
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1, FEBRUARY 1992 23

~

Yong K. Hwang, Member, IEEE, and Narendra Ahuja, Senior Member, IEEE

A Potential Field Approach to Path Planning

Abstract- We present a path-planning algorithm for the clas-
sical mover’s problem in three dimensions using a potential
field representation of obstacles. A potential function similar to
the electrostatic potential is assigned to each obstacle, and the
topological structure of the free space is derived in the form of
minimum potential valleys. Path planing is done at two levels.
First, a global planner selects a robot’s path from the minimum
potential valleys and its orientations along the path that minimize
a heuristic estimate of the path length and the chance of collision.
Then a local planner modifies the path and orientations to derive
the final collision-free path and orientations. If the local planner
fails, a new path and orientations are selected by the global
planner and subsequently examined by the local planner. This
process is continued until a solution is found or there are no paths
left to be examined. Our algorithm solves a much wider class of
problems than other heuristic algorithms and at the same time
runs much faster than exact algorithms (typically 5 to 30 min
on a Sun 3/260). The algorithm fails on a small set of very hard
problems involving tight free spaces. The performance of our
algorithm is demonstrated on a variety of examples.

I. INTRODUCTION
HIS paper presents a solution to the classical mover’s T problem: Given a rigid robot and a space littered with

rigid obstacles, find a motion connecting the starting and
the goal configurations of the robot. Other variations of
motion planning have also been studied, but we will limit
our discussion to the classical mover’s problem. Surveys
of motion-planning algorithms can be found in [16], [33].
Algorithms can be classified as being either exact or heuristic.
Exact algorithms either find a solution or prove that none
exists, and they tend to have high complexity. For example,
the algorithm based on critical curves [28] runs in a double
exponential time in the number of degrees of freedom of the
robot. The run time is later improved to a single exponential
time 161. Other exact algorithms [2], [8], [24] have similar
time complexities and take days of computation for the three-
dimensional world. Heuristic methods reduce the problem
complexity by simplifying the shapes of objects and restricting
the robot motion to smaller sets. Algorithms based on free-
space decomposition are reported in [4], [27], and [29], and
quadtree (octree) based algorithms are developed in [lo], [13],

Manuscript received December 19, 1988; revised May 3, 1991. This work
was supported by the National Science Foundation under Grant ECS 8352408
and by Rockwell International. Portions of this paper were presented at
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Diego, CA, June 1989. A video tape showing the results
of the algorithms is available from the authors.

Y. K. Hwang was with the Coordinated Sciece Laboratory, University of
Illinois, Urbana, IL 61801. He is now with the Sandia National Laboratories,
Albuquerque, NM 87185.
N. Ahuja is with the Beckman Institute, University of Illinois, Urbana, IL

61801.
IEEE Log Number 9104438.

and [17]. Most of these algorithms have two disadvantages.
First, the allowed shapes are too restricted to be applicable in
general cases. Second, they may fail to find a solution even
if there is one. The disadvantages of the exact and heuristic
algorithms have motivated us to develop an algorithm that is
much faster than the exact algorithms at the expense of failing
to find solutions for a small set of very hard problems, and at
the same time allows much richer sets of object shapes and
motion.

In the potential field approach, obstacles are assumed to
carry electric charges, and the resulting scalar potential field
is used to represent the free space. Collisions between the ob-
stacles and the robot are avoided by a repulsive force between
them, which is simply the negative gradient of the potential
field. Potential functions are independently investigated in [21]
and [25]. In [19], potential functions are used for obstacle
avoidance, but the most common use of the potential field
approach is for local path planning. It is used for manipulator
control in [18] and [23]. Thorpe [31] has used a potential-like
cost function in designing an optimal path for a circular robot
in two dimensions. Suh and Shin [30] reported a potential-
based algorithm to find the optimal path for a point robot in
two dimensions gave a brief sketch for the 3-D case. A path
planner based on the potential field for a point robot moving
amid star-shaped obstacles is described in [26]. It is our goal
to develop a potential-based approach to path planning for the
classical mover’s problem.

Several motivations have lead to the use of the potential
field representation. The potential field can be used to obtain
a global representation of the space so that coarse planning
can be done at the global level. A continuous potential field
gives a good indication about the distances to and the shapes
of obstacles so that necessary changes in robot position and
orientation can be done in a smooth, continuous manner. When
detecting collisions, combinatorial complexity of intersection
detection performed with geometric representations is avoided.
This is accomplished by eliminating the need for explicitly
performing intersection detection through the use of a potential
field that gives object distance information. By using an
appropriate definition of the potential at a point, the influence
of obstacles not in the vicinity of the point is eliminated.

The algorithm described in this paper contains two modules,
a global planner and a local planner, as done in [9]. The global
planner uses a global description of the free space given by
a network of the minimum potential valleys and selects a
candidate path that is likely to be collision-free. The local
planner then modifies the candidate path to avoid collisions
and locally optimize the path length and smoothness of motion.
If the local planner cannot find a solution, the global planner

24 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1, FEBRUARY 1992

computes another path for the local planner to examine. This
process is repeated until a solution is found or the global
planner can longer find a path. Both modules use the potential
field representation.

Sections I1 and 111 describe a potential field function and the
global planner. The local planner is described in Section IV,
and the performance of our algorithm is illustrated in Section
V. Sections VI and VI1 evaluate our approach, highlight some
salient features of the approach, and discuss how our algorithm
can be extended. Details can be found in [15].

11. POTENTIAL FIELD AND MINIMUM POTENTIAL VALLEYS

This section describes the use of potential functions to
represent free space for use in path planning. We describe a
specific potential function in Section 11-A, and then in Section
11-B discuss how it is used in our algorithm to obtain a global
space representation.

Obstacles can be represented by specifying their surfaces or
volumes. Transformation of the representation, into a form
so as to bring out the topological structure of free space,
constitutes a crucial part of path planning. Further, the rep-
resentation should allow efficient detection of collisions. It is
also desirable that the paths derived from the representation
provide good guesses for the final solutions. Two often-used
representations are the Voronoi diagram and the octree, and
efficient algorithms are available to generate them [20], [32].
If a potential field representation of the free space is used, then
the valleys of potential minima define the Voronoi diagram.
Since our algorithm uses the potential field representation for
modifying the candidate paths, we use the same representation
for free space for uniformity.

There are many choices of the potential function. The
most common potential in physics is the Newtonian potential
function, but it does not have an analytic expression even for
an arbiirary polygon. A potential function that has an analytic
expression and is thus more efficient to compute is developed
below.

A. A Simple Potential Function
The following derivation of a simple potential function is

valid in both two and three dimensions (regions generalize to
volumes for 3D). Let

g(z) 5 0, g E L", x E R" (1)

be the set of inequalities describing a convex region, where L
denotes the set of linear functions. Then the scalar function

no. of bound. seg.

f(x) = Si(.-> + 19i(It.>I (2)
i=l

is zero inside the region and grows linearly as the distance
from the region increases [7]. Let us define a potential function
P as

Fig. 1. The potential function due to a 2-D triangular obstacle. The potential
is arbitrarily large inside the obstacle and decreases roughly as the inverse of
the distance outside the obstacle.

where S is a small positive constant. The function p meets
the requirements of the potential function needed for path
planning; p(x) has its maximum value of 6-' inside the region
and strictly decreases as the inverse of the distance outside
the region. The graph of the potential function of a triangular
object is shown in Fig. 1. When there are multiple obstacles
present, the potential at any point is given by the maximum
of the potentials due to individual obstacles. It is crucial to
use maximum rather than the sum of the potentials as noted
in [23]. When the sum is used as the combined potential,
small local maxima of the potential may appear in free space
away from obstacles. The minimum potential valleys (MPV)
can then be defined as the set of saddle points and locally
minimum points. In other words, if x E MPV, then there
is at least one direction along which the potential achieves
its minimum at z. It is desired to have local maxima of the
potential only in the regions obstacles occupy so that the MPV
structure captures the topological structure of the free space.
The following propositions prove that MPV do possess this
property.

Proposition I : Local maxima of the potential function
d z) = maximumJ=l, ..,no. of obstac]esP~(x) Occur Only On
the obstacles.

Proof: Suppose a local maximum occurs at xo in the free
space. Then there exists a closed curve (surface) r surrounding
zo such that p(zo) > p(x) for any z E I?. This implies p (z 0) >
maxza- ~ (5) = maxzEr max3 P, (z) 2 maxzEr ~ ~ (5) for
any j. But this contradicts the monotonicity of pJ(x) in the
free space. Therefore, there is no local maximum in the free
space.

Proposition 2: Any simply closed curve (surface) in the
minimum potential valleys contains a local maximum of the
potential function in its interior.

Proof: Suppose on the contrary that there is in MPV a
simply closed curve (surface) that does not contain a local
maximum in its interior. Then the maximum occurs at a point
xo E MPV. If xo E MPV, there is a direction along which
the potential achieves its minimum at 20. For 20 to be a
maximizing point of the closure of the interior, this direction
cannot penetrate the interior and is parallel to the closed curve

HWANG AND AHUJA POTENTIAL FIELD APPROACH TO PATH PLANNING 25

(surface). By the continuity of the potential, this direction
also provides a local minimum at a point $1 in the interior
sufficiently close to $0. Then $1 EMPV, and this contradicts
the assumption that the curve (surface) is simply closed.

B. Generation of Minimum Potential Valleys

The above definition of MPV makes it clear how MPV
capture the topological structure of the free space. Since
the number of points in MPV is infinite, computation of
MPV is an intensive task. To limit the computation, we
obtain a piecewise linear approximation of MPV as a graph
whose nodes are certain points along MPV and whose edges
correspond to straight line segments connecting nodes. We
present an algorithm called MPV algorithm that generates this
graph by beginning at the start and goal points, and recursively
locating nodes by finding low potential sites along a circle
(sphere) centered at each point. This algorithm is valid in any
dimension, and we will use the term sphere regardless of the
dimension.

The MPV algorithm generates MPV in a sequential manner,
beginning from the start, as well as the goal position of
the robot. The basic idea is to identify various minimum
potential branches emanating from the start and goal nodes by
recursively drawing spheres centered at the nodes and tracking
valleys. The algorithm maintains three queues, the ancestor
queue A, the father queue F, and the son queue S. F contains
nodes whose neighbor nodes are to be found, and it initially
contains the start and the goal nodes. A and S are initially
empty. Centered at each node in F , the largest sphere that
does not intersect any obstacle (called the largest free sphere)
is drawn, and a uniform’ grid of points is scattered on each
sphere.

The points on each grid are possible sons of the node at the
center. The potential at each grid point is computed and the
points are sorted according to their potentials. The points with
potentials greater than a threshold* are deleted, since they are
too close to the obstacles and the robot cannot be positioned
at such locations.

The point with the smallest potential is selected as a son
node and is moved to S. An edge is created between the son
and the father node so that the father is not generated again as
a son of its own son. The largest free sphere centered at the
son node is drawn, and all the grid points inside the sphere are
deleted. Next, the point with the smallest potential among the
remaining points is selected as a son node, and all the points
that are in the largest free sphere centered at the node are
deleted. This process of son node selection is continued until
there are no more points. The distance between each son node
and each node in F other than its own father is computed,
and an edge is created if the distance is less than the distance
from the son node to the obstacles. After all son nodes are
generated, nodes in F are appended to A and the nodes in S

‘In three dimensions, the grid will be uniform only if it is formed by vertices
of a regular polyhedron. Otherwise, it could be made only approximately
uniform.

21n our case, the value used is the invetse of the minimum width of the
robot, since the reference point of the robot is unlikely to move without a
collision through these points.

replace the nodes in F. The MPV algorithm will terminate if
the free space is bounded.

The MPV algorithm runs in less than 1 min for two
dimensions, and about 10 min for three dimensions on a
Sun 3/260 computer. It is especially slow when there is a
narrow and long channel in the free space. It is, however,
very robust to small variations in obstacle shapes and extends
to higher dimensions with little modifications. See Fig. 4(a) for
an example of MPV. Having obtained the MPV representation,
our path-planning algorithm consists of two steps: global
planning and local planning.

111. GLOBAL PLANNER
In this section, we discuss how the MPV representation is

used for global planning. The global planner selects from the
MPV graph the shortest path between the start and the goal
nodes with the minimum heuristic estimate of the chance of
collision (Path I in Fig. 4(a)). The local planner (Section IV)
then moves the robot along this path, modifying the robot’s
position and orientation as necessary to avoid collisions. When
the robot cannot reach one node from another given node,
the edge between the two nodes is deleted from the graph.
The global planner then finds the shortest, safe path between
the goal node and any of the nodes the robot has reached.
This process is repeated until a solution is found (Path 111
in Fig. 4(a)) or there is no path left in the graph. Dynamic
programming or Dijkstra’s algorithm [22] can be used to find
the minimum cost path.

Heuristic Cost of Paths
A cost function is used to denote the length and the difficulty

of a path to be traversed by the robot. A path is given as a
sequence of nodes and edges connecting them. The length and
cost of an edge is the Euclidean distance between the nodes at
the ends of the edge. The cost of a node measures the difficulty
of placing the robot at the node location and is measured in
terms of the distance to the nearest obstacle. We define the cost
of a node to be infinite (a large number in the implementation)
if the distance to the obstacles is less than one-half of the
robot’s width, as the robot cannot go through the node at any
orientation. If the distance is greater than one-half the longest
dimension of the robot, the robot can go through the node
at any orientation and the node cost is zero. For the distance
values in between, a monotone curve connecting infinity and
zero can be used. In computing the node cost, the distance
may be approximated with l/p, the inverse of the potential to
decrease the computation time. The total cost of a path is then
the sum of the costs of the edges and the nodes in the path.

The minimum cost path from the graph is a sequence of
nodes that are relatively large distances apart. This path is
interpolated with a number of points so that the distance
between adjacent points is less than a threshold. This threshold
represents the resolution of our algorithm; if the robot does not
collide with obstacles at two adjacent points, it is assumed that
the robot can move between these points without collisions.
The interpolated path serves as the initial estimate of a path
for the reference point of the robot, which is at the center

~

26 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1. FEBRUARY 1992

of the volume of the robot. The initial orientations of the
robot along the path remain to be determined. Aligning the
longest axis of the robot with the direction of the path
minimizes the swept volume by the robot and thus minimizes
the chance of collisions. This alignment completely specifies
the robot’s orientation in two dimensions. In three dimensions,
this specifies only two Euler angles. We select the remaining
degree of freedom in orientation such that the second longest
axis of the robot lies in the plane tangent to the minimum
potential surface. This alignment is intended to serve as a
heuristic for minimizing the total potential experienced by the
robot, and thus on the average, for minimizing the chance
of collisions. The derived path and orientations are used by
the local planner to determine the final collision-free path and
orientations.

IV. LOCAL PLANNER
The local planner uses the potential field in two ways. First,

when the initial path and orientations involve collisions, the lo-
cal planner modifies the robot’s configuration to minimize the
potential on the robot and thus attempts to remove collisions.
Second, even if the path and orientations are free of collisions,
they may not be optimal in the sense of the shortest path and
the minimum changes in orientation. The local planner uses the
potential field as a penalty function in a numerical algorithm
that optimizes the path length and orientation change. In
the following discussion, the term “regions” generalizes to
“volumes” in three dimensions.

The local planner attempts to find a collision-free path and
orientations in the neighborhood of the initial estimates. First,
the robot is moved according to the initial configurations
specified by the global planner, and the configurations cor-
responding to collisions are identified. These configurations
occur at groups of path locations, in regions called collision
regions. The location associated with the central configuration
in the sequence of collision configurations in a collision region
is called the collision center of the collision region. Next,
feasible, i.e., collision-free, configurations of the robot in the
collision regions are found. This is done by selecting the con-
figurations within the region that minimize the total potential
on the robot. If the start and the goal configurations can be
connected through a sequence of feasible configurations, this
defines a feasible global solution path. If no such sequence
is found, then the initial path is assumed not to lead to a
solution. Moving the robot between two successive feasible
configurations is done by an algorithm called the slide. It
moves the robot along the initial path and makes incremental
changes to robot’s configuration to maximize the clearance
between the robot and the obstacles. Finally, a numerical
algorithm is used to minimize the length of the collision-
free path and the change in the orientation along the path.
The local planning algorithm consists of the following steps,
which are described below: finding feasible configurations in
collision regions, selecting the best feasible configurations in
collision regions, and finding a path connecting two feasible
configurations using the slide algorithm.

A. Feasible Configurations in Collision Regions

There are usually an infinite number of feasible configura-
tions in a collision region, corresponding to different locations
and orientations of the robot within the collision region. To
identify a sequence of feasible configurations through the
region, it is sufficient to identify one such configuration and
derive the rest from it. For this purpose, we obtain a set
of topologically distinct, feasible orientations of the robot
located at the collision center, which then serve as the seed
configurations to derive the feasible path through the collision
region. “Topologically distinct” here means that the robot
cannot be rotated about the collision center from any one such
orientation to another. The search for these configurations may
be performed by random sampling of the orientation space
[3], [12]. We instead use the following search method for this
purpose at each collision center.

In two dimensions, the robot is rotated with its center
(reference point) fixed at the collision center. At a finite
number of uniformly distributed orientations, the total potential
on the robot is computed by integrating the potential over the
boundary of the robot. (In our implementation, it is computed
by summing up the potential at a collection of points on the
robot’s boundary.) The orientations corresponding to the local
minima in the total potential of the robot are identified. Then
the center of the the robot is translated around the collision
center to further lower the total potential on the robot. Some
of these configurations may still involve collisions with the
obstacles; only those without collisions are considered as
feasible configurations. These configurations are not intended
to have locally minimum potential. Rather, they are only
required to be collision-free and inside the collision region to
derive a collision-free sequence through the collision region.
Note that a continual minimization of the potential beyond
a single pass of rotation and translation will likely take the
robot out of the collision region into free space, defeating the
very purpose of finding feasible configurations in the collision
region.

Finding feasible configurations in three dimensions is more
complicated than in two. In two dimensions the orientation
space is one dimensional, and the orientations corresponding to
local potential minima may represent topologically distinct ori-
entations. In three dimensions, however, the three-dimensional
orientation space makes it difficult to classify the feasible
orientations into topologically distinct classes. Without solving
this problem in a general way, we use the following ad hoc
method to find feasible orientations in three dimensions. The
longest axis of the robot is placed in a finite number of
directions, and the robot is rotated about the longest axis to
find orientations of locally minimum total potential on the
robot. Then the position of the reference point is perturbed to
further lower the potential. Finally, those orientations without
collisions are selected as feasible configurations.

B. Selecting Sequence of Feasible Configurations

collision region, the local path planning problem is now
reduced to the problem of finding a connected sequence of

Once the feasible configurations are computed for each .

HWANG AND AHUJA POTENTIAL FIELD APPROACH TO PATH PLANNING 27

Collision
region 1 Junction

reaion 1
Collision
reaion 2

candidate
path

Fig. 2. An example with two collision regions. The feasible configurations
of the robot are shown in each region.

feasible configurations, one from each collision region, from
the start to goal configuration. Fig. 2 shows an example
with two collision regions, and the feasible configurations
in each region are shown. The slide algorithm first tries to
find a collision-free path and orientations between the start
configuration and one of the feasible configurations in the first
collision region. To minimize the change in robot’s orientation,
the feasible configuration with the closest orientation to the
start orientation is selected first. If the robot cannot reach the
selected feasible configuration, the slide algorithm is applied
to the start configuration and the feasible configuration with
the next closest orientation. When the robot reaches one of
the feasible configurations in the first collision region, the
slide algorithm is applied to that configuration and the feasible
configuration with the closest orientation in the next collision
region. This process of best-first search spans a forward tree
in which the feasible configurations reachable from the start
configuration are labeled as forward-reachable. If the goal
configuration is forward-reachable, a solution is found.

It often happens in a cluttered space that no feasible
configuration in a collision region can be connected to other
feasible configurations on both sides, although certain feasible
configurations may be connected to one of the sides. In such
a case, the robot has to sidetrack from the initial path into
a relatively wide space to change its orientation from one
feasible value to another topologically distinct value before
coming back to the initial path to continue the journey toward
the goal (see junction region 1 in Fig. 2). To do this, we add a
sidetracking module to the local planning algorithm, described
in Section IV-D.

C. Connecting Adjacent Feasible Configurations Directly

To check whether the robot can move from one feasible
configuration to another, target configuration, the slide algo-
rithm moves the robot a small step along the initial path.
Since the initial path is a safe path for a point, it may give
rise to a collision for robots with finite dimensions. To avoid
collisions, the slide algorithm minimizes the total potential on
the robot along the path by changing the robot’s configuration
incrementally.

To begin with, the robot is placed in one of the config-
urations and translated parallel to the initial path. (Note the
initial path is given as a sequence of closely spaced points,
and the line segments connecting adjacent points give the

translation vectors for the robot.) To lower the potential on
the robot, the robot is allowed to move by a small step in
the plane perpendicular to the direction in which it was just
translated. The robot is then allowed to change its orientation
by a small amount to further lower the potential on it. When
the potential on the robot is below a threshold3 in both
the current configuration and in the target configuration, the
robot tries to go to the target configuration by a straight-line
path while uniformly changing its orientation to exploit the
possible presence of wide free space. If this succeeds, the two
configurations are connected. Otherwise, the above process of
translation and reorientation continues. Although this heuristic
of straight-line movement is not required, it allows the robot
to reach the target configuration at an earlier stage when the
free space is wide, saving computation time. If the target
configuration is not reached after moving the number of steps
equal to the number of interpolation points on the initial path
segment between the two feasible configurations, the straight-
line movement is used once more. This step is necessary to
prevent the robot from deviating from the target configuration
to minimize potential, when the target configuration does not
have locally minimum potential. If the robot still cannot reach
the target configuration, the target configuration is declared
unreachable.

To connect two feasible configurations, the slide algorithm
could in principle move the robot from either configuration to
the other. Since it is generally much easier to move the robot
out from a configuration in a tight space to a configuration
in an open space than vise versa, the slide algorithm always
moves the robot from the higher potential configuration toward
the lower potential configuration. After making one move, the
potential at the new configuration is computed and compared
to determine which direction the robot should move next.
This bidirectional search for a collision-free path increases the
success rate of the slide algorithm.

D. Sidetracking

As discussed in Section IV-B, when the goal is forward
reachable, the solution is found using forward search. If the
goal is not forward reachable, the slide algorithm is applied
backward from the goal configuration, spanning the backward
tree. Whenever a backward-reachable feasible configuration is
generated in a junction region containing a forward-reachable
feasible configuration, the sidetracking algorithm tries to con-
nect the forward-reachable and backward-reachable feasible
configurations by moving the robot away from the initial path
and along a segment of MPV connected to the junction region.
Thus, a new subproblem is created in which a path is to be
found to connect the two selected configurations.

Three things have to be determined before sidetracking
can occur: the region from which to sidetrack, two feasible
configurations in the region to be connected, and the direction
of sidetracking. The parts of the initial path from which the
robot can sidetrack are the start location, the goal location, and
the junctions on the initial path where other branches of MPV

31n our case, the value used is the inverse of the longest dimension of the
robot.

28 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1, FEBRUARY 1992

are connected. For brevity, all these regions will be called
junction regions (Fig. 2). In order to apply the sidetracking
algorithm, feasible configurations in these regions have to be
found in addition to those in collision regions. If two feasible
configurations, say A and B, cannot be connected as above,
the sidetracking algorithm formulates new subproblems, e.g.,
to connect A to some other feasible configuration, say C, in the
junction region and then connect C to B. It may solve more
than one such intermediate subproblem to connect A and B.
If A and B are connected, a solution is found. If not, the
slide algorithm is continued backward until it reaches another
junction region that has a feasible configuration connected to
the start configuration.

In two dimensions, there are only a small number of junction
nodes on the initial path, and it is feasible to find configurations
in all junction regions. In three dimensions, however, almost
all nodes on the initial path have more than two neighbor
nodes in MPV, and it is computationally expensive to consider
all such nodes as possible places from which to sidetrack.
We defined as junctions only those nodes whose number of
neighbor nodes are locally maximal as we trace along the
initial path. This limits the number of junctions on the initial
path while retaining the junctions which have many paths
along which to sidetrack. Given a junction region and two
feasible configurations to be connected via sidetracking, it
remains to determine where to sidetrack among the paths
connected to the junction. A heuristic measure is used to order
the paths so that the path leading to a wide free space in the
shortest distance is selected first. Also, to prevent the robot
from sidetracking endlessly from the initial path, sidetracking
is stopped when the robot travels more than a preset distance.

E. Optimization of Solution

The collision-free path and orientations found by the local
planning algorithm are not optimal in the sense of the min-
imum length and orientation change. To obtain an optimal
path, we start with the suboptimal path and use a numerical
algorithm to minimize a weighted sum of the path length and
the total potential experienced by the robot along the path.
Minimizing the potential on the robot favors object motion
away from obstacles to avoid collisions, whereas minimization
of the path length prevents the robot from wandering deep
into the free space. Our algorithm is similar to Gilbert and
Johnson’s algorithm in [l l] with two differences. First, they
use the distance between the robot and obstacles rather than
the total potential on the robot. Second, their formulation
takes into account the dynamics, and thus their solutions are
dynamically optimal. Our solutions are only geometrically
optimal but can be obtained much faster.

Let (z, e) be the position and orientation vectors specifying
the configuration of the robot. The objective functional to be
minimized is

”f > O f
J = J I(i + U P (% , e))(dz)2 + qdq21. (4)

I O 990

where P(z , e) is the total potential experienced by the robot
in configuration (z, e). The constant a controls the relative

weights of the path length and the separation from obstacles.
The second term in the integrand penalizes the orientation
change of the robot, the constant b being the relative weighting
factor. The optimal control formulation [5] is used along with
the first-order gradient method to minimize (4).

F. Summary of the Algorithm

summarized in the following steps:
The potential-field-based algorithm described above can be

1) The free space is represented by a graph consisting of
a finite number of nodes and edges, corresponding to
points and edges along MPV.

2) Each node is assigned a cost depending on the width of
free space at the node.

3) A candidate path is found that minimizes both the path
length and the chance of collisions.

4) The local planner modifies the candidate path to derive
a final collision-free path and orientations of the robot.

5) If a collision-free path cannot be found, remove the edge
at which the unavoidable collision occurs, and go to 3).

6) Repeat 3j5) until a solution is found or no candidate
path exists.

7) If a solution is found, further optimize the solution with
the numerical algorithm.

V. PATH-PLANNING EXAMPLES

Our algorithm has been tested on a variety of examples, and
the results are presented in two groups, depending on whether
the sidetracking is needed to find solutions.

A. Problems Solvable without Sidetracking
All the examples contain bottlenecks in the free space

around which intelligent maneuvering of the robot is required
to generate collision-free paths and orientations. The solution
paths, however, lie near the candidate topological paths, i.e.,
sidetracking is not needed.

Fig. 3 shows how one can change the word “ C T A into
“CAT” by moving only one letter. There are two collision
regions in this example, one between C and A, and the other
between A and the right boundary. For the problem in Fig.
4, our algorithm examines three topologically distinct paths
to find a solution without sidetracking. These three paths are
shown in Fig. 4(a). Path I is the shortest path, but the L-shaped
robot cannot make a turn in the space between the triangle and
the two small squares. Forward and backward searches both
fail because no feasible configuration in the space is connected
to both start and goal nodes. The next best path, Path 11, can
be used by the local planner to move the robot to the goal
location but in a wrong orientation. Although the free space
around the goal location is wide enough for the robot to rotate,
it amounts to a slight sidetracking from Path 11. Our algorithm
does find a collision-free path and orientations along Path 111,
and the solution is shown in Fig. 4(b). If sidetracking were
allowed, this problem could be solved with Path 11.

Fig. 5 shows how to move a grand piano into the living
room. Intelligent maneuvering is necessary at the doorway

HWANG AND AHUJA: POTENTIAL FIELD APPROACH TO PATH PLANNING 29

.

I 1 i . .

R @b: . 0 "'

Fig. 4.

@?
(4 (b) (c)

I \\\\\\--

Moving an L shape. (a) Minimum potential valleys and
candidate paths chosen. (b) A solution found along Path 111.

three

(collision region), whose width is smaller than the height of
the piano. Fig. 6 shows a helix-shaped mechanical spring
going through a small opening in a wall whose width is
smaller than the diameter of the spring. The only solution is
to rotate the robot to screw through the opening. Our method
of representing the robot with a grid of points'on its surface
tolerates robots of almost any shape.

B. Problems Requiring Sidetracking

In the examples below, the robots sidetrack off the initial
paths to find solutions. The robot in Fig. 7 has to sidetrack
twice at the T junction, first to the right and then to the left.

Fig. 6. A mechanical spring has to rotate several times to go through a hole.

This problem is one of the hardest 2-D problems we have
experimented with.

Fig. 8 shows the problem of moving a chair from one side of
a desk to the other. The chair is small enough to go underneath
the desk but has to sidetrack away from the desk so that the
seat is between the drawers in the final configuration. The next
example in Fig. 9 shows a submarine moving through several
polyhedral obstacles. It first turns sideways to pass beneath a
rectangular block, goes through a triangular opening, and then
sidetracks to the wide space to make a 90" turn.

VI. PERFORMANCE ANALYSIS

The performance of the potential-field algorithm is shown in
the previous section. Our approach does not restrict the shapes
of objects allowed. This is a significant advantage over other
heuristic algorithms, where objects are often limited to points
or spheres. At the same time, the increase in computation time
is only marginal over the existing heuristic algorithms. The
computation times to solve the examples are less than 5 rnin
for 2-D examples, and 5 to 30 min for 3-D examples on a Sun
3/260 computer. In three dimensions, most of the time is spent
in generating M P V . Once the initial candidate path is given,
the local planner takes only several minutes. These times are

30 IEEE TRANSACI'IONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1, FEBRUARY 1992

(b)

space (a), and on the return, slightly to the left to reach the goal @).
Fig. 7. The arc needs to sidetrack twice; first off the junction to the wide

Fig. 8. The problem of moving a chair from one side of a desk to the other.

quite short considering the computation time of hours reported
for one implementation of the configuration space approach
[8] and the theoretical estimates available for the algorithm of
Schwartz and Sharir [28].

Fig. 9. The submarine turns sideways to pass under a block (a), goes through
a triangular opening (b), and then sidetracks to a wide space as it cannot make
a sharp left turn near the goal (c).

There are two essential features in our algorithm that
contribute to its success. First, the potential field approach ef-
fectively performs a multiresolution analysis of the free space.
The first step of extracting all topologically distinct paths
between the source and the destination requires a relatively
simple computation, that of computing the potential field. Then
by performing a more complex computation of heuristics, it se-
lects likely candidates for the best solution path. Finally, using
the most expensive local planner, the candidate path is modi-
fied to avoid collisions in narrow spaces. Such a coarse-to-fine
organization of computation-performing more complex com-
putations on selected, smaller parts of the space-minimizes
the total amount of computational effort. Second, feasible
configurations in narrow regions are found using the potential
values. Orientations with locally minimum potential have
locally maximum clearances to the obstacles and thus have
a better chance of going through the narrow -ions. On the
contrary, the geometric computation of feas' ifigurations
has a high complexity. But our algorithiz t i heuristic,
fails to find solutions to certain problems, ,sed in this
section.

We have concentrated on building a general framework
to solve the findpath problem rather than giving proofs of
correctness of our algorithm or exact complexity analysis.
The decomposition of the problem and the heuristics used
in the process are justifiable for the following reasons. First,

U-M-I

to /ack of contrast between text and brckpmund. t h
page d d not nprodutt Well

HWANG AND AHUJA POTENTIAL FIELD APPROACH TO PATH PLANNING 31

the search space has to be reduced to achieve computational
efficiency. This is done by reducing the six-dimensional con-
figuration space to the three-dimensional world space, ignoring
the robot’s orientation. After computing the minimum potential
valleys in the world space, we measure the goodness of
the path segments in MPV using the minimum width and
the longest dimension of the robot. This is equivalent to
planning paths assuming the robot is an ellipsoid. Ellipsoidal
approximation of the robot is a good heuristic when planning
paths in wide parts of the free space. Second, the orientation
space is searched for feasible configurations only in cluttered
spaces where the robot collides with the obstacles. This is an
expensive computation as we need to take into account the
detailed shape of the robot. Computational effort is reduced
by performing this computation only along the candidate path,
where there is a good chance of finding a solution. Third, the
inclusion of the sidetracking step in our algorithm is necessary
because we solve the problem in the three-dimensional world
space, whose dimensionality is lower than that of the six-
dimensional configuration space. To see this, consider an
arbitrary findpath problem and assume that there is a loopless
solution *curve in the six-dimensional configuration space.
Now, let us suppress the orientation component of the curve
and project it onto the three-dimensional world space. Consider
the situation where the projected curve contains a loop. For our
algorithm to find the solution curve, the global planner must
generate the projected curve (with the loop) as a candidate
path. Such a curve is never the shortest path in the graph
representing the minimum potential valleys, and will never be
a candidate path. Therefore, our algorithm will fail to solve the
problem. The sidetracking module allows our algorithm to add
the missing loops to the loopless candidate paths in the world
space so they correspond to projections of six-dimensional
solution paths.

The above characterization of our algorithm helps identify
the conditions under which it fails. First, MPV must provide
good initial estimates for solution paths. In cases where the
obstacles and the robot are of complicated shapes and are
interlocked, MPV between the obstacles may not resemble
a solution path at all. Second, rotation of the robot about
its reference point must produce important changes in the
configuration of the robot. Fig. 10 shows an example that
violates these conditions. The crucial parts of the robot are
its extremities. If the reference point of the robot lies near its
center, any rotation of the robot about the reference point will
not produce a movement needed to unhook the robot from
the nails. Solving such problems requires a detailed shape
analysis and geometric reasoning, and is beyond the scope
of nongeometric approaches such as the one presented in this
paper.

VII. SUMMARY AND CONCLUSIONS

We have presented an approach to the findpath problem
using a potential field representation. A potential field similar
to the electrostatic potential is used to accomplish two things.
First, the topological structure of the free space is extracted
in the form of the minimum potential valleys. Second, the

F goal

Fig. 10. Our algorithm fails when the robot is large relative to the obstacles
and is of complicated shape. Here concavities prevent the robot from achieving
a feasible configuration simply by rotating about its center.

potential field is used to derive the most efficient, collision-
free path corresponding to a given topological path. The
principal motivation behind our algorithm is to develop a path
planner that is a compromise between the exact and heuristic
algorithms. By excluding a small set from path planning
problems and by marginally increasing the computation time
over the heuristic algorithms, our algorithm is capable of
solving a large set of problems in much shorter time than exact
algorithms. The performance requirements of path planners
are of course tied to applications. For a round mobile robot
moving on factory floors, a 2-D path planner for a point
robot may suffice. For a submarine operating in an underwater
terrain, our algorithm seems to be of appropriate complexity.
To find out how a collection of complex mechanical parts can
be assembled, an exact algorithm based on the configuration
space is probably better suited. The choice of a path planner
should be made to obtain a good match to the complexity of
the problem, the desired solution, and the computational speed
requirements. We believe our potential-field-based algorithm
fills an important slot in the complexity hierarchy of path
planners. A next line of research would be extending the
potential field approach to motion planning of manipulators,
flexible objects, and other variations of motion planning.

REFERENCES

H. Blum, “Biological shape and visual science (Part I),” J. Theoret.

F. Avnaim, J. D. Boissonnat, and B. Favejon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles,”
in Proc. IEEE Int. Con5 Robotics Automat., 1988, pp. 1656-1661.
J. Barraquand and J. C. Latombe, “A Monte-Carlo algorithm for path
planning with many degrees of freedom,” in Proc. IEEE Inc. Con$
Robotics Automat., 1990, pp. 1712-1717.
R. A. Brooks, “Solving the findpath problem by good representation of
free space,” IEEE Trans. Syst. Man Cybern., vol. SMC-13, pp. 190-197,
MarJApr. 1983.
A. E. Bryson and Y. C. Ho, Applied Optimal Control. Washington,
DC: Hemisphere, 1975.
J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.
P. G. Comba, “A procedure for detecting intersections of three-
dimensional objects,”J. Ass. Comput. Mach., vol. 15, no. 3, pp. 35&366,
July 1968.
B. Donald, “Motion planning with six degrees of freedom,” Massa-
chusetts Institute of Technology Artificial Intelligence Lab., Cambridge,
Rep. AI-TR-791, 1984.
B. Favejon and P. Tournassoud, “A local approach for path planning
of manipulators with a high number of degrees of freedom,” in Proc.
IEEE Int. Conj Robotics Automat., 1987, pp. 1152-1159.
B. Favejon, “Obstacle avoidance using an octree in the configuration
space of a manipulator,” in Proc. IEEE Inf. Con5 Robotics Automat.,

Bioi., vol. 38, pp. 205-287, 1973.

32 IEEE TRANS

1984, pp. 504-512.
[ll] E. G. Gilbert and D. W. Johnson, “Distance functions and their ap-

plications to path planning in the presence of obstacles,” IEEE Trans.
Robotics Automat., vol. RA-I, pp. 21-30, Mar. 1985.

[12] B. Glavina, “Solving findpath by combination of goal directed and
randomised search,” Proceedings of IEEE Int. Conf Robotics Automat.,
1990, pp. 1718-1723.

[13] M. Herman, “Fast, three-dimensional, collision-free motion planning,”
in Proc. IEEE Int. Conf Robotics Automat. (San Francisco), Apr. 1986.

[14] N. Hogan, “Impedance control: An approach to manipulation: Part
111-Application,” ASME J. Dynam. Syst., Measurement Control, vol.
107, pp. 17-24, Mar. 1985.

[15] Y. K. Hwang and N. Ahuja, “Path planning using a potential field
representation,” Univ. of Illinois, Tech. Rep., UILU-ENG-88-2251,
1988.

[16] Y. K. Hwang and N. Ahuja, “Gross motion planning-A survey,”
submitted to ACM Computing Surveys.

[I71 S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,” IEEE J. Robotics Automat., vol. RA-2, no. 3, pp.

[181 0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proc. IEEE Int. Conf Robotics Automat. (St. Louis, MO),
Mar. 1985.

[19] 0. Khatib and L. M. Mampey, “Fonction decision-commande d’un robot
manipulateur,” DEWCERT, Toulouse, France, Rep. 2/7156, 1978.

[20] D. G. Kirkpatrick, “Efficient computation of continuous skeletons,” in
Proc. 20th Foundation Comput. Sci., 1979, pp. 18-27.

[21] F. Miyazaki and S. Arimoto, “Sensory feedback based on the artificial
potential for robots,” in Proc. 9th IFAC (Budapest), 1984.

[22] E. Minieka, Optimization Algorithms for Networks and Graphs, Vol 1.
New York Marcel Dekker, 1978.

[23] W. S. Newman and N. Hogan, “High speed robot control and obstacle
avoidance using dynamic potential functions,” presented at IEEE Conf.
Robotics Automat., San Francisco, Apr. 1986.

[24] B. Paden, A. Mees, and M. Fisher, “Path planning using a Jacobian-
based freespace generation algorithm,” in Proc. IEEE Int. Conf Robotics
Automat., 1989, pp. 1732-1737.

[25] V. V. Pavlov and A. N. Voronin, “The method of potential functions for
coding constraints of the external space in an intelligent mobile robot,”
Soviet Automat. Control, vol. 6, 1984.

[26] E. Rimon and D. E. Koditschek, “The construction of analytic diffeo-
morphism for exact robot navigation on star worlds,” in Proc. IEEE Int.
Conf Robotics Automat., 1989, pp. 21-26.

[27] K. D. Rueb and A. K. C. Wong, “Structuring free space as a hypergraph
for roving robot path planning and navigation,” IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-9, no. 2, pp. 263-273, Mar. 1980.

[28] J. T. Schwartz and M. Sharir, “On the piano movers’ problem: I.
The case of a two-dimensional rigid polygonal body moving amidst
polygonal barriers,” Commun. Pure Appl. Math., vol. 34, pp. 345-398,
1983.

[29] S. Singh and M. D. Wagh, “Robot path planning using intersecting con-
vex shapes,” in Proc. IEEE Int. Conf Robotic Automat. (San Francisco),
Apr. 1986.

[30] S. Suh and K. Shin, “A variational dynamic programming approach to
robot-path planning with a distance-safety criterion,” IEEE J. Robotics
Automat., vol. 4, no. 3, pp. 334-349, 1988

[31] C. E. Thorpe, “Path relaxation: Path planning for a mobile robot,” in
Proc. AAAI (Austin, TX), 1984.

[32] C. K. Yap, “An O(nlogn) algorithm for the Voronoi diagram of a set
of simple curve segments,” NYU-Courant Inst. Robotics Lab., Rep. 43.

[33] -, “Algorithmic motion planning,” Advances in Robotics, Vol. I, Al-
gorithmic and Geometric Aspects ofRobotics. Hinsdale, NJ: Erlbaum,

135-145, 1986.

1987, ch. 3, pp. 95-143.

;ACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 1, FEBRUARY 1992

Yong K. Hwang (S’87-M’89) received the B.S.
(with highest honors), M.S., and Ph.D. degrees in
electrical engineering from the University of Illi-
nois, Urbana, in 1981, 1983 and 1988, respectively.
He is currently a Senior Member of Technical Staff
at the Sandia National Laboratories, Albuquerque,
NM, where he is involved in research on motion
planning, assembly planning, task planning, and
object manipulation. Additional research interests
include computer vision, neural networks, knowl-
edge representation, and qualitative physics.

Narendra Ahuja (S’79-M’79SM’85) received the
B.E. degree with honors in electronics engineering
from the Birla Institute of Technology and Science,
Pilani, India, in 1972, the M.E. degree with distinc-
tion in electrical communication engineering from
the Indian Institute of Science, Bangalore, India,
in 1974, and the Ph.D. degree in computer science
from the University of Maryland, College Park, in
1979.

From 1974 to 1975, he was Scientific Officer
in the Department of Electronics, Government of

India, New Delhi. From 1975 to-1979, he was at the Computer Vision
Laboratory, University of Maryland, College Park. Since 1979, he has been
with the University of Illinois ar Urbana-Champaign where he is currently
a Professor in the Department of Electrical and Computer Engineering, the
Coordinated Science Laboratory, and the Beckman Institute. His interests are
in computer vision, robotics, image processing, and parallel algorithms. He has
been involved in teaching, research, consulting, and organizing conferences
in these areas. His current research emphasizes integrated use of multiple
image sources of scene information to construct three-dimensional descriptions
of scenes, the use of the acquired three-dimensional information for object
manipulation and navigation, and multiprocessor architectures for computer
vision.

Dr. Ahuja was selected as a Beckman Associate in the University of
Illinois Center for Advanced Study for 1990-1991. He received University
Scholar Award (1985), the Presidential Young Investigator Award (1984), the
National Scholarship(1967-1972), and the President’s Merit Award (1966). He
has coauthored the books Pattern Models (Wiley, 1983) with B. Schachter,
and Motion and Structure fiom Image Sequences (Springer-Verlag, to be
published) with J. Weng and T. Huang. He is an Associate Editor for IEEE
TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, Computer
Ksion, Graphics, and Image Processing, and Journal of Mathematical Imaging
and vision. He is a member of the American Association for Artificial
Intelligence, the Society of Photo-Optical Instrumentation Engineers, and the
Association for Computing Machinery.

