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Piecewise Approximation of Pictures
Using Maximal Neighborhoods
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Abstract-Suppose that we are given a picture having approxi-
mately piecewise constant gray leveL Each point P has a largest
neighborhood N(P) that is entirely contained in one of the constant
regions, and the set ofmaximal N(P)'s (ie., N(P)'s not contained in
other N(P)'s) constitutes an economical description of the picture,
generalizing the Blum "skeleton" or medial axis transformation.
This description can be used to construct approximations to the
picture (eg., by discarding small N(P)'s). The picture can be
smoothed, without excessive blurring, by averaging over each N(P).
By taking differences between pairs of touching maximal N(P)'s, the
edges between the regions can be detected; since this edge detection
scheme is not based on symmetrical detection operators, it is not
handicapped when two adjacent regions differ greatly in size.
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I. INTRODUCTION
This paper develops a general method of constructing piecewise

approximations to a picture. The picture is assumed to be
composed of a set of regions, each having approximately constant
gray level (possibly noisy). Many types of real-world pictures
seem to fit these assumptions reasonably well; two examples of
such pictures are shown in Fig. 1.
The approximations are defined by sets of neighborhoods, each

of which is contained in one of the regions, but is not contained in
any other such neighborhood. (A more precise definition is given
in Section II, and the implementation of the method is described
in Section III.) For brevity, we shall refer to this type of approxi-
mation from now on as a SPAN (Spatial Piecewise Approxima-
tion by Neighborhoods).
The SPAN is a generalization of Blum's Medial Axis Transfor-

mation (MAT) [1]. The MAT was originally defined for two-,
valued pictures, and the definition was later extended [2], [3] to
gray scale objects that have been explicitly segmented from their
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(a) (b)
Fig. 1. Pictures used in SPAN experiments (127 x 127, 64 gray levels). (a) Portion

of a LANDSAT image. (b) White blood cell.

(a) (b)
Fig. 2. SPAN neighborhood centers for Fig. 1(a), (b) displayed with gray levels

proportional to their radii (radius 7 =black),

background. The SPAN provides another generalization that
applies to unsegmented gray scale pictures. Like the MAT, it
provides a compact (although approximate) representation of the
picture; a method of constructing successively coarser approxima-
tions (e.g., by discarding small neighborhoods); and a basis for
describing region shapes: branches on the SPAN correspond to
lobes on the region.
Other approaches to piecewise approximation of pictures have

been investigated by Pavlidis and his students [4]-[7]. Typically,
such approaches begin with an initial partition of the picture into
cells, and modify the partition by merging and splitting cells, and
adjusting cell boundaries, while ensuring that a given approxima-
tion criterion remains satisfied on each piece of the partition. The
SPAN approach provides an interesting alternative because, like
the MAT, it provides a natural basis for defining successive
approximations and structural region descriptions, as already
pointed out. Moreover, the SPAN is constructed by a "parallel"
(i.e., order-independent) process of neighborhood growing and
nonmaximum suppression, which could be implemented very
efficiently on a parallel array-processing computer.

II. THE MAT AND THE SPAN
The MAT of a set S can be defined as the set of centers (and

radii) of the maximal disks that are contained in S [1]. The "disks"
need not be circular; when working with digital pictures, it is
more convenient to use squares. It can be shown that the MAT is
the set of points of S whose distances from S are local maxima.
The gray-weighted MAT [2], [3] allows S to have gray levels, and
uses a "gray-weighted" distance to S; the details will not be given
here.
The SPAN is defined analogously to the MAT, but does not

require the given picture to be segmented into a set S and its
complement; it assumes only that the picture consists of regions
R, each of which has approximately constant gray level. As the
examples will show, this restriction is not very strong in practice;

gradual gray level variations, noise, and texture (if it does not have
high contrast) can all be tolerated.

Let (x, y) be a point of one of the constant regions R, and let
N,(x, y) be the disk of radius r centered at (x, y). We would like to
find the largest r = r(x, y) such that Nr(x, y) is entirely contained
in R. Our approach will be to apply some simple statistical tests to
the gray level population in N,(x, y) in order to decide whether
N,(x, y) is contained in a single constant region or overlaps
several of the regions. A related approach was used in [8] in an
attempt to determine an optimal degree of smoothing to use at
each point of a picture. In [9], an analogous method was used to
find natural piecewise constant approximations of one-
dimensional strings of data.
A number of statistical tests that can be used to determine r(x,

y) were discussed in [10], [11], and results obtained using these
tests were compared. In this paper we use only a simple multi-
modality test: we assume that the gray level in each region R is
unimodally distributed, so that if Nr(x, y) has a multimodal dis-
tribution of gray levels, it cannot be contained in R.
To test for multimodality, we first smooth the neighborhood's

gray level histogram by averaging over a 5-gray-level neighbor-
hood of each histogram point. In the resulting smoothed histo-
gram, changes in the sign of the slope that persist for three or
more successive points are counted. Each such change from posi-
tive to negative represents a peak. A histogram with two or more
peaks is taken to be multimodal.

In the applications described in the next section, a fixed set of r's
is used to reduce computational cost: r = 0, 1, - * *, 7. At each point
(x, y), we apply the multimodality test successively to these neigh-
borhoods, starting with the largest size. The first size found not to
be multimodal is the desired r(x, y). If the sizes down to r = 2
(corresponding to a 5-by-5 neighborhood) are all found to be
multimodal, we use a special procedure to test size r = 1, since
multimodality cannot be meaningfully measured on a 9-point
distributionr. Specifically, we apply a 3-by-3 gradient operator at
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TABLE I
NUMBERS OF MAXIMAL NEIGHBORHOODS AND SPAN NEIGHBORHOODS

HAVING EACH RADIUS FOR FIG. l(a), (b)

Figure

la

lb

Radius

7

6

5

4

3

2

1

0

Total

7

6

4

3

2

1

0

Total

Number of
Neighborhoods

981

330

624

959

1433

2122

3679

6001

16129

2810

1216

1395

1597

1742

2048

1619

3702

16129

Number of SPAN
Neighborhoods

981

86

183

213

190

339

663

863

3518

2810

205

126

90

94

126

34

148

3633

(x, y); if its value is low, we take r(x, y) to be 1, but if the value is
high, we set r(x, y) = 0 (the neighborhood is the point itself).
Once r(x, y) has been found in this way, let N(x, y) be the

neighborhood of (x, y) that has radius r(x, y). We discard N(x, y) if
it is contained in N(u, v) for some other point (u, v). The remaining
set of maximal N(x, y)'s (or equivalently, their centers and radii)
defines the SPAN of the given picture.

III. EXAMPLES

Fig. 2 shows SPAN's constructed for the pictures in Fig. 1 using
the method just described. The centers of the SPAN neighbor-
hoods are displayed with gray levels proportional to their radii
(black = radius 7). In some regions-there are solid blocks of black
points because these regions were larger than 15 x 15. Table I
shows the number of maximal neighborhood having each radius.
One of the useful properties of Blum's MAT is that it can be

used to reconstruct the original image subset, since this is just the
union of the maximal neighborhoods in the MAT. More impor-
tant, if neighborhoods of small sizes are omitted from the MAT,
the reconstruction yields a simplified version of the original
subset, with small parts deleted, but major parts (approximately)
preserved. We now consider the corresponding problem of recon-
structing an approximation to the original image from the SPAN.
The natural building blocks for such a reconstruction are the

maximal neighborhoods N(x, y), each filled in with a constant
gray level equal to its average gray level on the original image.
However, it is not immediately clear how these N(x, y)'s should be
combined when they overlap (and have different gray levels). We
have used the following rules of combination.

1) When maximal N(x, y)'s having different radii overlap, we
use the gray level belonging to the one with the smaller radius.
(Rationale: The ones with small radii are needed to provide fine
image detail; they could not do this if they were overridden by the
larger ones. Indeed, the large ones may pass the acceptance tests
even when they slightly overlap neighboring regions, and this
could cause the mean gray level of one region to be given to points
of an adjacent region.)

2) When maximal N(x, y)'s having the same radius overlap, we
(arbitrarily) use the maximum of their gray levels. (Alternatives
would be to use the minimum or the average; results using these
were compared in [11], but they were almost indistinguishable
from the results using the maximum.) Thus, each point gets the
maximum average gray level of the smallest maximal N(x, y)'s
that contain it.

Fig. 3 shows steps in the reconstruction of the pictures of Fig. 1
using these rules of combination. We display the cumulative
effects of combining the N(x, y)'s having different radii, beginning
with the largest radius. We see that reasonable approximations
are obtained when small radii are included.

IV. APPLICATIONS: SMOOTHING AND EDGE DETECTION

Since each neighborhood N(x, y) is contained within one of the
regions R, we should be able to smooth the picture without blur-
ring the edges of the regions by replacing the gray level at (x, y) by
the average gray level measured over N(x, y). An early discussion
of smoothing by averaging over regions of variable size, which
could grow as long as they did not cross over edges, was given by
Roetling [12].' This approach should, in principle, yield optimal
smoothings, since it averages over the entire region containing
each point; but this requires that the picture be explicitly seg-
mented into the regions, which is a computationally costly
process. A simpler approach is to use a neighborhood of each
point, but to allow each neighborhood to be as large as possible,
as long as it does not go outside the region containing that point,
i.e., to use the N(x, y)'s as neighborhoods. An unsuccessful
attempt to automatically determine an averaging neighborhood
size at each point of a picture was repoirted in [8].
The results of smoothing the pictures of Fig. 1 using the N(x,

y)'s as averaging neighborhoods are shown in Fig. 4. The smooth-
ing appears to be quite good, especially in (b).
A problem with most methods of edge detection is that they

make use of symmetrical edge detection operators, and so cannot

1 For a general review of region growing techniques, see [13].
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(a)

(b)

Fig. 3. (a) Steps in reconstructing Fig. 1(a) from its SPAN. Successive parts show
radii7 7±+ 6, * , 7 + 6 + +O. (b) Same for Fig. I(b).

take full advantage of the uniformity of the regions between which
an edge is to be detected, if these regions are of very different
sizes.2 For example, suppose that regions A and B have widths a
and b where a < b, and that we detect edges by taking differences
of averages computed over neighborhoods of size c. If c > a, our
detector will be too big for region A, so that parts of the picture
lying beyond A will be included in the A average. But if c < a < b,
our detector sees only part of region B, and cannot take full
advantage of B's uniformity. For a discussion of this problem, see
[16] and compare [9].
Here again, an optimal approach would be to use the regions

themselves as averaging neighborhoods. (Once we have extracted
the regions, we know where their edges are; but we still need to do
the averaging in order to determine the strengths of these edges.)
However, explicitly determining the regions is computationally
costly. A simpler idea is to use the maximal N(x, y)'s as averaging
neighborhoods. If P is a point where two such N(x, y)'s touch, we
can take the difference of averages over the N(x, y)'s as the edge

2 An exception is the Hueckel edge detector [14], [15], but this is based on a
neighborhood of fixed size.

value at P. Note that P may be interior to a region (e.g., if a region
is rectangular, there will be many maximal N(x, y)'s inside it); but
in such a case the difference of averages will be close to zero. On
the other hand, ifP is on an edge between two contrasting regions,
there should be maximal N(x, y)'s contained in the two regions
and meeting at P, and the difference of their averages will be high.
Thus, the edge values computed in this way should be high along
region edges, and low or zero elsewhere. (In the pictures shown
below, edge values less than 6 have been suppressed.)
The results of applying this edge detection scheme to the pic-

tures of Fig. 1, using pairs of adjacent, nonoverlapping maximal
N(x, y)'s, are shown in Fig. 5(a), (b). For comparison, the result of
applying a simple gradient operator (the "Roberts cross") to the
images is shown in Fig. 5(c), (d). The SPAN edges are much
stronger than the gradient edges for Fig. 1(b). The noisiness of the
SPAN edges for Fig. l(a) is primarily due to the points for which
r = 0.

V. DISCUSSION AND CONCLUSIONS
In this paper we have defined a technique for piecewise approxi-

mation of pictures, based on maximal neighborhoods, that can be
applied to pictures which are approximately piecewise constant.
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(a) (b)

Fig. 4. Results of smoothing Fig. I(a), (b) using the maximal neighborhood of each
point as an averaging neighborhood.

(a)

5,IA.
Ir

(b)

Fig. 5. Edges detected on Fig. 1(a), (b)
SPAN neighborhoods (a) (b), and usin

As the examnples show, there are real-world classes of pictures that
can be treated as piecewise constant for purposes of SPAN
construction. On the other hand, for a picture that contains a

significant gray level ramp, the SPAN method breaks down, since
it will attempt to approximate the ramp by a staircase.

It should be possible, in principle, to generalize the SPAN
approach to a wider class of pictures, e.g., pictures that are ap-

proximately piecewise linear, rather than piecewise constant, in

gray level. Here, for each neighborhood N,(x, y), we would test the

hypothesis that its gray level population is a good fit to a ramp,

say in the least squares sense. The largest r for which this fit is

sufficiently good would define the neighborhood N(x, y), and we

could then find the maximal N(x, y)'s as above. On region grow-

ing in piecewise linear pictures, see [7].
In conclusion, the SPAN approach is a useful generalization of

Blum's MAT concept to noisy, unsegmented pictures. Like the
MAT, it provides natural, concise approximations to such pic-
tures that can be used for purposes of encoding, recognition, and
description, while avoiding the commitment of segmentation.
Since it is a parallel method, it could be implemented quite
efficiently on a parallel array processor.

(C) (d)

using pairs of adjacent, nonoverlapping

g the Roberts cross operator (cd (d)
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