjacent Feasible Configurations Directly 

To check whether the robot can move from one feasible 
configuration to another, target configuration, the slide algo- 
rithm moves the robot a small step along the initial path. 
Since the initial path is a safe path for a point, it may give 
rise to a collision for robots with finite dimensions. To avoid 
collisions, the slide algorithm minimizes the total potential on 
the robot along the path by changing the robot’s configuration 
incrementally. 

To begin with, the robot is placed in one of the config- 
urations and translated parallel to the initial path. (Note the 
initial path is given as a sequence of closely spaced points, 
and the line segments connecting adjacent points give the 

translation vectors for the robot.) To lower the potential on 
the robot, the robot is allowed to move by a small step in 
the plane perpendicular to the direction in which it was just 
translated. The robot is then allowed to change its orientation 
by a small amount to further lower the potential on it. When 
the potential on the robot is below a threshold3 in both 
the current configuration and in the target configuration, the 
robot tries to go to the target configuration by a straight-line 
path while uniformly changing its orientation to exploit the 
possible presence of wide free space. If this succeeds, the two 
configurations are connected. Otherwise, the above process of 
translation and reorientation continues. Although this heuristic 
of straight-line movement is not required, it allows the robot 
to reach the target configuration at an earlier stage when the 
free space is wide, saving computation time. If the target 
configuration is not reached after moving the number of steps 
equal to the number of interpolation points on the initial path 
segment between the two feasible configurations, the straight- 
line movement is used once more. This step is necessary to 
prevent the robot from deviating from the target configuration 
to minimize potential, when the target configuration does not 
have locally minimum potential. If the robot still cannot reach 
the target configuration, the target configuration is declared 
unreachable. 

To connect two feasible configurations, the slide algorithm 
could in principle move the robot from either configuration to 
the other. Since it is generally much easier to move the robot 
out from a configuration in a tight space to a configuration 
in an open space than vise versa, the slide algorithm always 
moves the robot from the higher potential configuration toward 
the lower potential configuration. After making one move, the 
potential at the new configuration is computed and compared 
to determine which direction the robot should move next. 
This bidirectional search for a collision-free path increases the 
success rate of the slide algorithm. 

D. Sidetracking 

As discussed in Section IV-B, when the goal is forward 
reachable, the solution is found using forward search. If the 
goal is not forward reachable, the slide algorithm is applied 
backward from the goal configuration, spanning the backward 
tree. Whenever a backward-reachable feasible configuration is 
generated in a junction region containing a forward-reachable 
feasible configuration, the sidetracking algorithm tries to con- 
nect the forward-reachable and backward-reachable feasible 
configurations by moving the robot away from the initial path 
and along a segment of MPV connected to the junction region. 
Thus, a new subproblem is created in which a path is to be 
found to connect the two selected configurations. 

Three things have to be determined before sidetracking 
can occur: the region from which to sidetrack, two feasible 
configurations in the region to be connected, and the direction 
of sidetracking. The parts of the initial path from which the 
robot can sidetrack are the start location, the goal location, and 
the junctions on the initial path where other branches of MPV 

31n our case, the value used is the inverse of the longest dimension of the 
robot. 
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are connected. For brevity, all these regions will be called 
junction regions (Fig. 2). In order to apply the sidetracking 
algorithm, feasible configurations in these regions have to be 
found in addition to those in collision regions. If two feasible 
configurations, say A and B, cannot be connected as above, 
the sidetracking algorithm formulates new subproblems, e.g., 
to connect A to some other feasible configuration, say C, in the 
junction region and then connect C to B. It may solve more 
than one such intermediate subproblem to connect A and B. 
If A and B are connected, a solution is found. If not, the 
slide algorithm is continued backward until it reaches another 
junction region that has a feasible configuration connected to 
the start configuration. 

In two dimensions, there are only a small number of junction 
nodes on the initial path, and it is feasible to find configurations 
in all junction regions. In three dimensions, however, almost 
all nodes on the initial path have more than two neighbor 
nodes in MPV, and it is computationally expensive to consider 
all such nodes as possible places from which to sidetrack. 
We defined as junctions only those nodes whose number of 
neighbor nodes are locally maximal as we trace along the 
initial path. This limits the number of junctions on the initial 
path while retaining the junctions which have many paths 
along which to sidetrack. Given a junction region and two 
feasible configurations to be connected via sidetracking, it 
remains to determine where to sidetrack among the paths 
connected to the junction. A heuristic measure is used to order 
the paths so that the path leading to a wide free space in the 
shortest distance is selected first. Also, to prevent the robot 
from sidetracking endlessly from the initial path, sidetracking 
is stopped when the robot travels more than a preset distance. 

E. Optimization of Solution 

The collision-free path and orientations found by the local 
planning algorithm are not optimal in the sense of the min- 
imum length and orientation change. To obtain an optimal 
path, we start with the suboptimal path and use a numerical 
algorithm to minimize a weighted sum of the path length and 
the total potential experienced by the robot along the path. 
Minimizing the potential on the robot favors object motion 
away from obstacles to avoid collisions, whereas minimization 
of the path length prevents the robot from wandering deep 
into the free space. Our algorithm is similar to Gilbert and 
Johnson’s algorithm in [ l l ]  with two differences. First, they 
use the distance between the robot and obstacles rather than 
the total potential on the robot. Second, their formulation 
takes into account the dynamics, and thus their solutions are 
dynamically optimal. Our solutions are only geometrically 
optimal but can be obtained much faster. 

Let (z, e)  be the position and orientation vectors specifying 
the configuration of the robot. The objective functional to be 
minimized is 

”f > O f  
J = J I(i + U P ( % ,  e))(dz)2 + qdq21. (4) 

I O  990 

where P(z ,  e)  is the total potential experienced by the robot 
in configuration (z, e). The constant a controls the relative 

weights of the path length and the separation from obstacles. 
The second term in the integrand penalizes the orientation 
change of the robot, the constant b being the relative weighting 
factor. The optimal control formulation [5] is used along with 
the first-order gradient method to minimize (4). 

F. Summary of the Algorithm 

summarized in the following steps: 
The potential-field-based algorithm described above can be 

1) The free space is represented by a graph consisting of 
a finite number of nodes and edges, corresponding to 
points and edges along MPV. 

2) Each node is assigned a cost depending on the width of 
free space at the node. 

3) A candidate path is found that minimizes both the path 
length and the chance of collisions. 

4) The local planner modifies the candidate path to derive 
a final collision-free path and orientations of the robot. 

5) If a collision-free path cannot be found, remove the edge 
at which the unavoidable collision occurs, and go to 3). 

6 )  Repeat 3j5) until a solution is found or no candidate 
path exists. 

7) If a solution is found, further optimize the solution with 
the numerical algorithm. 

V. PATH-PLANNING EXAMPLES 

Our algorithm has been tested on a variety of examples, and 
the results are presented in two groups, depending on whether 
the sidetracking is needed to find solutions. 

A. Problems Solvable without Sidetracking 
All the examples contain bottlenecks in the free space 

around which intelligent maneuvering of the robot is required 
to generate collision-free paths and orientations. The solution 
paths, however, lie near the candidate topological paths, i.e., 
sidetracking is not needed. 

Fig. 3 shows how one can change the word “ C T A  into 
“CAT” by moving only one letter. There are two collision 
regions in this example, one between C and A, and the other 
between A and the right boundary. For the problem in Fig. 
4, our algorithm examines three topologically distinct paths 
to find a solution without sidetracking. These three paths are 
shown in Fig. 4(a). Path I is the shortest path, but the L-shaped 
robot cannot make a turn in the space between the triangle and 
the two small squares. Forward and backward searches both 
fail because no feasible configuration in the space is connected 
to both start and goal nodes. The next best path, Path 11, can 
be used by the local planner to move the robot to the goal 
location but in a wrong orientation. Although the free space 
around the goal location is wide enough for the robot to rotate, 
it amounts to a slight sidetracking from Path 11. Our algorithm 
does find a collision-free path and orientations along Path 111, 
and the solution is shown in Fig. 4(b). If sidetracking were 
allowed, this problem could be solved with Path 11. 

Fig. 5 shows how to move a grand piano into the living 
room. Intelligent maneuvering is necessary at the doorway 
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Moving an L shape. (a) Minimum potential valleys and 
candidate paths chosen. (b) A solution found along Path 111. 

three 

(collision region), whose width is smaller than the height of 
the piano. Fig. 6 shows a helix-shaped mechanical spring 
going through a small opening in a wall whose width is 
smaller than the diameter of the spring. The only solution is 
to rotate the robot to screw through the opening. Our method 
of representing the robot with a grid of points'on its surface 
tolerates robots of almost any shape. 

B. Problems Requiring Sidetracking 

In the examples below, the robots sidetrack off the initial 
paths to find solutions. The robot in Fig. 7 has to sidetrack 
twice at the T junction, first to the right and then to the left. 

Fig. 6. A mechanical spring has to rotate several times to go through a hole. 

This problem is one of the hardest 2-D problems we have 
experimented with. 

Fig. 8 shows the problem of moving a chair from one side of 
a desk to the other. The chair is small enough to go underneath 
the desk but has to sidetrack away from the desk so that the 
seat is between the drawers in the final configuration. The next 
example in Fig. 9 shows a submarine moving through several 
polyhedral obstacles. It first turns sideways to pass beneath a 
rectangular block, goes through a triangular opening, and then 
sidetracks to the wide space to make a 90" turn. 

VI. PERFORMANCE ANALYSIS 

The performance of the potential-field algorithm is shown in 
the previous section. Our approach does not restrict the shapes 
of objects allowed. This is a significant advantage over other 
heuristic algorithms, where objects are often limited to points 
or spheres. At the same time, the increase in computation time 
is only marginal over the existing heuristic algorithms. The 
computation times to solve the examples are less than 5 rnin 
for 2-D examples, and 5 to 30 min for 3-D examples on a Sun 
3/260 computer. In three dimensions, most of the time is spent 
in generating M P V .  Once the initial candidate path is given, 
the local planner takes only several minutes. These times are 
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(b) 

space (a), and on the return, slightly to the left to reach the goal @). 
Fig. 7. The arc needs to sidetrack twice; first off the junction to the wide 

Fig. 8. The problem of moving a chair from one side of a desk to the other. 

quite short considering the computation time of hours reported 
for one implementation of the configuration space approach 
[8] and the theoretical estimates available for the algorithm of 
Schwartz and Sharir [28]. 

Fig. 9. The submarine turns sideways to pass under a block (a), goes through 
a triangular opening (b), and then sidetracks to a wide space as it cannot make 
a sharp left turn near the goal (c). 

There are two essential features in our algorithm that 
contribute to its success. First, the potential field approach ef- 
fectively performs a multiresolution analysis of the free space. 
The first step of extracting all topologically distinct paths 
between the source and the destination requires a relatively 
simple computation, that of computing the potential field. Then 
by performing a more complex computation of heuristics, it se- 
lects likely candidates for the best solution path. Finally, using 
the most expensive local planner, the candidate path is modi- 
fied to avoid collisions in narrow spaces. Such a coarse-to-fine 
organization of computation-performing more complex com- 
putations on selected, smaller parts of the space-minimizes 
the total amount of computational effort. Second, feasible 
configurations in narrow regions are found using the potential 
values. Orientations with locally minimum potential have 
locally maximum clearances to the obstacles and thus have 
a better chance of going through the narrow -ions. On the 
contrary, the geometric computation of feas' ifigurations 
has a high complexity. But our algorithiz t i  heuristic, 
fails to find solutions to certain problems, ,sed in this 
section. 

We have concentrated on building a general framework 
to solve the findpath problem rather than giving proofs of 
correctness of our algorithm or exact complexity analysis. 
The decomposition of the problem and the heuristics used 
in the process are justifiable for the following reasons. First, 
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the search space has to be reduced to achieve computational 
efficiency. This is done by reducing the six-dimensional con- 
figuration space to the three-dimensional world space, ignoring 
the robot’s orientation. After computing the minimum potential 
valleys in the world space, we measure the goodness of 
the path segments in MPV using the minimum width and 
the longest dimension of the robot. This is equivalent to 
planning paths assuming the robot is an ellipsoid. Ellipsoidal 
approximation of the robot is a good heuristic when planning 
paths in wide parts of the free space. Second, the orientation 
space is searched for feasible configurations only in cluttered 
spaces where the robot collides with the obstacles. This is an 
expensive computation as we need to take into account the 
detailed shape of the robot. Computational effort is reduced 
by performing this computation only along the candidate path, 
where there is a good chance of finding a solution. Third, the 
inclusion of the sidetracking step in our algorithm is necessary 
because we solve the problem in the three-dimensional world 
space, whose dimensionality is lower than that of the six- 
dimensional configuration space. To see this, consider an 
arbitrary findpath problem and assume that there is a loopless 
solution *curve in the six-dimensional configuration space. 
Now, let us suppress the orientation component of the curve 
and project it onto the three-dimensional world space. Consider 
the situation where the projected curve contains a loop. For our 
algorithm to find the solution curve, the global planner must 
generate the projected curve (with the loop) as a candidate 
path. Such a curve is never the shortest path in the graph 
representing the minimum potential valleys, and will never be 
a candidate path. Therefore, our algorithm will fail to solve the 
problem. The sidetracking module allows our algorithm to add 
the missing loops to the loopless candidate paths in the world 
space so they correspond to projections of six-dimensional 
solution paths. 

The above characterization of our algorithm helps identify 
the conditions under which it fails. First, MPV must provide 
good initial estimates for solution paths. In cases where the 
obstacles and the robot are of complicated shapes and are 
interlocked, MPV between the obstacles may not resemble 
a solution path at all. Second, rotation of the robot about 
its reference point must produce important changes in the 
configuration of the robot. Fig. 10 shows an example that 
violates these conditions. The crucial parts of the robot are 
its extremities. If the reference point of the robot lies near its 
center, any rotation of the robot about the reference point will 
not produce a movement needed to unhook the robot from 
the nails. Solving such problems requires a detailed shape 
analysis and geometric reasoning, and is beyond the scope 
of nongeometric approaches such as the one presented in this 
paper. 

VII. SUMMARY AND CONCLUSIONS 

We have presented an approach to the findpath problem 
using a potential field representation. A potential field similar 
to the electrostatic potential is used to accomplish two things. 
First, the topological structure of the free space is extracted 
in the form of the minimum potential valleys. Second, the 

F goal 

Fig. 10. Our algorithm fails when the robot is large relative to the obstacles 
and is of complicated shape. Here concavities prevent the robot from achieving 
a feasible configuration simply by rotating about its center. 

potential field is used to derive the most efficient, collision- 
free path corresponding to a given topological path. The 
principal motivation behind our algorithm is to develop a path 
planner that is a compromise between the exact and heuristic 
algorithms. By excluding a small set from path planning 
problems and by marginally increasing the computation time 
over the heuristic algorithms, our algorithm is capable of 
solving a large set of problems in much shorter time than exact 
algorithms. The performance requirements of path planners 
are of course tied to applications. For a round mobile robot 
moving on factory floors, a 2-D path planner for a point 
robot may suffice. For a submarine operating in an underwater 
terrain, our algorithm seems to be of appropriate complexity. 
To find out how a collection of complex mechanical parts can 
be assembled, an exact algorithm based on the configuration 
space is probably better suited. The choice of a path planner 
should be made to obtain a good match to the complexity of 
the problem, the desired solution, and the computational speed 
requirements. We believe our potential-field-based algorithm 
fills an important slot in the complexity hierarchy of path 
planners. A next line of research would be extending the 
potential field approach to motion planning of manipulators, 
flexible objects, and other variations of motion planning. 
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