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Abstract 
Potential functions are used to represent the topo- 

logical structure of free space in solving path planning 
problems because of the simplicity in the free space 
representation and the guidance provided by the negative 
gradient of the potential field in the form of repulsive 
force. In this paper, Newtonian potential function is used 
to represent polygonal objects and obstacles. The closed- 
form expression of this potential field as well as some 
other gradient-related quantities are derived. Such results 
not only eliminate the problems associated with the 
discretization of the object and obstacles in evaluating the 
risk of collision but also make the search for the optimal 
object configurations efficient. The object skeleton, a 
shape description of the moving object, is introduced to 
guide the moving object through narrow regions while the 
above search is done at different stages. The free space 
can then be divided by the narrow regions where the 
above path planning takes place - a very simple free 
space decomposition scheme. Successful global strategies 
are developed to connect the above local plans into a safe 
and smooth global path. 

1. Introduction 
The problem of path planning is determining how to 

move an object from its original location and orientation 
(called the starting configuration) to the goal configuration 
while avoiding collisions with obstacles. The objects and 
obstacles may be of different kinds: they may be rigid or 
deformable, they may be moving or stationary, and the 
motion of the objects may be constrained or uncon- 
strained. This paper considers path planning for a single 
rigid object among stationary, rigid obstacles. Although 
the approach presented applies to three-dimensions and to 
complex shapes, we will confine the detailed discussion to 
two-dimensional (2D) polygonal objects and obstacles for 
concreteness. 

1.1. Previous Work 
Algorithms to solve the path planning problems 

usually consist of two parts. In the first part, relevant 

information about the free space is extracted, which is 
then used in the second part to destination. This second 
part is executed in two major ways, giving rise to different 
kinds of algorithms. Algorithms of the first type use 
known obstacle space as reference and plan a path barely 
avoiding the obstacles, e.g., moving object while keeping 
in contact with the obstacles. A solution is guaranteed if 
there is one. The configuration approach [ 11 and the criti- 
cal curve approach [9] are examples of this type of algo- 
rithms. These algorithms are useful in solving hard path 
planning problems and are more complicated than those 
of the second type. 

Algorithms of the second type consider the shape of 
free space to plan a path through the space. The free 
space is represented in different ways by different algo- 
rithms. Octree representation of the three-dimensional 
free space is used in [3]. Rectangular comdors and their 
junctions are used in [8] to represent the free space among 
rectangular obstacles. Convex areas are used in [lo] for 
path planning of a point object. [7] uses generalized 
cylinders and convex polygons to represent free space. In 
[ l l] ,  circular discs are used to create the generalized 
Voronoi diagram (GVD) defined by obstacle location and 
shapes. The Voronoi edges are then used to derive paths 
for rectangular objects. Because of the simplifications in 
the free space representation, these algorithms are faster 
than those of the first type but their applications are lim- 
ited to easy path planning problems where tight 
maneuvering is not necessary. 

Both of the above types of algorithms do not have 
any basis for choosing the object configurations to match 
obstacle shapes while generating a path. Such a flexibility 
is especially useful for the second type of algorithms 
wherein the object orientations are to be identified along 
the path so as to avoid collision with obstacles. One way 
of measuring the risk of collision and thus choosing a 
minimum risk orientation is to define a repulsive potential 
field for the obstacles. Such a potential field can itself 
serve as a representation of free space. [12] uses a poten- 
tial function which is a cubic function of the distance 
between a point object and the obstacles. [5] uses an 
artificial repulsive potential, which is the function of the 
shortest distance between the moving object and the 
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obstacles, for local planning of linked line segments. 
Similar local planning is done in [6] using a superquadric 
artificial potential function whose isopotential contours 
are modified n-ellipses and the potential values are deter- 
mined by the Yukawa function [2]. Boundary equations 
of polytopes are used in [4] to create an artificial potential 
function. An initial path is optimized by minimizing a 
cost function which depends on the repulsive potential 
and the object motion. The main advantages of such 
potential field approaches include the simplicity of the 
representation of free space, the guidance in the object 
motion provided by the negative gradient of the potential 
ficld in the form of repulsive force, and the readiness of 
its extension to spaces of higher dimensions. 

1.2. Motivation and Approach 
The approach presented in this paper decomposes 

the pah planning problem into several subproblems. The 
decomposition is defined by the bottlenecks in the free 
space around which the risk of collision is very high. 
Maneuvering through each such tight part of free space is 
considered as a separate local subproblem. Traversal of 
free space between the bottlenecks is used to define the 
second set of subproblems. The solutions of the second 
set of subproblems provide the links between the solutions 
of the first set, thus yielding a global solution. For the 2D 
problems considered in this paper, bottlenecks are defined 
by the minimal distance links (MDL’s) among polygonal 
regions, which can be computed easily. 

The risk of collision between the object to be 
moved and the obstacles is measured through the 
Newtonian potential model where each object/obstacle 
region border is assumed to be charged. Near an MDL, 
shape matching between the object and the free space is 
important and the proposed approach uses object skeleton 
to guide the object motion. Local strategy moves the 
object through each MDL such that successive skeleton 
points cross it sequentially. The exact location and orien- 
tation of the object as the successive skeleton points enter 
the bottleneck are determined by the force and torque 
experienced by the object. Thus, the object moves in a 
way so as to reduce the experienced force and torque to 
zero. The local solution terminated once the last skeleton 
point exits the MDL. It is shown in Section 2 that repul- 
sive force and torque between polygonal regions due to 
such a model are analytically tractable. 

Global planning is used to link the solutions of the 
local problems at adjacent bottlenecks into a global solu- 
tion. Once the object exits a bottleneck, it is pulled by the 
next MDL by forcing the object to reduce its distance to 
the MDL. As the object is being pulled, it is allowed to 
change its location and orientation so as to minimize the 
force and torque experienced. Thus, the object is forced 
to follow the minimal risk path and configuration between 
bottlenecks and because the distance to the next MDL 

decreases monotonically, a solution is guaranteed to be 
found if one exists. In this sense, the local minima of 
potential fields do not present a problem. 

For brevity, in this paper it is assumed that the 
sequence of MDL’s to be traveled through by the object is 
given, as is the sequence of the object skeleton points to 
cross each MDL. 

2. Using the Newtonian Potential 
Artificial potential fields formed by obstacles have 

been used previously to represent the topological structure 
of the free space. Either the potential function or its nega- 
tive gradient, the repulsive force, can be used to plan 
paths that avoid obstacles. Ideally, such potential fields 
should have the following attributes, which are similar to 
those mentioned in [6]: 
1. The magnitude of potential should be unbounded 

near the obstacle boundary and should decrease 
with range. (Property captures the basic require- 
ment of collision avoidance.) 

2. The potential should have spherical symmetry far 
away from the obstacle. 

3. The equipotential surfaces near the obstacle should 
have shape similar to the obstacle surface. 

4. The potential, its gradient and their effects on 
derived paths must be spatially continuous. 

The Newtonian potential is known to satisfy these proper- 
ties. The approach presented in this paper ensures that the 
resulting potential field possesses the following additional 
properties: 
5. The potential and its gradient experienced at a point 

due to a simple obstacle primitive can be calculated 
with respect to any subset of obstacle points, and 
only object points are included in the calculation. 

6. The potential, and repulsive force and torque 
between primitives other than points are analyti- 
cally tractable. 

None of the previously discussed artificial potential fields 
satisfy either Property 5 or 6. Efficient computation of the 
gradient, force and torque is central to the approach 
described in this paper. This is accomplished by assum- 
ing that the obstacles and object are polygonal, as 
described in the following subsections. 

2.1. Newtonian Potential/Force from Line Seg- 
ments 

For the 2D case shown in Figure 1, consider a point 
A at (0,y and a finite line charge on x-axis with a unit 
charge density uniformly distributed between x=xl and 
x=x2. The Newtonian potential at point A due to the 
whole line segment can be calculated as 
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Figure 1. A finite line charge and a point A in a 
selected coordinate system. 

If there is more than one line segment, the total potential 
is simply the sum of the potential values due to each indi- 
vidual line segment according to the superposition princi- 
ple. 

If y o  = 0, point A and the line charge are collinear 
and 

X 2  loglx2/xll ifxl >O, 
loglxl / x2  I ifx2 < 0, (2) 

X l  

which is the limiting case of (1) when xl*x2>0. When 
x *x2<0. it can be shown from (1) that, 

(3) 

The value of - is desirable for the contact detection and 
collision avoidance in the path planning since yo = 0 and 
x l -  x2 < 0 corresponds to a collision between point A and 
the line charge. 

The negative gradient of the potential function is 
the repulsive force experienced by a point charge of unit 
strength. Moving along its direction corresponds to a 
maximal reduction rate of the potential away from that 
point. The repulsive force on point A in Figure 1 due to a 
point (x, 0) on the x-axis is 

lim $ A = - .  
Y 0 4  

X l . X 2 5 0  

where 0 is the angle of the position vector with respect to 
the +x direction. Therefore, the resulting force from the 
line segment on A has the following two components: 

and 

where Fx is the force along the x-axis and Fy is the force 
along the y-axis. 

2.2. Repulsion between Line Segments 
In the previous subsection, the potential and its gra- 

dient at an (object) point due to an (obstacle) line segment 
is derived in a form such that it is readily calculable from 
just the two end points of that line segment. Not only is 
the calculation time reduced dramatically, but the prob- 
lems associated with sampling are also eliminated. 
Analogously, it is desirable to discuss the interaction of 
two line segments so it is possible to calculate the effect 
on the object line segment due to an obstacle line seg- 
ment. 

For the discussion in this subsection, only the repul- 
sion between nonparallel line segments is considered. 
(Discussions for other simpler cases are omitted.) First, 
the force on a point of an (object) line segment due to 
repulsive forces from points of another (obstacle) line 
segment is derived as a function of that point's location on 
the first line segment. This result can then be used to 
derive the repulsive torque and force between line seg- 
ments. 

2.2.1. Force on a Point of a Line Segment 
Consider two line segments, ab and cd shown in 

Figure 2, the coordinates of the end points of cd are 
assumed to be (0,O) and (d120,0), possibly after a 
corresponding coordinate transformation. Therepulsive 
force on point (x,O) due to line charge ab, can be 
expressed as 

where &, is the unit vectoLalong the b-a direction, 6; is 
a vector perpendicular to ab, and, from (4) and (3, 

(7) 

F(x) = F&(x)6&+Ff(~)&, (6)  

1 1 
dmzc-dzzq F d x )  = 

and 
, 

where 6 ,  c, e,  f, g, h, i, j ,  k, and 1 are constants since x l ,  
x2, and yo are linear functions of x. 
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Figure 2. Two line segments and a reference point for 
the calculation of the repulsive force and 
torque due to the Newtonian potential. 

2.2.2. Total Repulsive Torque and Force 
Consider the simplest case of repulsion invoking 

only two line segments,+. shown in Figure 2. Let ab be 
the stationary obstacle, cd be the object and e be a fixed 
point. Thetorque with respect to e,due to the repulsive 
force from ab, on point x = (x, 0) of cd is 

T ( x )  = F(x)x(x-e), (9) 
and is in either +z or -z direction. From (6) through (9), 
we have 

gx+a 
d z i z  

gx+a 
d z z q  

(10) 
( ix  +d)(ix + j )  (kr+d)(kr+I) 

( g x + h ) d z Z G  - ’ 
+ 

where a and d are-constgnts. The total torque due to 
repulsion between ab and cd is then 

dl 

T, = !T,(X)&. (1 1) 
0 

Since 2 and cd are not parallel, gd l  and (1 1) can 
be simplified as 

1 + -  
g2  

Similarly, the total repulsive force between the two 
line segments shown in Figure 2 along an arbitrary direc- 
tion e can be expressed as 

-- - 1 -  21 it X i k z 7  , 

(12) and (13) can be evaluated analytically using an 
integral table and are used in the path planning strategies 
discussed in the following sections to generate object 
configurations of minimal risk of collision. 

3. Local Planning 
In this section, a local strategy is developed for path 

planning around an MDL where collision is more likely to 
occur and shape matching between the object and the free 
space is important. Object skeleton is used to guide the 
motion around the MDL such that the given sequence of 
skeleton points cross the MDL sequentially. The connec- 
tion problem caused by using a single reference point of 
the object (see Figure 3) can thus be avoided. A simple 
and natural strategy is developed to allow for maximal 
freedom in adjusting the object configuration for minimal 
risk of collision using (12) and (13). 

Consider the L-shaped object shown in Figure 4(a). 
The sequence of points on its skeleton to be used for 
motion through the MDL is given. The local planning 

Figure 3. Object configurations (a) and (b) can not be 
related by a translation followed by a rotation 
without any contact with the obstacles. 

where h’=hlg, b’, c’, e‘, and f’are constants. 
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Fig. 4. Path planning by shifting the object skeleton 
points to the MDL and finding the minimal 
Newtonian potential object configuration for each 
point constrained to lie on the MDL: (a) initial 
conditions, (b) result. 

starts when the first skeleton point to cross the MDL (the 
pilot point) reaches the MDL, as shown in Figure 4(a), 
and ends when the last one leaves the MDL. The local 
planning is performed by ensuring that each skeleton 
point stays on the MDL while the object may adjust its 
orientation to achieve the minimal risk (minimal 
Newtonian potential) object configuration. 

In the implementation, the above minimal risk 
configuration is obtained using a univariant search for 
object location and orientation along directions provided 
by the repulsive force and torque, respectively. The accu- 
racies required in specifying the final object location and 
orientation determine the number of iterations needed in 
solving the corresponding constrained optimization 

problem. The local path thus obtained is safe and smooth, 
as shown in Figure 4@), because the potential function is 
spatially smooth (in the configurational space) and maxi- 
mal freedom is allowed in the adjustment of the object 
configuration for acquiring minimal potential. Figure 5 
shows another local planning example. 

4. Global Path Planning from Local Plans 
A global strategy is described in this section to con- 

nect two neighboring local plans by moving the object 
from one MDL toward another so that the initial condition 
for the latter, similar to that shown in Figure 4(a), is esta- 
blished. The pilot point is pulled by the next MDL. The 
pulling effect is achieved by reducing the perimeter of the 
triangle determined by the next MDL and the pilot point. 
For each fixed perimeter value, the location of the pilot 
point is constrained to lie on an ellipse while the 
Newtonian potential is minimized (by letting the object 
reorient and relocate). In contrast to using a line to con- 
strained a sequence of skeleton points in the local plan- 
ning algorithm, multiple ellipses are used to constrain a 
single skeleton point - the pilot point. 

Figure 6 (a) shows a problem containing two 
MDL’s. Given the orders in which skeleton points should 
cross these links (same order in this case), the local plans 
are connected into a safe and smooth global path with the 
above global strategy, as shown in Figure 6(b). The step 
sizes along the planned path are determined adaptively 
during the planning process to be as large as possible as 
long as no collision between the object and obstacles is 
detected between neighboring stages. The simulation 
takes about 20 seconds for each local plans and one 
minute to connect them on a Sun 3/260 Workstation. 

5. Summary and Future Research 
In this paper, path planning using the Newtonian 

potential representation is studied. This is accomplished 
with the combination of the following procedures: 

Figure 5 .  Another local planning example. 
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(b) 

Figure 6. Path planning by connecting local plans using 
a global strategy: (a) initial conditions, (b) 
result. 

1. Decompose the free space by narrow regions 
corresponding to bottlenecks. 

2. Move the object through each narrow region using 
a local strategy which make the object skeleton 
traverse the MDL while minimizing a Newtonian 
potential based measure of risk of collision. 

3. Connect the local plans using a global strategy. 
The above algorithm has been implemented and tested on 
synthetic data. The performance appears to be satisfac- 
tory with respect to collision avoidance, smooth object 
motion and the execution speed. 
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to be traveled through by the object and the sequence of 
the skeleton points to cross each of them. Other research 
directions include the extension of the proposed approach 
to the 3D space and to more complex objects, e.g. objects 
with flexible joints. 
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