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ABSTRACT
Most existing video retrieval systems use low-level visual
features such as color histogram, shape, texture, or motion.
In this paper, we explore the use of higher-level motion rep-
resentation for video retrieval of dynamic objects. We use
three motion representations, which together can retrieve a
large variety of motion patterns. Our approach works on top
of a tracking unit and assumes that each dynamic object has
been tracked and circumscribed in a minimal bounding box
in each video frame. We represent the motion attributes
of each object in terms of changes in the image context of
its circumscribing box. The changes are described via mo-
tion templates [4], self-similarity plots [3], and image dy-
namics [9]. Initially, defined criteria of the retrieval process
are interactively refined using relevance feedback from the
user. Experimental results demonstrate the use of the pro-
posed motion models in retrieving objects undergoing com-
plex motion.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—motion; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—retrieval mod-
els, relevance feedback

General Terms
Algorithms, Experimentation

Keywords
Content-Based Video Retrieval, Motion Analysis

1. INTRODUCTION
Recently, some motion representations have been proposed

to recognize different motion patterns such as human gaits,
activities, periodic motions and texture motions. However,
the existing content-based video retrieval (CBVR) approaches
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focus on low-level motion features such as pixel-level opti-
cal flow or affine parameters for motion content indexing,
in addition to other visual features such as color, shape or
texture. The main disadvantage of using low-level motion
features lies in the recognition of complex motion patterns
such as gaits. Such complex motion patterns can be ef-
fectively tackled using higher-level motion representations,
which might be region based or image based, for example.
But such an extension is not straightforward for video re-
trieval and often depends on many assumptions.

1.1 Motivation and Approach
According to the motion classification tree of objects pro-

posed by Kambhamettu et al. [5], most real-world motions
can be classified as rigid, articulated, elastic (deformable
motion with topological invariance), or fluid. For example,
vehicle movement is a rigid motion; animal/human move-
ments are articulated motions in general; deformable ob-
jects affected by external force such as a dropping sheet of
paper exhibit elastic motion; motions exhibiting topological
variations and turbulent deformations are viewed as fluid
motion.
These different types of movements become apparent via

different characteristics of motion extracted from images and
can then be used for retrieval. For instance, articulated mo-
tion can be characterized through periodicity of motion ob-
served in videos and can be found in many biological move-
ments, such as human or animal gaits. Apart from gaits,
articulated motion also includes interesting kinds of move-
ments, such as moving body parts like a man swimming in
sports video, that people are interested in querying. These
movements are generally localized in nature and can be char-
acterized through region based motion features like motion
presence and motion recency, which we will discuss in the
later sections of the paper. Elastic and fluid motion, on the
other hand, varies continuously across objects. The differ-
ence between these two classes of motions lies in the con-
tinuity of the object itself. When observing these types of
motions, people usually have prior knowledge about the ob-
ject and pay attention to the deformations or topological
changes of the observed object. Either deformation or topo-
logical change is usually an important signature of object
identity. Rigid motion characterizes poses and translations
of rigid objects and it corresponds to affine parameter es-
timation in image analysis that has no information about
object identification. To recognize a rigid object, people
consult to shape, color or other visual cues other than mo-
tion to determine the object class.
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Based on the aforementioned visual properties, we investi-
gate four motion properties: periodicity, presence, recency,
and image dynamics. To represent these movements, we
also adopt appearance based methods, rather than model
based approaches, because (1) the types of dynamic ob-
jects of interest are unknown, and (2) the dynamic objects
present in the video database may have huge variety so that
no single model fits well all dynamic objects. In this pa-
per, we represent motion periodicity using modified simi-
larity plots [3] where we use normalized cross-correlation
to measure image similarity. Then we proceed to represent
motion presence and motion recency using temporal tem-
plate approach [4] that reveals the tendency of movement
and have been successfully used to recognize human activ-
ities. Following which we use image-level dynamics, mo-
tivated by [9] that characterizes the temporal changes be-
tween image frames, to capture variations of the object mo-
tion without object models. These motion properties can
be harnessed to cover a wide range of interesting motion
patterns and can be used to retrieve videos by queries that
analyze the high-level motion content in videos.
Our system makes two assumptions. First, we assume

that the dynamic objects in an image sequence have been
tracked so that a minimal bounding box circumscribed for
each dynamic object is available in any given video frame.
Second, we assume that there is only one foreground ob-
ject in each circumscribing box, and that the backgrounds
do not change significantly over a short time period. There
have been some tracking techniques which find a minimal
bounding box for a moving object. Although in some cases
tracking methods might fail to locate moving objects, we
maintain the first assumption by interactively working with
tracking methods. The second assumption can be removed if
the dynamic object can be automatically segmented. How-
ever, this is a very difficult problem, especially when the
types of moving objects are unknown. Therefore, our second
assumption ensures that the dynamic objects in correspond-
ing bounding boxes can be reasonably matched (or aligned).
With these two assumptions, our objective becomes: given
a sequence of bounding boxes whose changes in the image
context representing the motion properties of a dynamic ob-
ject, we find similar dynamic object sequences based on the
similarity of changes in their image contexts.

2. METHOD
Assume that a dynamic object has been tracked and a

minimal bounding box around the object in any give video
frame is available. Note that the bounding boxes of a mov-
ing object may have different sizes in different video frames.
Therefore, we first align the bounding boxes so that the
appearances of the object are best matched. We then cap-
ture the motion content of the bounding box sequence us-
ing three representations described later. To retrieve simi-
lar sequences, we first compute the similarity measures be-
tween the representations of the given sequence and those
in database. The similarity between sequences is interac-
tively refined by integrating similarity measures according
to user’s feedbacks.

2.1 Image Alignment of Dynamic Objects
Normalized cross-correlation (NCC) [6] is used to match

the appearances of dynamic objects in the bounding boxes.
This method shifts a template image over a search image,

Figure 1: The similarity plot of a human running
sequence.

measuring normalized cross-correlation at each point. The
point associated with the maximal NCC value is selected
as the best match. Although the original method requires
that the search image be larger than the template image in
both dimension, we extend the search region to include some
neighbor pixels of the target bounding box. To help find-
ing best match by NCC, we place spatial constraints on the
search window to prune the candidate matches. This align-
ment process is fully automatic. The computations for all
motion representations in the following are done in overlap
regions of bounding boxes.

2.2 Self-Similarity Plot
Cutler et al. [3] developed an approach to detection of pe-

riodic motion by using similarity plots, where they analyze
periodic signals using an auto-correlation function. The idea
is to use similarity plot to encode the projection of spatio-
temporal dynamics of moving objects, and then analyze sim-
ilarity plot for object classification.
Figure 1 shows the similarity plot of a twenty-frame hu-

man running sequence. The value at pixel (x, y) of the plot
represents the similarity, defined in this paper as the value
of normalized cross-correlation, between overlap regions of
the bounding boxes in image frame x and y. The bright
diagonals in the plot indicate periodic motion in the given
sequence.
Two features of a similarity plot are defined in this paper.

These are concerned with if the given sequence is periodic,
and second, the length of a periodic cycle. For instance, as
indicated in Figure 1, the motion of the object is periodic
with a cycle length about six image frames, which corre-
sponds to a half gait, or a stride.

2.3 Temporal Templates
Davis et al. [1, 4] introduced two temporal templates,

motion-energy image (MEI) and motion-history image (MHI),
to respectively represent the presence and the recency of ob-
ject movement. Let D(x, y, t) be a binary value indicating
regions of motion at frame t. An MHI Hτ is defined as

Hτ (x, y, t) =

{
τ, if D(x, y, t) = 1;
max(0,Hτ (x, y, t − 1)− 1), otherwise,

where τ denotes the desired length of history. An MEI Eτ

is defined as

Eτ (x, y, t) =

{
0, if Hτ (x, y, t) = 0;
1, if Hτ (x, y, t) > 0.

In our system, we obtain D using image differencing. To dis-
tinguish between motion patterns, seven of Hu’s moments
are computed over MHIs and MEIs respectively, which are
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translation- and scale-invariant. Then the Mahalanobis dis-
tance of Hu’s moments of two MHIs or MEIs is used to mea-
sure the similarity between motions of τ image frames. Note
that different motion patterns may need different lengths of
history to be best described by these temporal templates.
Therefore, we compute MHI and MEI with four different
lengths (τ = 5, 10, 15, 20).
Image sequence registration is a problem when using this

method to compare motion patterns in two sequences. We
overcome this problem by shifting one sequence and com-
puting motion similarity for every possible sequence align-
ment. The measurement of the best similarity in temporal
templates for the eventual similarity integration is chosen.

2.4 Image Dynamics
We model image-level dynamics in image subspace, which

is similar to Soatto’s [9] and Brand’s [2] approaches. The
image subspace is spanned by a set of basis images. The in-
put image sequence is projected onto the subspace frame by
frame and the projections form a trajectory in the subspace.
We model the evolution of this trajectory using a first-order
auto-regressive (AR) model. Therefore, the temporal be-
havior of an image sequence is captured by the evolution of
the moving trajectory in image subspace.
Assume that we have n frames in an image sequence, and

each image frame of the sequence is represented as a column
vector Ii ∈ Rm in the raster scan order. Let µ be the
mean of the images and I ′

i = Ii − µ. We use a matrix
X = [I ′

1I
′
2 . . . I ′

n] to denote the whole input image sequence
around the mean image. Using the algorithm in [10], we find
the eigenvectors {ej}j=1...k, which correspond to the largest
k eigenvalues, of the covariance matrix XXT . Therefore,
we represent each image frame as Ii = V Pi + µ, where V =
[e1e2 . . . ek] and Pi = V T (Ii − µ). Pi is the projection of Ii

in the subspace spanned by V . Furthermore, we treat the
projections Pi as the k-dimensional random vectors observed
at equal time intervals. The first-order k-variate AR model
is defined as Pi = APi−1 + ni. The matrices A ∈ Rk×k

are the coefficient matrices of the AR model, and the k-
dimensional vectors ni are uncorrelated random noise with
zero mean. Note that the AR model for each sequence are
defined in different subspaces. Therefore, to measure the
similarity between image sequences, we compute Martin’s
distance between AR models defined by {A, V } pairs [8].
2.5 Integration of Similarity Measures
The respective similarity measures for three motion repre-

sentations are all integrated to measure motion-content sim-
ilarity in the circumscribing boxes of dynamic objects. Since
the quality of retrieval results is subjective to user’s visual
perception, the ways to integrate different similarity mea-
sures may vary depending on the dynamic object of query.
There have been some systems that require users to specify
weights for their queries, which often leads to unsatisfac-
tory results. In our system, we linearly combine similarity
measures and dynamically adjust their weights according
to user’s interactive feedback [7]. Such relevance feedback
based retrieval approach has been empirically proved to be
very effective.

3. EXPERIMENTAL RESULTS
The video clips used in our experiments were randomly

collected from TV programs or recordings of street scenes.

In most cases, the videos involve camera motions. Currently,
fifty image sequences have been used in our experiments.
All images are converted into gray-level before we apply the
algorithms. The retrieval results of five queries of different
motion patterns are shown in figure 2.
The first test is a human walking video. Such motion

pattern is periodic and has important signatures in motion
presence and motion recency, where the MEI shows the mo-
tion is around the lower part of the object and the MHI
indicates the major movement is toward right. The third
best sequence of this query involves walking with an angle
to the camera plane, which decreases the similarity in mo-
tion presence to the test sequence. The forth best sequence
involves walking toward the opposite direction of the test
sequence, and the features for motion recency show the dif-
ferences.
In the second test, we use a tennis video where a player

back to the camera performs a right-handed swing includ-
ing his follow-through. This is a full body motion, but the
motion in image context has emphasis on arm swing (includ-
ing the racket) and leg movement. The similarity measures
in motion presence and motion recency are most relevant
in retrieving similar videos. Note that the videos of left-
handed swings or swings of a player facing the camera are
not retrieved.
The third test video is about the movement of a bird’s

wings. Although the motion of flapping wings is periodic,
in most cases the movement is too fast for the system to
detect its periodicity. As a result, motion presence is much
more relevant to such fast movement in the retrieval process
than the other properties.
The forth test is a flowing river sequence. Our system

relies on image-level dynamics to retrieve similar videos of
such a no-where static scene.
The last test is a video of a moving car exhibiting a rigid

motion. Our system is able to separate rigid motion from
non-rigid motion, but has no discrimination among rigid
objects. The system retrieves vehicle sequences because they
are the only rigid objects in our database.

4. CONCLUSIONS
In this paper, we propose to use higher-level motion rep-

resentations to retrieve dynamic objects in videos. The mo-
tion content in terms of changes in the image context of the
circumscribing box of dynamic objects is considered. Al-
though a few assumptions have been made to implement
the system, the results suggest that higher-level motion rep-
resentations certainly help to retrieve a wide range of sim-
ilar motion patterns. Other video contents such as color
and shape are not considered in the paper, though using
them will surely improve overall performance. For videos
of multiple moving objects, the relationships between the
corresponding circumscribing boxes can be further explored
so that a query with higher-level concept such as ”object A
chasing object B” can be answered. However, it is out of
the scope of this paper. Our main future research direction
is to include other motion representations in order to cover
more real-world motion patterns.
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