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Abstract 
This paper studies optimal estimation for motion and structure 

from point correspondences. (1) A study of the characteristics of 
thc problem provides insight into the need for optimal estimation. 
(2) Methods have been developed for optimal estimation with 
known or unknown noise distribution. The simulations showed that 
the optimal estimations achieve remarkable improvement over the 
preliminary estimates given by the linear algorithm. (3) An 
approach to estimating errors in the optimized solution is presented. 
(4) The performance of the algorithm is compared with a theoreti- 
cal lower bound - CramCr-Rao bound. Simulations show that the 
actual errors have essentially reached the bound. (5) A batch least- 
squares technique (Levenberg-Marquardt) and a sequential least- 
squares technique (iterated extended Kalman filtering) are analyzed 
and compared. The analysis and experiments show that, in gen- 
eral, a batch technique will perform better than a sequential tech- 
nique for any nonlinear problems. Recursive batch processing tech- 
nique is proposed for nonlinear problems that require recursive 
estimation. 

1. INTRODUCTION 
Although estimating motion and structure may employ long 

image sequences, estimating motion and structure f” two per- 
spective views is an important basic problem. The results of this 
basic problem provide insights into, and may be extended to, the 
problems that involve more images. This paper is devoted mainly 
to the problem of estimating motion and structure of a rigid scene 
from two perspective monocular views. 

The optimization approach presented in this paper is 
motivated by the following observations of linear algorithms. (1) 
For certain types of motion, even pixel level perturbations (such as 
digitization noise) may override the information characterized by 
epipolar constraint. (2) Existing linear algorithms do not use the 
constraints in the essential parameter matrix E in solving for this 
matrix. These considerations are unified under a general framework 
of optimal estimation: Given the noise-corrupted point correspon- 
dences, we need the best estimator for motion parameters and the 
structure of the scene. Maximum likelihood estimation for this 
problem is discussed in our previous paper [WengSb] under two 
types of noise distribution. However, in practice, we often do not 
know exact noise distribution. In this paper, we discuss optimal 
estimation without knowing exact noise distribution. Further, we 
will present approaches to estimating errors in the optimal solu- 
tions, investigate the theoretical lower bounds on the errors in the 
solutions and compare them with the actual errors, and analyze two 
types of algorithms of optimization: batch and sequential. 

The remainder of the paper is organized as follows. The next 
section studies the need for optimization. Section 3 discusses 

optlmal estimation without knowning noise distribution. Section 4 
deals with error estimation and performance bounds. The perfor- 
mances of batch and sequential least-squares techniques are 
analyzed in Section 5. Section 6 presents experimental results. 
Section 7 summaries. 

2. LINEAR ALGORITHMS 
AND THEIR STABILITY 

The problem of estimating motion and structure from point 
correspondences of two views can be formulated as follows. Two 
images are taken at different positions and orientations relative to a 
rigid scene. The objective is to estimate the relative motion 
between the camera and scene as well as the structure of the scene. 
The coordinate system and camera model are shown in Fig. 1. 
Consider a feature point located at x=(x. y .  z)~. The im‘age plane 
vector of x in the first image is 

(2.1) 
which is the perspective projection of x onto the image plane. 
Since (U, v )  can te measured in terms of focal length f ,  without 
loss of generality, we assume f = 1 .  Therefore, we have 

(2.2) 

(2.3) 
The motion of the scene, relative to the camera, is represented by a 
rotation followed by a translation. Let R be the rotation matrix 
and T be the translation vector, and let x move to X’ under the 
motion. Then, 

U = (U. v)’= C f x l z ,  fylz)’ 

u = ( u , v ) ~ = ( x I z , y l z ) ~  . 
Image vector of the p i n t  x is defined by 

X = ( u , v ,  l )T=(X/Z ,y l z r  l)T 

(2.4) x’ = R x+T 

Similarly, define the image plane vector U’ of the image vector X’: 

(2.5) X’ = ( U ’ ,  v ’ ,  1)T = (x’ lz’ ,  y’lz’, l )T  

2.1 Linear Algorithms and Epipolar Constraint 

The linear algorithms published in literature share the same 
key structure: determining intermediate parameters, called essential 
parameters, based on epipolar constraint followed from (2.4): 

(x’Y(Tx(R X ) )  = 0 (2.6) 
where x denotes vector cross product. That is, X’, RX and T are 
coplanar. Its geometrical illustration is shown in Fig. 2. We define 
a mapping [ I ,  from a 3-dimensional vector to a 3 by 3 matrix: 

0 -xg x2 

x 3  0 -x1 

-x2 x1 0 
(2.7) 
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Using this mapping, we can express cross product of two vectors 
by the matrix multiplication of a 3 by 3 matrix and a column 
matrix: 

XXY = [X],Y (2.8) 

Define E to be 

where T ,  is a unit vector such that TxT,=O. (2.6) can be rewritten 
as 

(X’)TE X = 0 (2.10) 

(2.10) is a linear equation in the elements of matrix E .  Using 8 or 
more point correspondences, the linear algorithms first solve for E 
based on (2.10) and then solve for motion parameters from E .  

It is ready to see that only one component of the image posi- 
tion of a point (the one perpendicular to the epipolar line) is used 
by epipolar constraint: The vectors X’ and R X  can be perturbed in 
the plane where X’, R X  and T lie without violating (2.10). In other 
words, the location of the points on the epipolar line is irrelevant to 
epipolar constraint. It is related to the depth of the point as well as 
motion parameters. The questions to ask are: (1) The essential 
matrix E has only 5 degrees of freedom (2 for unit vector T ,  and 3 
for rotation matrix R ) .  How can the constraint in E be used to 
improve accuracy in the presence of noise? (2) How reliably the 
motion parameters can be estimated using the epipolar constraint? 
(3) Can another component of the point (along the epipolar line) be 
used, in addition to the epipolar constraint, to improve the reliabil- 
ity of the estimated motion parameters and structure in the presence 
of noise? These problems are investigated in the following. 

2.2 Using the Constraint in the Essential Matrix E 

By definition of Equation (2.9). E should be decomposable 
into the product of a skew symmetric matrix (S=-ST) and a rotation 
matrix R (orthonormal with determinant 1). The following theorem 
states a necessary and sufficient condition for a matrix E to satisfy 
the definition of (2.9). 

Theorem 1. Given a 3 by 3 matrix E ,  the necessary and sufficient 
condition for existing a rotation matrix R and a skew symmetric 
matrix S (ST= -S), such that E=SR, is that one of the eigenvalues 
of ETE is equal to 0 and the other two are equal. 

Proof. See Appendix. 

Corollary. Given a 3 by 3 matrix E ,  the necessary and sufficient 
condition for existing a rotation matrix R and a unit vector T , ,  
such that E=[T, ] ,R,  is that the eigenvalues of ETE are 0, 1, 1, 
respectively. 

Proof. See Appendix. 
The constraint on the eigenvalues of E ,  stated in Theorem 1, 

can be written as polynomial equations in the elements of E .  
These yield more equations, in addition to (2.10). In the case 
where 8 or more points are available, E can be solved using linear 
equations (2.10) without considering those nonlinear constraints in 
E .  However, in the presence of noise, E solved from the linear 
equations generally does not satisfy the condition in Theorem 1. 
The constraint in E can be used by iteratively improving some 
“independent parameters” in R and T ,  to minimize the weighted 
sum of ((X’)T(T,xR X))2: 

where II (a, 6 ,  c ) II = a2+6’ and each denominator is the variance 
of the first order perturbation of (X’)T(T,xRX), assuming the com- 
ponents of U and U’ have additive uncorrelated zero mean noise 

with variance 0’. We call this minimizing epipolar errors or epipo- 
lar improvement 

2.3 A Type of Motion 

Let us consider a type of pure translation and the correspond- 
ing type of pure rotation. For the type of translation, the transla- 
tion vector and the optical axis is olthogonal. For the type of pure 
rotation the rotation axis is orthogonal to the optical axis and the 
translation vector of the type. of pure translation. Without loss of 
generality, let the translation direction be parallel to Y axis, the 
rotation axis is parallel to X axis. Fig. 3 shows examples of the 
displacement fields of the pure translation and the pure rotation, 
respectively. It is clear that the translation produces horizontal dis- 
placement vectors and the rotation produces almost horizontal ones. 
We analyze this property quantitatively. For horizontal pure transla- 
tion T=(O, t 2 ,  O)T, from x’=x+T it is easy to see that the left side of 
(2.6) is 

( X ’ ) T ~ ( R  X ) )  = U ’-U (2.12) 

which should be equal to 0. Therefore the epipolar constraint for 
this pure horizontal translation is that the image plane displacement 
vector U’-U is horizontal. 

For the pure rotation, the rotation matrix is given by 

R = 0 cos0 -sin8 (2.13) P o  0 sine cos0 O I  
From x’=R x it follows that 

Since generally u‘-u+ 0, the pure rotation does not exactly satisfy 
the epipolar constraint of the horizontal translation. However, the 
value of U’-U is almost equal to zero. Assume the image size is s 
(image is a s by s square) with mxm pixels. The pixel size is then 
slm. The vertical displacement in (2.14) in terms ofthe number of 
pixels is then 

(U’-u)mls = (2.16) mu (1-cos&-u sine) 
s (v sinWcos8) 

Fig. 4 shows the value of the vertical displacement in (2.16), in 
terms of number of pixels, at the center of a quadrant of an image 
with 512 by 512 resolution, for different horizontal displacement, 
v - V  , and different image sizes, S .  Since the vertical displacement 
is very small for the rotation, the corresponding displacement field 
almost satisfies the epipolar constraint for the pure translation dis- 
cussed earlier. This implies that in the presence of small errors in 
the image coordinates (e.g., in the magnitude of one or two pixels), 
pure translation can be interpreted by a rotation as far as the epipo- 
lar constraint is concemed. In other words, the epipolar constraint 
cannot disambiguate the translation from the corresponding rotation 
in the presence of even small image digitization errors. Further- 
more, we can show that the number of pixels of vertical displace- 
ment goes to zero quadratically as the image size s approaches 
zero. This implies that motion estimation based on epipolar con- 
straint is extremely unreliable for small field of view. 

2.4 Beyond the Epipolar Constraint 

From (2.8) it can be seen that the depths of the object points 
are excluded in epipolar constraint. This is desirable to the linear 
algorithms since the depths of the points are unknown. The epipo- 
lar constraint uses only one component (perpendicular to the epipo- 
lar line) of image points. However, the other component (parallel 
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to the epipolar line) left by epipolar constraint is important for 
determining motion parameters from the following properties: (1) 
Under a rotation, all the points on a projection line (passing 
through the origin and an image point) project on to a common 
image point after rotation. (2) Under a translation, those points on 
a projection line have different projections after rotation: the closer 
the point is to the image plane, the larger the displacement of the 
point is in the image plane. Fig. 5 illustrates these two properties. 
These properties can be proved analytically and the proof is omit- 
ted here. As long as 111' has a large variation among points, the 
displacement field is quite different between a translation'and a 
rotation. For example, in Fig. 3 the image displacement vectors are 
almost horizontal for both rotation and translation. However, the 
lengths of the displacement vectors are quite different for transla- 
tion, but are similar for rotation. It is impossible to interpret a 
translation by a rotation if both components of the points are used. 
The optimization discussed later in the paper makes use of both 
components of the image points. As shown by simulations, this 
significantly improves reliability of the solutions. 

3. OPTIMAL ESTIMATION 
The observed 2-D image coordinate vectors ui of image 1 

and U; of image 2 are noise corrupted versions of the true image 
vectors. Therefore (ui, U:) is the observed value of a pair of ran- 
dom vectors (Ui, U:). (With n point correspondences over two 
time instants, we add subscripts i to denote the ith point and the 
subscript-free letters denote the general collection of vectors.) What 
we obtain is a sequence of the observed image vector pairs 

(3.1) 

of a sequence of random vector pairs 

U (UL (UY. G. cuy, "' , c, (u3T)T (3.2) 

We need to estimate the motion parameters M and the 3-D posi- 
tions of the feature points (scene structure) 

x P (XT, ( X y .  xi, ( x 2 ,  "' , x:, ( X y y  (3.3) 

If distribution of noise in the observations are known, max- 
imum likelihood estimator is an appropriate optimal estimator. Two 
types of noise distribution has been discussed in [WengMb]: Gaus- 
sian distribution and the distribution of the so called uncertainty 
polyhedron. If the image coordinates of points are corrupted by 
white Gaussian noise, the problem of maximum likelihood estima- 
tor of motion parameter vector m is such that image error, 

II u-h(m, x) ll/& (3.4) 

is minimized, where h(m, x) is the computed noise-free version of 
U based on motion parameter m and structure x. In other words, 
the discrepancies between the observations and the inferred projec- 
tions are minimized. Since the optimal structure x can be com- 
puted from U and m [WengSlb], for simplicity we just use m to 
denote the unknown parameters to be estimated. The solution of a 
linear algorithm (e.g., [Weng87]) is used to provide an initial guess 
solution for the nonlinear minimization algorithm. 

However, the distribution of noise is usually unknown. We 
now discuss optimal estimator with unknown error distribution. Let 
m be the parameters to be estimated and &(U) be the estimate based 
on the observation vector U. The error vector of I is 6&I-m. 
Given the parameter m, the estimated parameter I is random due 
to random noise in the observations U. Two widely used criteria are 
that the estimate is unbiased 

E I = m  (3.5) 

and it minimizes the expected squared norm of the error vector 

EII&llz= EllI-m1I2 (3.6) 
The estimate that minimizes (3.6) is called minimum variance esti- 
mate (or least-squares estimate, minimum mean square estimate). 
Let us first consider a linear least-squares problem. 

Gauss-Markov Theorem. Suppose 

y = Am+6, (3.7) 
where 6, is a random vector with zero mean, Esy=O, and covari- 
ance matrix 

(3.8) 
The unbiased, linear minimum variance estimator of m that minim- 
izes E II I - m  ) I 2  is 

I = (ATr;'A)-'ATr;'y (3.9) 
with error covariance matrix 

Tm & E(I-m)(I-m)T = (ATT;'A)-' (3.10) 

For proofs, see, e.g., [Luen69] [Sore801 [Gior85]. The estimator 
corresponds to the least-squares estimator with weight matrix r;', 
i.e., it minimizes 

(y-A m)Tr;'(y-A m) (3.11) 

For white noise, T F l ,  By Gauss-Markov Theorem we know that 
the minimum variance estimator of m is the one that minimizes 
II y-A m II . 

Consider again the maximum likelihood estimator for white 
Gaussian noise distribution. The maximum likelihood estimator of 
m minimizes the norm of f(m) 4 u-h(m). Given an estimated m, 
mi,  expanding f(m) at m, yields 

f(m) = f(mi)+Ji (m-m,)+o(Ilm-m, II) (3.12) 

where 
(3.13) 

-f(m,)+J,m, = J,m-f(m)+o(Ilm-m, II) (3.14) 
or 

Let yi = -f(mi)+Jimi 

we have 

y, = J,m-f(m)+o(Ilm-m, I I )  (3.15) 

Neglecting the higher order term o(llm-m, II), (3.15) is of the form 
of (3.7). Instead of assuming independent Gaussian noise, we just 
assume that the noises are uncorrelated and have the zero mean and 
equal variance. By the Gauss-Markov Theorem, we need to minim- 
ize 

II f(m) II = II y, - J, m II (3.16) 

which leads 

m = m, -(J:J, )-'J:f(m, ) (3.17) 

Since J:J, may be singular, JTJ, is replaced by D,+JTJ,, where D, 
is a diagonal matrix with non-negative diagonal elements. Then 
we get a sequence of approximation to a minimum point of (3.16) 

m,,' = m,+(~,+J:J,)-'J:f(m,) (3.18) 
This is called Levenberg-Marquardt or L-M method [Leve44] 
[Marq631 LLuen821. The special case in which D,=O for all a is 
called Gauss', or the Gauss-Newton method [Luen82]. Each itera- 
tion leads to an unbiased linear minimum variance estimator based 
on the locally linearized equation of (3.15), neglecting the higher 
order terms. When iteration converges, if the converged point m, 
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is not far from the true solution, o(llm-mi 11) is small, (3.15) is a 
good approximation of the system. If the convergence occurs far 
from the true solution (e.g., the iteration is trapped at a local 
minimum, or the noise is extremely large) o( IIm-mi 11) is large and 
the linearized model does not well characterize the system. 

In summary, if the locally linearized model is considered the 
unbiased linear minimum variance estimator also leads to minimiz- 
ing the norm of f(m). Therefore, the objective of minimizing 
II f(m) II can be used for general white noise. If the image plane 
noise are colored, the regular norm of f(m) should be replaced by a 
weighted norm according to the Gauss-Markov theorem. ’ 

4. ERROR ESTIMATION AND 
PERFORMANCE BOUNDS 

We need to investigate the following two issues. (1) How can 
we access the reliability of the solutions? (2) What is the theoreti- 
cal bound of the performance and how close are the emrs  of the 
algorithm to the bound? These two questions are investigated in the 
following subsections. Since the emrs  in the measurements are 
random, accuracy or performance of the estimator (or algorithm) 
should be investigated in statistical sense. 

4.1 Error Estimation 

Error estimation for linear algorithms has been studied in 
[Weng87], where the key is basically to estimate emrs  in the 
least-squares solution of a linear system Am=y, where both matrix 
A and y are corrupted by noise. The problem here is different since 
only y is corrupted by noise (see (3.15)) and computation is 
iterative. The estimated error indicates the reliability of the solu- 
tion, which depends on not only noise level, but also structure of 
the scene, motion parameters and the parameters of system 
lWeng89bI. 

The minimum variance estimation discussed above leads to a 
method for estimating errors in the estimates. By Gauss-Markov 
Theorem, the covariance matrix of the error vector I - m  of a linear 
problem is give by (3.10) For the nonlinear problem investigated 
here, the matrix A corresponds to 

(4.1) am J =  

evaluated at the finally estimated parameter I. For uncorrelated 
uniform variance noise, r+&, the covariance matrix is simply 

r, = E@-m)(I-m)T = ~ ( J ‘ J  )-’ (4.2) 

The trace of the covariance matrix gives the expected squared norm 
of error vector 

(4.3) 

Since the optimization established in the last section just assume 
zero-mean and covariance matrix of the noise, the error estimation 
discussed here does not require specific noise distribution either. 

We have implemented both analytical and finite difference 
versions for the partial derivatives in J . The estimated emrs  show 
very little difference between those two versions. In practice, the 
finite difference version is easier to programming. 

Motion parameters can be represented in many ways. Some- 
times it is necessary to know the emrs  in terms of the required 
representation. Generally, for a representation m’=g(m) which is a 
function of the parameter m. We have 

trace (r,) = E(&t-m)T(I-m) = E 11 I - m  I1 

Therefore the covariance matrix of the error vector of I’ can be 
estimated by 

4.2 Performance Bounds 

There exist theoretical bounds for the covariance matrix of 
any estimator. Cramer-Rao bound is one of them [Cram461 
rRao751. The application of the bound to the problem discussed 
here is presented in [Weng89a]. Let f(m)=u-h(m) is a white Gaus- 
sian noise vector with variance 0, then for the unbiased estimator 
I, the Cram&-Rao bound gives 

r, IF-’ = o*(J~J)-’ (4.4) 
assuming JTJ has a full rank. 

It is interesting to recall error estimation discussed in Section 
4.1. The estimated e m r  in (4.2) takes the same form as the bound 
in (4.4). However, they are different. J in (4.2) is evaluated with 
the estimated m and noise corrupted observation U while J in (4.4) 
is evaluated with the true m and noise-free. observation. It is 
important to note that the bound is independent of any algorithms. 
(The expression of the Cram&-Rao bound is used in [Broi86] to 
estimate the emrs  of the Corresponding algorithms.) For more dis- 
cussions of the Cramer-Rao bound and Bhattacharyya bound for 
motion analysis, see [Weng89a] where simulations show that for 
the optimized solution, the actual bias is small and the actual emrs  
are very close to the Cram&-Rao bound for unbiased estimators. 
In other words, the errors are very close to those that would result 
from the “best possible” unbiased estimator. 

5. BATCH, SEQUENTIAL, AND 
RECURSIVE BATCH SOLUTIONS 

If all the data acquired are processed simultaneously, the 
corresponding processing method is called batch processing. If a 
new solution is computed after each set of new dam is acquired, 
and the new solution is computed based on the old solution and the 
new data, the method is called sequential processing. Due to the 
popularity of a sequential processing technique called Kalman 
filter, sequential processing method has been used for many appli- 
cations. Therefore, it is very important to analyze and compare the 
performances of batch techniques and sequential techniques. In 
fact, although the solutions of both types of techniques are 
mathematically the same for linear problems, the solution of the 
batch techniques is generally better than that of the sequential tech- 
niques for nonlinear problems. For the cases where solutions are 
needed while new data are collected, the so called recursive batch 
technique is proposed to improve the performance for nonliiner 
problems. 

Although the above conclusions apply to time-varying sys- 
tems (parameters vary with time) we will only briefly discuss time 
invariant systems due to limit of space. For the linear system in 
(3.7), Gauss-Markov theorem provides an unbiased linear minimum 
variance estimator of m. The estimate can also be computed 
sequentially by Kalman filter technique. Kalman algorithm can be 
derived by either probabilistic or deterministic methods. Both 
types methods are unified under Hilbert space optimization 
[Luen69] [Gior85]. It can be proved that Kalman filter gives the 
same estimate.for a linear problem (starting with -1 as an initial 
covariance matrix). However, for a nonlinear problem, the results 
given by a batch solution are different from those given by the 
corresponding Kalman filter (called iterated extended Kalman filter, 
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or IEKF). For a batch approach, the solution I that minimizes 

IIf(h) Il’=C Ilf,(h) 11’ is computed recursively to minimize (see 

(3.16)): 
j =I 

n 

~llfj(m)l12= ceyj -.Ij@) h1I2 (5.1) 
j=1 j=l 

where, index J denotes the corresponding variable for j th  3-D 
point. However, the Kalman filter minimizes instead 

II yJ -J, (mo3 m II . (5.2) 
J=I  

where h’) is the estimated m based on first J points. The key 
difference is the point where the matrix J,  is evaluated. By the 
batch approach the matrices [ J , ]  are always updated when new 
estimates of m is computed in iteration. By the sequential approach 
(IEKF), the matrix is not updated when new observations are col- 
lected ( J , ( d ’ ) )  is based on only first J points). For small 1 ,  Io) is 
very poor since just J observations are available. Therefore J ,  
evaluated at fib) gives a system matrix that is evaluated far from 
the true parheter. This results in inaccurate system equations. 
Once those inaccurate system equations are generated, they will not 
be changed later. They are included in the objective function (5.2), 
further preventing the estimated parameter rfn from approaching the 
correct parameters while new data are obtained. For the same rea- 
son, the error covariance matrix of m computed by IEKF underesti- 
mates the errors. Therefore. sequential methods generally are not 
suitable to be used as a tool to solve a very nonlinear equation 
from an arbitrary initial guess for m. 

For the cases where estimates are required while data are col- 
lected, or the number of observations is extremely large, batch 
methods are computationally expensive since repeated optimization 
covers all previous data. However, very old data contribute very 
little to the current estimate. If the updating for the very old data 
is neglected the batch techniques can be used for recent 1 observa- 
tions. This is the key idea of what we called recursive batch tech- 
nique. 1 should be sufficiently large such that updating for observa- 
tions older than recent 1 observations can be neglected. 

6. EXPERIMENTAL RESULTS 
To further verify the analyses presented above, simulations 

have been performed. The algorithm has also tested on images of 
real world scenes. 

For the simulations, the focal length of the simulated camera 
is one. The image frame is a SXT square. Unless stated otherwise, 
s=0.70, and 12 point correspondences are used. The object points 
are generated randomly with depth ranging between 5 to 16. Only 
those points that are visible before and after motion are used. Noise 
is measured in terms of resolution: the variance of the noise is 
equal to that of the pixel round-off noise. All errors shown in this 
section are relative. Relative error of a matrix, or vector, is defined 
by the Euclidean norm of the error matrix (square root of the sum 
of squared elements), or vector, divided by the Euclidean n o m  of 
the correct matrix, or vector, respectively. 

1. Minimizing Epipolar Errors Versus Minimizing Image 
Errors. The errors after the epipolar improvement is compared 
with that of minimizing image errors (both using Levenberg- 
Marquardt method). For longitudinal translation (parallel to opti- 
cal axis), both methods give very similar errors, since the solution 
of the linear algorithm are already fairly good (see [Weng89b]). 
The performance shows difference for unstable lateral translations 
(parallel to image plane). Fig. 6 shows typical average errors over 
100 random trials. It can be seen that the epipolar improvement is 

significant compared with linear algorithm. However, the emrs  
after minimizing image errors are further significantly smaller than 
those after epipolar improvement, especially for a small field of 
view. Therefore the use of two components in image point coordi- 
nates does significantly improve the robustness. 

2. Sequential Versus Batch Solutions. We obtain batch 
solution using Levenberg-Marquardt method for nonlinear least- 
squares problems. The sequential solution is obtained by iterated 
extended Kalman filter (IEKF). Iteration is performed for a point 
correspondence (4 observations: 2 components for each of two 
images) to improve the performance of regular IEKF (which just 
iterates on one observation). Such iterations are performed for each 
point correspondence until no improvement for the parameters 
occurs. With a zero rotation angle, an arbitrary translation direction 
and a large covariance matrix, IEKF always diverges. The solu- 
tion given by IEKF has more than 100% relative errors. With a 
good initial guess provided by the linear algorithm, the solutions of 
EKF are quite different according to different initial covariance 
matrix Po,-l. If the diagonal matrix Po,-l are assigned large diagonal 
values, IEKF may diverge. Only with small diagonal values, IEKF 
can improve the initial guesses. Fig. 7 shows typical sequences of 
Kalman sequential updating. This example confirms that Kalman 
filter does not perform well with arbitrary initial guess, and the 
error variance given by the Kalman algorithm is misleading. The 
performances of the linear algorithm, a sequential algorithm (Em) 
and a batch algorithm (Levenberg-Marquardt method, or L-M 
method) are compared in Fig. 8. Both IEKF and L-M method use 
the solutions of the linear algorithm as initial guesses. The initial 
covariance matrix of IEKF is optimized to be relatively small 
(same as that in Fig. 7(a)). The image errors in Fig. 8(d) show that 
the batch solution find the mirumum very consistently. However, 
IEKF does not always find the minimum. Fig. 8 confirms that 
batch optimization performs significantly better than IEKF sequen- 
tial algorithm. Other simulations indicated that the average image 
errors by a batch approach are always close to average errors in the 
image coordinates including extremely noisy cases: 32x32 pixels. 

3. Error Estimation and Cramer-Rad Bound. Fig. 9 
shows the average relative errors, average deviation of the error 
estimation (the absolute difference between the estimated relative 
errors and the actual relative errors) and the bias of error estimation 
(average difference between the estimated relative errors and the 
actual relative errors) over 40 random trials. As can be Seen from 
the figure, the average deviation is generally less than a half of the 
magnitude of the actual relative errors. The bias is also small. 
The results concerning essential reaching Cram&-Rao bound are 
shown in [Weng89a]. 

4. Real World Images. A CCD video camera with roughly 
480x500 pixels is used as image sensor. The focal length of the 
camera is calibrated but no nonlinearity correction is made for the 
camera. The camera takes two images at different positions. A 
two-view matcher computes image displacement field and occlusion 
on a pixel grid [WengSSa]. Samples of the displacement field 
computed for a scene (Mac scene) are shown on a 13 by 14 grid in 
Fig. 10(a), superimposed on the first image, which is extended to 
provide context for the peripheral areas of the image. Those 
13x14=182 displacement vectors shown in Fig. 10(a) are used as 
point correspondences to compute motion parameters. The motion 
parameters computered are shown in Table 1.a. As shown in the 
table, the image error is within a half pixel width. The plot of 
depth map is shown in Fig. lo@). Assume the errors in the coordi- 
nates of the matching points are uncorrelated. The estimated vari- 
ance of the errors are given by the squared image errors. The 
estimated errors of the Mac Scene are shown in Table 1.b. Fig. 11 
shows the samples of the computed displacement filed of a path 
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scene. The data and results are shown in Table 2.a. The estimated 
errors are shown in Table 2.b. 

7. SUMMARY 
The paper first discusses a type of motion for which the algo- 

rithms based on the epipolar constraint are very sensitive to noise. 
The analysis and simulations lead to the conclusion that it is impor- 
tant to use both components of image positions of points in deter- 
mining motion parameters in the presence of noise. Optim'al esti- 
mation of motion and structure parameters is investigated for 
known and unknown noise distributions. An approach to estimating 
errors in the optimal estimates is introduced and implemented. 
Analysis and simulations also lead to the flowing conclusions: For 
nonlinear problems, the performance of IEKF algorithm is inferior 
to that of Levenberg-Marquardt algorithm, and the covariance 
matrices given by IEKF may significantly underestimate the vari- 
ance of errors. A recursive-batch processing approach is proposed 
for those problems where estimates are required sequentially while 
observations are collected. 

APPENDIX 

Theorem 1. Given a 3 by 3 matrix E ,  the necessary and sufficient 
condition for existing a rotation matrix R and a skew symmetric 
matrix S (ST=-S), such that E=SR , is that one of the eigenvalues of 
ETE is equal to 0 and the other two are equal. 

Proof. By our notation of [TI,, the following is a trivial fact: 
Given any 3x3 skew symmetric matrix S=[s,,] letting 
T=(-S23. s l 3 ,  -sldT, we have [T],S. Conversely given a 3- 
dimensional vector T, PI, is a skew symmetric matrix. Therefore, 
under the mapping of [TI, there exist a one-to-one correspondence 
between all the 3x3 skew symmetric matrices and all three- 
dimensional vectors. 

Necessity part: Let E=[T],R, where R is a rotation matrix. 
If T=O, E=O and all three eigenvalues of ETE are equal to 0, and 
the necessity is true. Now assume Td). Defme an orthonormal 
matrix 

H = R-'['f, 'f,, 'f,] (A.l.1) 

where 'k=T/IITII, and 'k,, 'f3 are such that 'k, 'k,, 'k, are orthonor- 
mal. We have 

EH = [TIJ'f, 'f,, = IO, V2, V3l (A.1.2) 

where V, = T x f , ,  i=2,3. Obviously V2 and V3 are orthogonal and 
IIV, Il=IITII, i=2,3. Therefore, 

(A.1.3) 

Sufficiency part: Suppose ETE has three eigenvalues 0, h, h. 

H'E'EH = diug(0, A, h) (A. 1.4) 

(A.1.4) implies that the first column of EH is a zero vector and the 
remaining two columns are orthogonal with length Q. Therefore 
there exist a rotation matrix Q such that 

EH = Qdiug(0, a, 6) (A. 1.5) 

H'E'EH = diug(0, IIT112, IIT112) 

Then there exists a rotation matrix H such that 

On the other hand, 

0 0  0 1 0 0  
diag(0, 6, Q) = 0 0 -Q O O 1 4 SR (A.1.6) 

La O I L - l . !  

m e  use of this seemingly odd equation was guided by Our Origi- 

nal proof which is more natural but less compact). From (A.1.5) 
and (A.1.6), we get 

E = Qdiag ( 0 . 6 ,  6 ) H T  = QSRH' = (QSQ') ( QRHT) (A. 1.7) 

where in the last expression, the first part is a skew symmetric 
matrix and the second part is a rotation matrix. This is to be 
proved. 

Corollary. Given a 3 by 3 matrix E ,  the necessary and sufficient 
condition for existing a rotation matrix R and a unit vector 'f, such 
that E = [ ' f ] , R ,  is that the eigenvalues of ETE are 0, 1, 1, respec- 
tively. 

Proof. Procedure of the proof is very similar to the above. For 
necessity part let IITII=l. For sufficiency part k1. Let 
['fI,QsQ'. 

2 II 'k II = truce (QSQT)(QSQT)T = truce (QSSTQT) = mace (SST) = 2 

0 Therefore 'f is a unit vector. 
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Errors of Rotation axis 
errors of rotation angle 

Relative e m r s  of rotation axis 
Relative errors of 

Table 1.a 

I Data and Results for I 

0.0091 0.021 0.023 
0.14' 
0.012 
0.032 

Rotation angle 1.61 1214' 
Image error 0.000326 
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Table 1.b 

I Estimated Errors for I 

1 .P  

Images of the Mac Scene 
Errors o f ?  1 0.0026 0.0011 0.012 

X ... 

Fig. 1 Camera model and moving points. 

1 

Fig. 2. Epipolar constraint: 
R X, T and X' are coplanar 

Fig. 3. Displacement field of a horizontal translation and a rotation 
about vertical axis. Resolution: 512x512 
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Fig. 4. Vertical displacement of a rotation about X axis versus im- 
age size for different horizontal displacement. Image point: center 
of a upper right quadrant of the image plane. Image resolution: 
512x512. 

R 

Fig. 5. Rotation and translation yield different displacement fields 
(a two-dimensional illustration). For a rotation, all the points on a 
projection line have the same projections after motion. For a trans- 
lation, those points on a projection line have different projections 
after motion. 
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Table 2.a 

Data and Results for 
Images of the Path Scene 

Rotation angle 0.145816" 
Image e m r  0.000223 

Table 2.b 

Estimated Errors for 
Images of the Path Scene 

Errors of Rotation axis 1 0.068 0.044 0.036 
Errors o f ?  0.0023 0.0031 0.00031 

errors of rotation angle 0.012" 
Relative e m r s  o f ?  0.0039 
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Fig. 8(a) Fig. 8(b) 
Fig. 8. Relative Errors of the linear algorithm, batch solution wenberg-Marquardt method) and 
sequential solution (IEKF). Rotation axis: (1, 1, 1); Rotation angle: 3"; For horizontal index from 0 to 
20, the direction of translation changes from (1, 0, 0) to (0, 0, 1) in X-2 plane at evenly spaced 21 
steps. The length of the translation vector is equal to 2.1 units. 100 random trials. (a): R ;  (b): T; (c): 
Depths; (d): Image errors. 
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Fig. 9. Statistical record of error estimation. Actual relative error, deviation of error estimation and 
bias of error estimation for (a) R ,  (b) T vs. Number of Point Correspondences. Rotation axis: 
(1, 0.9, 0.8). Rotation angle: 5". Translation: (0.5, -0.5, -3.0). 40 random trials. 

Fig. 11. Samples of the displacement field computed for the Path 
scene superimposed on the first image. 

Fig. 10(b) 

Fig. 10. (a) Samples of the displacement field computed superim- 
posed on the extended first image of Mac scene. @) The plot of l lz 
(z is depth). 
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