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Abstract

We address the problem of modeling and classifying American Football offense
teams’ plays in video, a challenging example of group activity analysis. Automatic play
classification will allow coaches to infer patterns and tendencies of opponents more ef-
ficiently, resulting in better strategy planning in a game. We define a football play as a
unique combination of player trajectories. To this end, we develop a framework that uses
player trajectories as inputs to MedLDA, a supervised topic model. The joint maximiza-
tion of both likelihood and inter-class margins of MedLDA in learning the topics allows
us to learn semantically meaningful play type templates, as well as, classify different
play types with 70% average accuracy. Furthermore, this method is extended to analyze
individual player roles in classifying each play type. We validate our method on a large
dataset comprising 271 play clips from real-world football games, which will be made
publicly available for future comparisons.

1 Introduction
Automated understanding of group activities is an important area of research with applica-
tions in many domains such as surveillance, retail, health care, and sports. Despite active
research in automated activity analysis, the sports domain is extremely under-served. One
particularly difficult but significant sports application is the automated labeling of plays in
American Football (“football”), a sport in which multiple players interact on a playing field
during structured time segments called plays. Football plays vary according to the initial for-
mation and trajectories of players - making the task of play classification quite challenging.

In this paper, we address the combined problem of automatic representation and classi-
fication of football plays as summarized in Fig. 1. The motivations to develop an automated
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Figure 1: The goal of our work is to represent and classify play types in football videos.
Given football plays, our framework consists of a) player tracking, b) feature extraction, c)
document creation and d) modeling using MedLDA [22], resulting in e) two outputs: play
type templates and labels. The templates shown in (e) are typical trajectories of four players
(QB, RB, WR-L and WR-R).

Figure 2: Trajectories of quarterback
(QB) mapped onto the field and col-
ored corresponding to play type, illus-
trating significant trajectory variation
within and across play types.

classification system are three-fold: (i) it would greatly help coaches and broadcasters ef-
ficiently analyze large collections of video and better understand team strengths and weak-
nesses; (ii) understand and evaluate the contributions of every player on the field; and finally,
(iii) generate a collection of all plays executed by different teams and learn play tendencies in
different situations. For instance, Team A can input Team B’s videos and quickly understand
commonly chosen play types and underlying strategies of Team B.

Developing a vision based play type classification system poses significant hurdles. It
is difficult to track players due to high occlusion and irregular player motion in a dynamic
scene. Even with accurate player trajectories, the system must classify plays with low inter-
class and high intra-class trajectory variation. These plays are intentionally designed to
appear similar across play types. For example, Fig. 2 shows all the trajectories of a single
player, illustrating high variation in players’ trajectories.

We define a play as a unique combination of offense players’ trajectories. A play is
labeled by play type (run or pass) and direction (left, middle, or right). A run play is simply
an attempt to advance the ball via running with the ball, while a pass play is defined as an
attempt to advance the ball by throwing the ball. A run is considered left/middle/right if the
player attempting to advance the ball runs to the left/middle/right of the offensive line. A
pass play is considered left/middle/right if the ball is thrown to the left/middle/right third of
the field. An offense consists of 11 players of which six play a critical role: quarterback
(QB), running back (RB), wide receiver left (WR-L), wide receiver right (WR-R), tight end
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left (TE-L) and tight end right (TE-R). The trajectories of these six players are input to our
system (Fig. 1(a)).

Given a play (short video clip), we consider two problems: 1) representation, i.e., derive
canonical templates (common routes taken by players) for each play type, and 2) classifica-
tion, i.e., predict a label from one of the six play types for a given play, as shown in Fig. 1(e).
The above mentioned player trajectories allow analysis of players and their importance in
a play type, both individually and collectively. In section 5.2, we present an experiment
proving that trajectories contain vital clues for play type classification. 1

Approach and Contributions. Our approach to modeling play types from trajectories builds
on recent success of supervised topic models (STMs) such as SLDA [3] and MedLDA [22].
STMs capture dominant co-occurrent patterns, called “topics”, in data discriminatively. In-
tuitively, such patterns correspond to unique player interactions. For instance, run plays
usually involve an intersection of QB and RB. STMs are effective in learning such salient
co-occurring actions while achieving good classification performance.

The contributions of this paper are as follows: (1) we propose a framework to analyze
football plays based on player trajectories that combines the objective of a) deriving seman-
tically meaningful play type templates and b) achieving good classification performance. We
address both the objectives using the MedLDA [22] model applied on documents derived
from play clips, thanks to the MedLDA optimization procedure that combines both maxi-
mum likelihood estimation and maximum margin classification. (2) We treat each trajectory
as a document and analyze the importance of each player in each play type. (3) Finally, to
our knowledge there is no standardized dataset to compare different methods developed for
football play analysis. Thus, to encourage further work on this topic, we release a completely
annotated football trajectory dataset we used, containing 271 plays, on [1].

2 Related Work
We compare our approach to previous work in three related domains: activity analysis, foot-
ball play classification, and topic models.
Activity Analysis. Recently, several approaches were proposed to address group activity
analysis which are broadly categorized as either pixel centric or object centric. Some exam-
ples of pixel centric methods include spatio-temporal interest points (STIP) used to capture
human interactions in [13, 15], 3D histogram of gradients [10], quantized optical flow [17]
and foreground pixels [12] used in discovering activity patterns from crowded surveillance
videos. While pixel centric features can be readily extracted from videos, they do not pre-
serve object identities and suffer from ambiguities due to presence of multiple objects in the
scene. An alternative approach is to use object trajectories [9, 11, 21]. The extracted tra-
jectories are then used to model long-term motion patterns. Although they can suffer from
tracking errors and occlusions, trajectories help us isolate individuals from rest of the scene.
Play type classification. There is little previous work on football play classification in video.
In [9] , trajectory motion of players are characterized using a probabilistic generative model
to recognize offensive play strategies. Similarly, a manifold representation is derived from
positions of the players in [11]. Both of these works rely on manually annotated trajectories.
In [16], each play type is modeled using kernel density estimation on the player position
and temporal relations modeled using a non-stationary Hidden Markov Model. None of

1Tracking the ball carrier is a better indicator of play type, however, it is extremely difficult.

Citation
Citation
{Blei and McAuliffe} 2007

Citation
Citation
{Zhu, Ahmed, and Xing} 2012

Citation
Citation
{Zhu, Ahmed, and Xing} 2012

Citation
Citation
{dat} 

Citation
Citation
{Prabhakar, Oh, Wang, Abowd, and Rehg} 2010

Citation
Citation
{Siddiquie, Yacoob, and Davis} 2009

Citation
Citation
{Kl{ä}ser, Marsza{T1l }ek, Schmid, and Zisserman} 2010

Citation
Citation
{Varadarajan, Emonet, and Odobez} 2012

Citation
Citation
{Loy, Xiang, and Gong} 2009

Citation
Citation
{Intille and Bobick} 2001

Citation
Citation
{Li, Chellappa, and Zhou} 2009

Citation
Citation
{Zhou, Wang, and Tang} 2011

Citation
Citation
{Intille and Bobick} 2001

Citation
Citation
{Li, Chellappa, and Zhou} 2009

Citation
Citation
{Swears and Hoogs} 2012



4 VARADARAJAN ET AL.,: A TOPIC MODEL APPROACH TO CLASSIFY FOOTBALL PLAYS

the above methods focus on semantic representation of play types, instead focus mainly on
classification. Furthermore, these methods do not provide scope to analyze play types based
on individual players and are not scalable to large datasets.
Topic models. Topic models such as Latent Dirichlet Allocation (LDA) [4] are unsupervised
text mining methods aimed at capturing latent themes from large collections of documents.
Lately, they have been successfully adapted for vision tasks such as scene classification [19]
and activity analysis [6, 17]. Using conventional topic models for classification typically in-
volve learning the topics first, followed by a supervised learning step with the topic weights
as features. Since the two steps are performed independently, this procedure results in poor
classification performance. Recently developed supervised topic models (STMs), such as
Supervised LDA [3] and Maximum entropy discriminative LDA (MedLDA) [22], incorpo-
rate class labels in the topic learning process to improve prediction performance as well as
discover salient topics.

Our approach to play type classification is driven by three goals: (i) extract latent themes
to create play type templates from player trajectories; (ii) classify play types with high accu-
racy, and (iii) understand typical routes of players, their roles and importance in a play type.
We build on the success of STMs and use them to learn and classify play types.

3 Problem definition and Model overview
In this section, we formally state our problem and review the basic concepts of MedLDA
model. We then detail how we apply MedLDA to player trajectories.
Problem definition. Suppose we are given D plays (or clips) denoted by {νd},1 ≤ d ≤ D,
where each νd is represented by a set of trajectories from R players: {Xd

r (t) : 0≤ t ≤ T,1≤
r ≤ R}, T is the maximum possible duration of a trajectory, R is the maximum number
of tracked players, and each play is also associated with a unique class label yd ∈ C =
{1,2, · · · ,C} called a play type. Our objective is to learn a template τy corresponding to
each class y, and a classifier function F(νd) that accurately predicts a label ŷd .

3.1 Supervised Topic Models
Topic models such as pLSA and LDA [4, 8] consider documents as a mixture of many
topics, where each topic is represented as a multinomial distribution over the vocabulary.
Using a document count matrix as input, LDA outputs the discovered topics and their re-
spective weights in the training documents. The topic weights serve as a lower dimen-
sional representation of the original documents. Supervised topic models like SLDA [3]
and MedLDA [22] introduce a response variable y to each document as shown in the graph-
ical model in Fig. 3. To motivate the use of the MedLDA model, we briefly review its
predecessor, the SLDA model, and highlight the improvements made in MedLDA. Let D
be the number of documents2 each containing Nd words from a vocabulary of V terms. Let
K be the number of topics and β the topics matrix, where each topic βk is a multinomial
distribution over the V terms. The generative process to realize each document Wd in our
dataset D = {W1,W2, · · ·WD} is as follows:

1. draw topic proportions θd |α ∼ Dirichlet(α), where θd is a multinomial distribution
parameter and α is the parameter for a Dirichlet distribution;

2In our case a document represents a play and hence we use the same notation here.
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Figure 3: Supervised LDA
model [3]. The MedLDA model
follows the same generative
process except for predicting yd
for classification.

2. for each word wd,n in Wd = {wd,n}Nd
n=1:

• draw a topic assignment zd,n|θd ∼Multi(θd);
• draw a word wd,n|zd,n ∼Multi(βzd,n);

3. draw a response variable: yd |zd,1:Nd ,η ,δ 2 ∼N (ηTz̄,δ 2); where z̄ = 1
Nd

∑
Nd
n=1 zd,n.

The MedLDA model follows the above generative process to draw (θ ,z,D). But instead
of drawing the labels y, from a normalized distribution as in SLDA, it uses a max margin
learning framework to predict labels, i.e., given the latent topic assignments z1:Nd , MedLDA
learns a discriminant function in the form F(y,z1:Nd ,η) = ηT

y z̄ where ηy is a class specific K
dimensional vector associated with class y and η is a vector obtained by stacking ηy,y ∈ C.
Note that z1:Nd act as our features here. The parameters of the model are obtained by opti-
mizing Eq. 1, which combines both maximum likelihood and maximum margin estimation.

min
q,q(η),α,β ,ξ

−Lu(q;α,β )+ ||η ||2 +κ ∑
d

ξd (1)

∀d,y ∈ C,s.t.
{

ηT
yd

E(Z̄d)−ηT
y E(Z̄d)≥ ∆(y,yd),ξd ≥ 0

In Eq. 1, q refers to the variational posterior distribution q(θ ,z), Z̄ is the random variable cor-
responding to z̄ and E[.] is taken over variational distribution q(·). The first term Lu(q) in the
objective function is the variational lower bound on logP(D|α,β ), the log likelihood of the
data, which is the objective in unsupervised LDA [4]. κ is a positive regularization constant
that is typically used in SVM learning framework. ∆(y,yd) is the loss function indicating the
cost of misclassifying yd to be y, i.e. ∆(y,yd) = 1 if y 6= yd and 0 otherwise. ξd are the slack
variables corresponding to each document. For more details, we refer the reader to [4, 22].
Looking at the objective function, we see that the first term maximizes the data likelihood
while the other terms resemble a typical maximum margin classification objective such as in
SVM. Intuitively, this can be considered as a regularized maximum margin learning where
the regularization comes from the data likelihood term. This combined learning paradigm
enables us to extract salient topics with good classification accuracy, as seen in Section 5.

3.2 Analyzing football plays using MedLDA
The process of applying MedLDA to football play analysis consists of three parts: player
tracking, vocabulary creation and, document creation using topic models.

Player Tracking: Initializing trajectories automatically is challenging as it needs recogniz-
ing the initial formation and player positions robustly [2]. In our work, we obtain trajectories
by initializing a Multi Object Tracker (MOT) [20] with bounding boxes around six offense
players (QB, RB, WR-L, WR-R, TE-L, TE-R (cf. Section 1)) at the start of the play clip.
The six players are tracked till the end of the play clip or until they disappear from the field
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of view. The trajectory observations from player tracking is mapped back to the field image
using registration parameters obtained from the method in [7]. The trajectories of the six
tracked offense players are the input to our framework.

Vocabulary Creation: In our case, a word w in the vocabulary is defined by three differ-
ent aspects of trajectories namely: motion direction, time and player role. (1) Play types in
football are determined by distinct motion directions and routes taken by different players.
In order to capture this information, we measure motion directions using observations from
a trajectory. Motion directions ranging between 0◦−359◦ are quantized into 18 equal sized
directional bins of 20 degrees each. (2) Play types differ largely based on how trajectories
evolve over time. To capture temporal information, we group observations from every con-
secutive 10 frames into a single time step. Thus, each observation is also associated with
a time-stamp based on its time of occurrence within the play. The maximum duration of a
play in our dataset is 250 frames, thus we have 25 different temporal bins. Note that in this
temporal quantization, longer trajectories result in more words than shorter trajectories3. (3)
To understand the participation of each player in a play type, the observations from a player’s
trajectory are associated with the player role, e.g., QB, RB, etc. In our experiments, we use
trajectories of six different players in creating our vocabulary (cf. Section 1).

Therefore, using the aforementioned quantization steps, each observation from the tra-
jectory results in a word w represented as a triplet w = (vm,vt ,vr), where vm is the index
of the motion bin, vt is the temporal bin index, and vr the player role. Thus each trajec-
tory can be summarized using a table of 18×25 = 450 bins, and the vocabulary is given by
450×6 = 2700 words.

Document Creation: Each document in MedLDA is a play clip spanning a single offense
play. These documents are given by word counts, Wd = {n(wi)}Vi=1, i.e., the number of
times each word wi appears in the document. Additionally, the document also has a label yd
corresponding to one of the six play types (cf. Fig. 4(a)). Note that our document creation
process assumes that the individual players are independent given a topic. Nevertheless,
word co-occurrences within a document implicitly captures interactions among the players.

4 Dataset
To test the efficacy of our method in analyzing football plays, we compiled a trajectory
dataset from 3 football games containing 271 play clips. Trajectories of the six players on
offense were extracted using a MOT tracker. The play types and trajectories were labeled
by a sports expert. The plays were categorized on two levels. At the top level, the plays
were labeled as either run or pass plays. At the second level, the labels were determined
by the direction of the play: left, middle, right. In total, our dataset contains 121 run plays
and 150 pass plays. The class distribution of the dataset is unbalanced, Figure 4(a) shows
the number of instances in each class. This dataset of annotated football trajectories will be
made publicly available from our website [1] for future comparisons.

5 Experimental Results
In this section, we evaluate our approach for both play type representation and classification.

3Since football plays are of short duration, we do not explicitly model variations in speed.
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(a) (b) (c)
Figure 4: a) Class hierarchy and distribution of samples in our dataset; note its highly unbal-
anced nature; b) confusions from sports expert, c) confusions from our proposed model.

5.1 Qualitative analysis - play type representation
Our objective here is to extract templates corresponding to each play type by applying the
MedLDA model on our documents. We select these templates based on topic weights ob-
tained for documents of each class. The template τy for class y is selected as the most
representative topic z out of the K topics obtained from MedLDA. Mathematically, τy =
argmaxz ∑{d|yd=y}P(θd |Wd ,α), where P(θd |Wd ,α) is the posterior Dirichlet estimate ob-
tained for each document d after applying MedLDA. Since our play type templates are topics,
i.e. multinomial distribution over words P(w|z), a qualitatively analysis can be done either
by generating trajectories from P(w|z) or by selecting the best matching trajectory from the
training set for each player.

We adopt the latter approach and select the closest trajectory for each player in a template
by the following method. Given the set Tr′ , of all trajectories for player r′ in the training set,
we first generate a discrete representation X̂r′(t) for each trajectory Xr′(t) ∈ Tr′ using the
quantization steps described in section 3.2. The closest matching trajectory for the player
in the template is the one with highest score for the normalized cross-correlation between
X̂r′(t) and Pr′ , where Pr′ = P(·, ·,vr = r′|τy).

Figures. 5(a–f) show all the six play type templates obtained from our approach. These
templates highlight several salient aspects of the play types. Firstly, from the trajectories of
QB and RB, we note that run plays in Fig. 5(a,b,c) are fundamentally different from pass
plays in Fig. 5(d,e,f). In run plays, the QB typically moves back to hand over the ball to the
RB who then takes it forward, resulting in an intersection of the blue and yellow trajectories.
Whereas no such intersection is seen in pass plays, as the ball is thrown to a WR (in red or
magenta). Play types are also determined by the direction (left, middle, right) in which the
ball is taken forward. In run left/mid/right (cf. Fig. 5(a,b,c)), the RB’s trajectory in yellow
indicates this difference. For instance, in Fig. 5(b), we see the RB going straight between the
hash-line marks in the field whereas in Fig. 5(c) the RB moves to the right. For pass plays,
this distinction is mainly due to the WR’s trajectory direction as shown in Fig. 5(d,e,f).
Thus, these templates capture salient aspects of the play types well, despite large intra-class
differences. In the next section, we show that our sports expert confirms these observations.

5.2 Quantitative analysis - play type classification
We compare our supervised topic model approach for play type classification against three
baseline methods.

Baseline 1: This baseline is inspired by the bag-of-words+SVM approach for action clas-
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(a) Run left (b) Run mid (c) Run right

(d) Pass left (e) Pass mid (f) Pass right
Figure 5: Templates generated for all play types. Each trajectory color represents a player
role: QB-blue, RB-yellow, WR Right-magenta and WR Left-red. Tight ends are not shown
here as they have very low weights in the topic.
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Figure 6: Average classification accuracy of our method versus three baselines in predicting
a) six classes and b) two classes (run vs pass); (c,d) Studying importance of players: c)
classification performance obtained on documents created from a single player. d) player
weights from MKL obtained by training one-vs-all classifiers for each play type.

sification as in [14]. Here, the raw word counts from the documents are directly used as
features to learn a multi-class SVM classifier [5] with RBF kernel. We refer to this method
as Quant+SVM.

Baseline 2: Documents represented as raw word counts lie in very high dimensions, i.e. 2700
dimensions. We applied PCA to reduce the dimensions and the top K principal components
were selected to create our features. Every training (and test) sample was projected onto the
subspace spanned by the selected principal components and their coefficients were used as
features to train a SVM classifier with RBF kernel. We refer to this as Quant+PCA+SVM.

Baseline 3: This baseline employs the unsupervised LDA method. Here, we first applied
LDA on training documents from plays with K number of topics. Topic weights P(z|Wtrain)
from training documents were then used as features to learn a multi-class SVM classifier.
For the testing phase, the topic weights P(z|Wtest) from a folding-in procedure form our test
samples. This procedure is referred to as LDA+SVM.

We compare our method with the three baselines for the task of 6 class and 2 class (run
vs pass) classification tasks for varying number of principal components (in baseline 2) or
number of topics in LDA+SVM and MedLDA, i.e., K = 6,12, ..,36. In all our experiments,
SVM regularization parameters for the baselines (and κ in MedLDA) were chosen using
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cross validation data within the training set. For each model size, the average accuracy was
then obtained by five-fold cross validation. Figure 6(a) and (b) show the performance on the
6 class and 2 class tasks. Firstly, we note that the simplest baseline method Quant+SVM
achieves an average accuracy of 43% on six classes and 76.7% on two classes, which is bet-
ter than a random guess classifier that gives 16.7% or 50% for 6 and 2 classes respectively.
The second baseline, Quant+PCA+SVM with K = 6,12, · · · ,36, results in only 30% accu-
racy. However, when we consider 193 (out of 2700) principal components covering 95% of
the training data variance, we achieve 43.3% and 78% accuracy for 6 and 2 classes respec-
tively, which is comparable to Quant+SVM. This shows that large variations exist in the data
that could not be captured with few principal components. The third baseline LDA+SVM
achieves 60% and 82% for the 6 and 2 classes respectively. Classification accuracy improves
as the number of topics is increased, saturating at 60% for the 6-class classification. This
shows that LDA (co-occurrence) based dimensionality reduction is more effective in model-
ing play types. Finally, our approach based on MedLDA achieves 70% accuracy on 6-class
and 88% on 2-classes, outperforming all three baselines.

Expert annotation: To test our hypothesis that player trajectories have vital cues to describe
a play type, we engaged a sports expert (with 7 years of experience in the sport) to label
the plays by viewing only videos of player trajectories with no access to the original play
clip. The expert was given videos displaying the trajectories of the six offense players. Each
player trajectory was given a unique color (as in Fig. 5) to identify their roles. The expert was
then asked to provide up to three guesses for each play. The confusion matrix of the expert’s
guesses is shown in Fig. 4(c). The average accuracy based on the expert’s first guess is 68.7%
for 6 classes and 92.9% for run vs pass. This shows that it is possible to differentiate a run vs
pass (2 class) quite accurately using only trajectories while predicting the 6 classes is more
challenging. Lastly, comparing the confusions of the expert with MedLDA in Fig. 4(b,c), we
see that MedLDA classifies marginally better (70%) than the expert while mostly agreeing
on 4 of 6 classes. The “pass-mid” class is predicted with the lowest classification accuracy
because it shares many similarities with pass left and pass right.

5.3 Discriminative players

In addition to classifying plays, we investigate which player role is most discriminative in
general and for classifying each play type. First, to analyze the importance of each player, we
apply the MedLDA model on documents created from only a single player. In other words,
to analyze player r′, document Wd is created from trajectory {Xd

r=r′(t)}
T
t=1. MedLDA is

then applied by setting K = 6 for each player to classify play types. The bar-plot in Fig. 6(c)
shows the average classification accuracy obtained for each player. Clearly, QB and RB give
the highest accuracy. This is because the actions of QB and RB largely determine if the play
is a run or pass. The WRs also give 40%, since their roles are discriminative on pass plays.
TEs have low trajectory variations across play types and hence classify poorly. Lastly, we
also note that combination of all the players, as shown in Fig. 6(a), is the most discriminative.

To investigate whether specific players are more discriminative in classifying certain play
types, we trained a one-vs-all classifier for each play type using per-player topic weights as
features to Multiple Kernel Learning (MKL) [18]. To do this, we first applied MedLDA
on documents created from individual players with K=6 for each player, as described in
the previous paragraph. MKL was then applied on documents described by per-player
topic weights. In other words, the feature set used to train an MKL classifier is given by
Z = {z̄1, z̄2, · · · , z̄R}, where z̄r are the topic weights corresponding to player r. The weights
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learned for each player and for each play type using MKL are shown in Fig. 6(d), where
higher weights correspond to the most discriminative players. From the bar-plot for each
play type, we see that the QB and RB are the most discriminative players in run plays. WRs
tend to have higher weights in pass plays than run plays. In pass plays, their trajectories vary
whereas in run plays they typically block. We see that TEs do not play a major role, except in
pass mid plays. In these plays, their trajectory variation increases because they are expected
to both receive the ball and block.

6 Conclusion
In this paper, we address the problem of representing and classifying football plays. We
apply a max-margin based supervised topic model on plays, where player trajectories are
broken down into words. We learn topics that resemble common player trajectories in six
play types. Our qualitative and quantitative results (average accuracy of 70% in classifying
six classes, and 88% on two classes (run vs pass)) clearly support our claim that player
trajectories are powerful in representing and classifying play types. Finally, we learn that
QB and RB are very discriminative in play type classification.
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