
COMPUTER VIS1ON, GRAPHICS, AND IMAGE PROCESSING 39, 167-185 (1987)

Octrees of Objects in Arbitrary Motion: Representation
and Efficiency

JUYANG W E N G AND NARENDRA A H U / A

Coordinated Science Laborato~, University of Illinois, Urbana, Illinois 61801

Received November 8, 1985; revised May 23, 1986

An algorithm is presented that updates the octree of a three-dimensional object after the
object has undergone arbitrary rotation and translation. The aIgorithm moves each of
the black leaves and then adds the subtree corresponding to the displaced black leaf. The
algorithm uses a computationally efficient method to detect the intersections of moved blocks
with octree tessellation. On the average, the space and time complexities of the algorithm are
both bounded by O(Kn), where K is the number of nodes in the source tree and n is the
logarithm of the side-length of the universe space. The quantization errors are prevented from
accumulat ing by maintaining a compact source octree. Each incremental displacement is
performed with respect to the source tree, Implementation results are given for the motion of
synthetic three-dimensional objects. Upper bounds are derived for the numbers of nodes in an
octree representing a cubic block of arbitrary orientation and position. These bounds are
proportional to the face area of the cube plus the logarithm of the side length of the universe
space. ~ 1987 Academic Press, Inc.

1. I N T R O D U C T I O N

Octrees represent the space occupied by objects using a cubic decomposition of
the universe space. The space is recursively partitioned into octants until each octant
is completely inside or outside an object, or the limit of resolution is reached. The
final partition is represented by an 8-ary tree, or octree, whose leaf nodes identify
the occupied and unoccupied space [10, 16, 20]. Octree is a useful representation of
three-dimensional objects for space planning, computer animation, and navigation
[2, 7, 10, 131.

Major characteristic of octrees is the use of volumetric primitives (cubes) of fixed
sizes, locations and orientations to tessellate the universe space. The universe-
centered definition of the cubes and the use of a fixed shape, nonoverlaping
primitives help in reducing the complexity of many common spatial operations on
objects, e.g., intersection detection and volume computation [4, 9, 11, 14, 17, 18].
However, this efficiency comes at the cost of the representation becoming very
sensitive to object location and orientation. For example, if an object moves, it
occupies different cells of the cubic tessellation and as a result its octree may change
drastically.

In object centered representations, the placement of the primitives is determined
by the placement of the objects to be represented. Each object has an associated
cluster of primitives whose locations are specified with respect to the object location.
The union of the primitives in the cluster, of course, is the volume of the object.
Such representations include the medial axis transformation [16] and piecewise
approximation [1], and they can be easily updated to represent moving objects.
However, they are not well suited for computations such as intersection detection
and volume computations. Octree may also be viewed as object centered representa-

167

0734-189X/87 $3.00
Copyright © 1987 by Academic Press, Inc.

All rights of reproduction in any form reserved.

168 WENG AND AHUJA

tion if a universe space is defined with respect to each object in the scene. Thus,
representing many objects may require multiple octrees, each with respect to a
different universe space. This, in general, results in a larger fragmentation of the
object because of the rigidity of the relative locations and the sizes of the primitives
compared to the other object-centered representations. The compactness character-
istic of the object centered representation is not achieved but the computational
efficiency of the universe centered octree is lost. Therefore, an object centered octree
is not a useful representation here.

In robotic manipulation of environment, representations of dynamic scenes are
necessary to design collision-free and efficient trajectories for object movement.
Trees must be continuously obtained to reflect varying positions of objects with
respect to fixed axes. Thus, starting with the octree obtained for a given configura-
tion [5, 12, 19, 21], updating the tree is necessary to represent moving objects. For
the case of pure translation of the object [3, 13, 15], the problem of octree updating
is relatively manageable, especially if axial translation magnitudes are integral
multiples of the dimension of the smallest blocks used. However, because of the
anisotropic nature of the primitives, arbitrary rotation of objects usually results in a
large fragmentation or compaction of the octree. Some difficulties encountered in
arbitrary rotation are discussed in Ahuja and Nash [3]. A brief reference to the
problem can also be found in Meagher [13]. Jackins and Tanimoto [10] discuss the
simpler problem of rotation by integral multiples of 90 °.

In this paper we present an efficient algorithm to update the octree for arbitrary
translation and rotation of the represented objects. The source octree is traversed
and each leaf node is subject to the desired motion. Octree nodes corresponding to
the block at its new position are identified by a computationally efficient method. As
different leaves are moved, the evolving tree may require compaction which is
performed at the earliest time. The average space and time requirements of the
algorithm are bounded by O(Kn), where K is the number of nodes in the source
tree and n is the logarithm of the side-length of the universe space. Implementation
results show very few superfluous nodes are generated in the intermediate steps.
Upper bounds are derived for the numbers of different nodes in an octree repre-
senting a cubic block of arbitrary orientation and position. These bounds are
proportional to the face area of the cube plus the logarithm of the side length of the
universe space.

Section 2 reviews the octree representation with some definitions. Section 3
discusses arbitrary motion and general problems associated with updating an octree
for arbitrary motion of the objects. Section 4 presents the algorithm. Section 5
analyzes the performance and complexity of the algorithm and derives some upper
bounds on numbers of nodes in octree. Section 6 discusses an implementation of the
algorithm. A summary follows in Section 7.

2. OCTREE REPRESENTATION

We will first define the octree representation of three-dimensional objects. Con-
sider a 2 n × 2 n × 2" array of unit cubic volume elements (voxels or unit cubes)
called the voxel array, where n corresponds to the size of space or resolution if space
is regarded as fixed. Only objects within the universe space are represented by the
octree. To represent a three-dimensional object each voxel is assigned a color, black

OCTREES OF OBJECTS 169

Y

(:0

FIG. 1.

Z

(b)

0 1 2 3 4 5 6 7

0 • []
gray black white

(c)

An object and corresponding octree. (a) Labels of octants. (b) Object. (c) Octree.

or white, according to whether that voxel is inside or outside the object. The object
space is represented by the space occupied by all black voxels. Since there may be
partially filled voxels, the object can be only approximately represented by the voxel
array at a given resolution. In the octree, the root node corresponds to the universe
space. The space is divided into eight octants each of side-length 2 "-1 labeled
0.1 ,7, as shown in Fig. la. These octants correspond to eight children nodes of
the root. Each octant is recursively subdivided further into octants, until each octant
contains only voxels of a single color. Their corresponding nodes have no children
and are called leaf nodes. All leaf nodes are assigned the color of their correspond-
ing voxels. All nonleaf nodes are called internal nodes and are colored gray. A cube
of side-length 2 k is called k-cube. Figure lb shows a three-dimensional voxel array
and Fig. lc shows the corresponding octree.

Let us define the level of the root as n. If the parent is at level k its children are at
level k - 1. The lowest possible level is zero corresponding to voxels. A cube is said
to be upright if its edges are parallel to coordinate axes, otherwise it is said to be
tilted.

3. GENERAL MOTION

Updating an octree for general, arbitrary motion of the represented object
involves updating the tree for all black leaf nodes or cubes. Let each cube be
characterized by its coordinates. Then, any arbitrary motion of a cube can be
characterized by a rotation component and a translation component. Let X and X '
be the coordinate (column) vectors of a cube at time instances t I and t2, respec-
tively, T be the translation vector, and R be a three-dimensional rotation matrix for

170 WENG AND AHUJA

rotation by angle 4~ about the unit vector n o = (nx, rty, n~) through the origin.
Then,

X ' = R X + T

where

(n - 1)(1 - cos*) + 1 nxn.v(1 - cos ,) - nzsin, nxnz(1 - cosO)+ nysin,]

R = nynx(1 - cos ,) + n.sin4~ (n 2 v - 1)(1 - cos@) + 1 nynz(1 - cos ,) - nxsingp [.1

n . n x (1 - cos ,) - nysinff nzny(1 - cos ,) + nxsin , (n 2 - 1)(1 - cos ,) + 1 J

Since octrees are defined in terms of a fixed tessellation of space, the resulting
representation is very sensitive to object motion. This is because of the rigid
anisotropic shape of (cubic) primitives and a finite resolution. When an object is
translated, its updated octree must represent arbitrary intersections of upright
cubes. This, in general, results in fragmentation or compaction of tree nodes, and
quantization error from partially filled voxels. However, when objects are also
allowed to rotate arbitrarily, updating the octree requires representation of intersec-
tions of arbitrarily oriented cubes. The nonrectalinear shape of the regions of
intersection makes the above quantization effect much more severe. While for
translation one can avoid the problem by performing translations with integral axial
components [3], no such solution is possible for the case of rotation, except for
restricting rotation to multiples of 90 o [10]. Worse still, if an object is incrementally
rotated through a sequence of angles, and the corresponding octrees are progres-
sively updated, the quantization effects accumulate since the quantization losses and
gains in volume would not preserve object shape. For example, a rotation by an
angle ~ followed by an angle -q~ may not result in the same tree. Thus the octree
may undergo cumulative distortion as an increase of rotations is performed. Our
solution to this consists in keeping a compact octree representation of the object
called source tree as a reference. Each consecutive motion is transformed into a
displacement with respect to the source tree. For example, if we want to perform
another motion from X' to X " , characterized by rotation matrix R ' and transla-
tion vector T ' , i.e.,

X ' = R X + T and X " = R ' X ' + T ' ,

then

x " = (R'R)X + (R'r + r') .

Thus, the displacement by R and T followed by another displacement by R ' and T '
is performed as a single displacement of the source tree by the rotation matrix R ' R

and translation vector R ' T + T ' .

After a motion, a cube may occupy a position where it partially overlaps with
voxels. To obtain an octree representation for the cube after motion, some rounding

OCTREES OF OBJECTS 171

must be considered. If all the partially occupied voxels were colored white, it would
reduce the volume of the cubes. Furthermore, the result of moving an object's cubes
corresponding to the leaf nodes, accompanied by such rounding of partially oc-
cupied voxels, might create holes in the moved object. (For example, consider
rotating a unit cube by 45 o about the x axis. After rotation it may partially occupy
six voxels, each of which would be colored white!) These holes reduce node
compaction and result in an octree with many nodes. If all the partially occupied
voxels are colored black, the volume would tend to increase. In the algorithm
presented in this paper, a partially occupied voxel is colored black if and only if its
center is on or inside some displaced black cube. If a voxel is completely inside the
displaced object, its center must be on or inside some displaced cube therefore it is
colored black. Thus, no nonexistent inside holes would be created after motion. This
rounding scheme also tends to keep the volume unchanged compared to the other
two schemes mentioned.

4. A L G O R I T H M

Given rotation matrix R and translation vector T, the algorithm constructs a
target octree T z from source octree T x. To define T2, first the occupancy of the
discrete three-dimensional space, i.e., the three-dimensional voxel array is defined
after motion. Each voxel of the array is treated black if and only if its center is on or
inside some displaced black cubes from source tree. The algorithm to construct T 2
traverses T 1 in post order. Once a black leaf node is found in T 1 the new position of
the corresponding cube after displacement is calculated. The displaced cube is tested
for intersections with the upright cubes to determine the color of the corresponding
nodes in T 2. Each partially intersecting upright cube is recursively subdivided until
all the voxels included in this upright cube are of single color, possibly after
rounding. Node condensation is performed at the earliest opportunity after a group
of eight identically colored children is generated. After condensation the eight
children are deleted and their parent is given their color.

The main steps of the algorithm are as follows:

1. Traverse the source tree. For each black leaf node encountered, perform
step 2.

2. Obtain the new position and orientation of the cube corresponding to the
leaf node under consideration in Tx, which is generally no longer upright because of
motion. If this new position is outside of the universe space, report error and stop.
Otherwise, perform step 3.

3. Starting from the root of the target tree, generate the nodes of the target tree
by testing their corresponding upright cubes for intersection with the moved cube.
For each test there are three cases to consider, each leading to a different decision
about the nature of the target tree node:

(1) no intersection: the upright cube is unoccupied and is left alone.

(2) the upright cube is inside the displaced cube: the upright cube is
occupied. Color corresponding node black.

(3) otherwise: generate all eight children of the upright cube (node). Perform
step 3 recursively for each child. If all the eight children are of a single color (white
or black), delete the children and make the parent the same color.

1 7 2 W E N G A N D A H U J A

S

q / I

x ×

(a)
(b)

Y

q

FIG. 2. Relations between object and octree cubes.

Intersection Detection

The main step in the above algorithm is that of intersection detection. Consider a
black leaf node or the corresponding cube al of source tree T 1 at level 11. It is
moved to a new position where it occupies the space corresponding to a tilted cube
a{ as shown in Fig. 2. To construct the nodes in target tree T 2 corresponding to a{,
we must test the intersection of the tilted cube a{ with the upright cubes. The
relationship between upright cube a~ in the target tree and a[has three cases. We
denote these three cases by relation A.

Relation A (a' 2 vs aS).

1. Inside: All the centers of the voxels in a~ are inside a{.

2. Outside: No centers of any voxels in a~ are inside a{.

3. Partial: Otherwise.

In case 1, a~ should be colored black. In case 2, a{ does not affect the color of
a~, however, a~ might become black when other black leaves of T I are considered.
In case 3, a~ generates eight children and each child is recursively tested for
intersection with a{.

Case 2 of relation A is computationally expensive. It involves the computation of
the three cases of partial intersection shown in Fig. 3. A modification can be made
to make intersection testing efficient. Let q and Q be the smaller cube and the
bigger cube, respectively (see Fig. 4). To test the intersection of q with Q, we
consider the smallest sphere S that contains the smaller cube q. If we use S to
represent q and regard the intersection of sphere S with Q as that of q with Q,
some nonintersections of q with Q would be regarded as partial intersections as

OCTREES OF OBJECTS 173

(a) (b) (c)

F]G. 3. Examples of intersection.

shown in Fig. 4. This means that some of the case 2 situations in relation A are
incorrectly viewed as case 3. Though this results in some unnecessary children
generation followed by condensation, the computation is still much more efficient
than direct testing of relation A. Assume that a 1 is at level l t and a~ is at l 2. To
always represent the smaller cube by a sphere we consider two cases with respect to
the sizes (or levels) of a~ and a~:

(a) 11 < l 2. The smaller cube q is a~. The sphere S circumscribing q has diameter
v~-26. To test for intersection between S and a~, it is sufficient to test if any of the
centers of the unit cubes in a ~ are contained in S. This is according to the rounding
scheme chosen. We can therefore test for the discrete space intersection between S
and a ~, by a true Euclidean domain intersection detection between S and a smaller
version Q of a~. The side length of Q is a unit smaller than that of a~, i.e., 212 - 1
as shown in Fig. 2a. Since Q is upright, to test the intersection of S and Q, we just
need to check the absolute values of the coordinate differences of their centers. Let
disa be the value of the sum of the radius of S and half side-length of Q, i.e.,

(~sa =
¢3-26 + 2 t2 - 1

Let a~ be centered at X{ = (fcx~,fcy~,fcz~), a~ be centered at X~ =
(cx~, cyg, cz~). Here f and c in the notation refer to forward motion (to distinguish
it from backward motion considered later) and center, respectively. Thus fcx~

0 °

s q - k.i I

(I
FIG. 4. Intersection of S with Q and non-intersection of q with Q.

174 WENG AND AHUJA

denotes the x coordinate of the center after forward displacement. If

[fcx~ - cx~[> disa or [fcy[- cy~[> disa or [fcz~ - cz~[> disa,

(1)

then no centers of any voxels in a~ can be on or inside the smallest sphere S that
includes a~. So none of them are on or inside a~.

(b) l 1 > 12. Here a~ is smaller than or as big as a~. The sphere S here should still
substitute the smaller cube instead of the bigger one to reduce the likelihood of false
intersection detection. However, the bigger cube a~ here is tilted. So the inequalities
similar to (1) cannot be applied to S and a~ directly. Fortunately, a 1 is uptight and
the geometric relationship of a~ and a~ is the same as that of a2 and al, where a2
is the tilted cube "moved backward" from a~ as shown in Fig. 2b. Thus, if a t and
a 2 were to move together as a rigid body, then a x would move to a~, and a 2 would
move to a~. So we consider a 1 and a z instead of a~ and a~ since this make possible
the use of the inequalities similar to (1). The bigger cube Q here is a 1. We must test
if Q and a 2 intersect each other. To take into account rounding, as before, we need
only check if Q contains any centers of unit cubes contained in a 2 (see Fig. 2b). To
do this, we first replace a 2 with the smallest sphere S that contains all the centers of
unit cubes in a 2. S has a diameter v~-(2 6 - 1). To test the intersection of S with Q
we check the absolute values of the coordinate differences of their centers (we have
made Q uptight!). Let disb be the value of the sum of the radius of S and the half
side-length of Q, i.e.,

disb =
2 6 + ~/3-(2 6 - 1)

2

Let X 2 = (b c x 2, bcy 2, bcz2) be the center of a2; b stands for "backward"
displacement. We have X~ = R X 2 + T or X 2 = Rt(X~ - T) . Let (c x 1, cy 1, c z l) be
the coordinates of the center of a 1 (see Fig. 2b). If

Icxl - bcx21 > disb or Icy I - bcy2l > disb or Iczl - - bcz2[> disb,

(2)

then S and Q are nonoverlapping. Also, we can further test for complete inclusion
of a 2 in a 1 by checking if each vertex of q is contained in al, where q is a smaller
version of a 2, i.e., the smallest cube that contains all the centers of the unit cubes in
a 2. The steps (a) and (b) then constitute the modification we set out to obtain a
more efficient intersection test than that defined by relation A. We summarize the
modified test as relation B.

Rela t ion B (a ' 2 vs a'~).

(a) l 1 < 12.

1. Inside (a~ inside a~): impossible.

2. Outside (Q outside S): if

]fcx~ - cx~l > disa or Ifcy~ - cy~] > disa or Ifcz; - cz~l > disa.

OCTREES OF OBJECTS 175

3. Partial: otherwise.

(b) l I >_ l 2.

1. Inside (a~ inside a~): if

i x 2 _ cx lb < 2;1 1 and lY2 - cy l l < 2;~-1 and }z 2 _ c z l l < 2;1 1

hold for coordinates (x 2, Y2, z2) of all eight corners of q (a smaller version of a2).

2. Outside (S outside Q): if

I c x 1 - bcx21 > d i sb or Icy 1 - bcyel > d i sb or Icz 1 - bcz2] > d i sb .

3. Partial: otherwise.

In summary, the intersection detection for an upright cube and a tilted cube is
replaced by the intersection detection for a sphere and an upright cube, thus making
the computation more efficient.

For each leaf node in/ '1, the algorithm checks the inequalities in relation B. If the
relation "inside" holds, a~ is colored black. If the relation "outside" holds. The
color of a ~ determined by the traversal and rotation of the nodes in T 1 that are
traversed previously is not changed by the current node a 1 under consideration. If
the relation "partial" holds, a~ is recursively subdivided further and relation B is
tested for each of its children. When l 2 = 0, i.e., level zero of T 2 is reached, then a
is colored black if and only if the center of a~ is on or inside a t.

A l g o r i t h m D e s c r i p t i o n

The algorithm has five subroutines fdleaf, intersect, condense, black and gray. The
procedure fdleaf traverses T~, the source tree, in post order. For each black leaf node
found, it checks whether this leaf node goes out of universe space after displace-
ment. If so, error is reported. Otherwise fdleaf calls intersect for this leaf node, to
add appropriate nodes to T 2.

The procedure intersect adds nodes corresponding to the leaf node passed from
fdleaf by testing relation B starting from root of T 2. If relation B yields "partial,"
eight children nodes are generated. The procedure intersect is called recursively for
each child immediately followed by a call to procedure condense. The procedure
condense checks if all eight siblings have the same color. If so, all children are
deleted and the parent node of the deleted siblings is assigned the common color of
the deleted siblings. The function black return true if the node is black. Similarly
gray return true if the node is gray.

The following is an outline of the algorithm. The notation is straightforward.
lnside(nodel, node2) and partial(nodel, nodo2) denote the corresponding condi-

176 WENG AND AHUJA

tions defined in relation B.

PROCEDURE fdleaf(node);
BEGIN

IF black(node) THEN
IF out-of-space THEN error-stop
ELSE intersect(node)

ELSE IF gray(node) THEN
FOR each child of node DO
fdleaf(child)

END;

PROCEDURE interseet(sourcenode, targetnode);
BEGIN

IF l I < 12 THEN
BEGIN
IF partial(targetnode, sourcenode) THEN

FOR each child of targetnode DO
intersect(sourcenode, child) END

ELSE { l x >_ 12 }
IF 12 = 0 T H E N

IF center of targetnode is inside sourcenode
THEN color targetnode black
ELSE color targetnode white

ELSE
IF inside(targetnode, sourcenode) THEN

color targetnode black
ELSE IF partial(targetnode, sourcenode) THEN

BEGIN FOR each child of targetnode DO
interseet(sourcenode, child);
condense(targetnode)

END
END;

5. ANALYSIS

One way to reduce the severe space requirements of an octree is to avoid explicit
leaf nodes. Information about the leaf children of a parent can be compactly stored
as a bit pattern in the color field of the parent. The following lemma says this
scheme stores only about one eighth of the total nodes. This is a considerable
reduction of space requirement.

LEMMA. Let T and I be the total number of nodes and the total number of the
internal nodes, respectioely, then I = (T - 1)/8.

Proof. See Appendix A.
Since octree representation uses upright cubes and fixed positions as primitives,

different orientations and positions of an object result in different degrees of object
fragmentations, and hence in different numbers of nodes within octree. To analyze
the space requirements of our algorithm, (actually of any octree algorithm) we need

OCTREES OF OBJECTS 177

an upper bound on the number of nodes in an octree representing a cube of any
size, orientation and position. The following theorem tells how many black leaf are
sufficient to represent a cube of arbitrary orientation and position.

THEOREM 1. Let B m be the number of black leaves in an octree representing a cube
of side-length 2" at arbitrary orientation and position, then

B" _< 24.25 - 4" - 200 • 2" + 1454.

Proof See Appendix B.
Theorem 1 not only provides a bound for black nodes but also is useful for

deriving Theorem 2, which gives the bound on the number of internal nodes.

THEOREM 2. Let I" be the number of internal nodes in an octree representing a
cube of side-length 2 m at any orientation and position in 2" x 2" × 2 n space. Then,
f o r m > 3 ,

I " < 5.76 • 4 m + 17 • 2" + 8n + 76m - 277,

I 0 < 8 n - 7 , I t < 8 n + 1 2 , 1 2 < 8 n + 1 0 1 .

Proof See Appendix C.
The bound on total number of nodes in the octree representing a cube can be

derived from Theorem 2.

COROLLARY. Let T" be the number of total nodes in an octree representing a cube
of side-length 2" at any orientation and position in 2 n x 2" X 2 ~ space. Then, for
m>_3 ,

T" < 47 • 4 " + 136 • 2" + 64n + 608m - 2215.

Proof From Lemma 1, T" = 81" + 1. Corollary follows from Theorem 2.
Q.E.D.

The above corollary shows that the number of nodes in an octree representing an
m-cube (size: 2" X 2" x 2") is bounded by 0 (4 " + n), that is, the number is at
most proportional to the surface area of the cube plus the logarithm of the
side-length of the space. (By an analogous analysis, it can be shown that number of
nodes in a quadtree representing a square at any orientation and position is at most
proportional to the sum of the perimeter of the square plus the logarithm of the
image side-length, which is a generalized result compared to [6], which considers
only upright squares.)

Theorem 1 and Theorem 2 as well as its corollary show how octree can greatly
compact the voxel array representation of a cube. Let us define

p B (m) =

p , (m) =

P r (m) =

number of black leaves

volume of an m-cube

number of internal nodes

volume of an m-cube

total number of nodes

volume of an m-cube

178 W E N G A N D A H U J A

TABLE 1

Bounds on the Ratios of the Number of Octree Nodes and the Volume
of an Arbitrarily Oriented and Positioned Cube

m on(m) < or(m) <_ p r (m) _<

8 0.092 0.0228 0.186
10 0.024 0.0057 0.047
12 0.0060 0.0015 0.012
14 0.0015 0.00036 0.0029

Note. See text for definition; cube size: 2" × 2" × 2" , n = 5m.

From Theorem 1 we have

m m 1 m
ps(rn) < 24.25(½) - 200(¼) + 1454(g) .

F rom Theorem 2 and its corollary we get

or(m) < 5.76(1)~ + 17(¼)~ + (8n + 7 6 m - 227)(1) m

P r (m) < 47(½)m + 136(¼)~ + (64n + 608m - 2215)(-~) m

As can be seen from these expressions these ratios approaches zero very fast as m
get large. Table 1 shows the upper bounds of these ratios for some value of m. The
actual ratios are even smaller.

The results in Table 1 show that the number of nodes in an octree of an arbitrary
oriented cube is much smaller than the number of voxels in the cubes. Each octree
node needs a constant times more space than a voxel. However, the saving in the
storage space required is dominated by the order of the ratio of the number of nodes
and the number of voxels for large cubes. The ratios derived above show the order
of the savings incurred in using the octree representation. These bounds approach
zero very fast with increasing m, i.e., the larger the represented cube the larger are
the savings over voxel array representation.

For a cube, the above bounds show how the octree can compact the correspond-
ing voxel array. Since cubes are the primitives of octree, these bounds can be used to
find a worst case bound and an average bound on the number of nodes for arbitrary
objects.

From Theorem 2, in the worst case the space and time have an upper bound of
O(K4M), where K is the number of nodes in the source tree and M is the highest
level at which black nodes occur in the source tree.

For an object with surfaces that are all perpendicular to the coordinate axes, the
nodes tend to be at higher levels and thus the source tree tends to consist of few
nodes. In such a case, the worst case bound is a good estimate. For an object
consisting of curved surfaces, the number of nodes in the octree does not change
drastically with change in object orientation and position. Thus the source tree has
many nodes. In this case, the worst case bound does not give a good estimate of the
number of nodes in the target tree. We give below an average bound based on the
following assumption for the source tree: the probability of the number of black

O C T R E E S OF OBJECTS 179

nodes at level k is proportional to the number of possible positions at level k, i.e.,
the number of nodes at level k in a complete tree. For the objects consisting of
curved surfaces and nonparallel planar surfaces this assumption could be expected
to be approximately true.

THEOREM 3. Assuming the number of black nodes at level k is proportional to the
number of positions at level k, the average time and space of the algorithm is bounded
by O(Kn), where K is the number of nodes in the source octree, and n is the logarithm
of the side-length of universe space.

Proof. At level k there are 8 "-k positions in a complete octree. The total
number of positions for leaves is v , - l~n i (8n+1 8)/7. From Theorem 2, the .~..,i ~ 0 U = - -
average number of internal nodes traversed is bounded by (n >_ 3)

(8 n + l -- 8) - 1 " - 1
E 8n-mlm

7 m=0

7
[8"(8n - 7) + 8"-1(8n + 12) + 8" 2(8n + 101)

-< 8 "+1 - 8
L

. 1)]
+ ~ 8~-m(5.76.4 m+ 17 -2 m + 8 n + 7 6 m - 2 7 7

m = 3

7

8 -- 8 1 - n
(8 n -

1

23
+ 5.76

,76(
_< 10n + 1.

7) + 8 -1 (8n+ 12) + 8 2(8n+ 101)

1 1 1 1 1

2" 4 3 4" 8 3 8"
+ 17 3 + (8n - 277) 1 1

~ 1 - ~

n - 1 n 1
+ - -

8 1 2
2

8 n + l 8 n

For 1 < n _< 3 the result still holds. The function fdleaf traverses all the internal
nodes. Its time and space requirements are bounded by O(K). For each black leaf
node in the source tree, intersect would visit at most I0n + 1 (= O(n)) nodes. Thus
the average time to run fdleaf is bounded by O (K) . O(n) = O(Kn). The total
average time, and hence, the average space, are bounded by O (K) + O(Kn) =
O(Kn). Q.E.D.

6. IMPLEMENTATION

The algorithm was implemented in C on a VAX 11/780. Some synthetic three-
dimensional objects were simulated. Various rotations and translations are per-

180 WENG AND AHUJA

(a) (b)

FIG. 5. Two synthetic objects for simulations.

formed. The results for two objects are presented here. Their shape, original
orientations and positions are shown in Fig. 5. In Table 2a, b, T1 is the source tree
and T 2 is the target tree. Table 2a, b gives the number of black nodes, B, the
number of internal nodes (also tree size since only internal nodes are created), I,
maximum memory used for the construction of this target tree, M, in terms of
nodes. From Table 2a, b it can be seen that the number of nodes is larger if the
object contains curved surfaces. In Table 2a, b the number of black and internal
nodes each increases almost by a factor of 4 as n increases by 1, where n
corresponds to the size of the universe space. This is consistent with the results of
Theorems 1 and 2. It can be seen from Table 2a, b that given the position and the
orientation of the object to be represented by the target tree, the maximum memory
(M) used to construct this target tree is always close to the completed target tree
size (I) , which means the intermediate evolving (incomplete) tree size is tightly
bounded. Table 2a, b shows also the ratio l/V, where V is the volume of the object.
These ratios are small. As pointed out earlier, an internal node may use more space
than required by a voxel, the exact space requirement of the octree depends on the
actual data structure used. For example, the linear octrees use a one dimensional
array to store the nodes, this requires less storage space for the given tree [8].

7. SUMMARY

An algorithm for arbitrary rotation and translation of objects represented by an
octree is presented and implemented. The algorithm generates very few superfluous
nodes in the intermediate stages so the memory used is very close to the tree size.
The one-displacement approach avoids the error accumulation with a compact
source tree.

The analysis reveals the compactness properties of the octree representation
(Theorems 1 and 2). A general result is derived that the number of nodes in octree
representing a cube is at most proportional to the surface area of the cube plus the
side-length of the universe space. The bound on the ratio of the number of nodes in
an octree representing a cube of side-length 2"1, and the volume of the represented
cube approaches zero very fast when m gets large (bounded by O(1/2") , if n is

T
A

B
L

E

2
a

S
im

u
la

ti
o

n

D
at

a
fo

r
O

b
je

ct

(a
)

in
 F

ig
.

5

n
4

5
6

7

V

96

76
8

61
44

49

15
2

T
1

T 2

T
l

T~

~
~

~
T2

n
°

--

0
,1

,0

0
,1

,0

1,
1,

1
--

0

,1
,0

0

,1
,0

1,

1,
1

0
,1

,0

0
,1

,0

1,
1,

1
0

,1
,0

0

,1
,0

1,

1,
1

@

--

-9
0

°

-3
0

°

30
 °

__

-9

0

°
-3

0

°
30

 °

-9
0

 °

-.
30

 °

30
 °

90

 °

30
 °

30

 °

T
--

1

6
,0

,0

8
,0

,0

2
,2

,0

3
2

.0
,0

1

6
,0

,0

4
,4

,0

--

6
4

,0
,0

3

2
.0

,0

8
,8

,0

--

12
8,

0,
0

6
4

,0
.0

16

,1
6,

16

B

12

12

47

85

12

12

18
3

44
l

11
2

12

73
9

20
42

12

12

21

1
88

51

I
f

7
21

39

7

7
64

17

0
7

7
23

6
67

3
7

7
92

2
27

13

M

7
11

25

42

7

2
69

17

4
7

13

24
2

67
6

7
14

92

9
27

18

I/
V

0.

07
3

0.
07

3
0.

22

0.
41

0.

00
91

0.

00
91

0.

08
3

0.
22

0.

00
11

0.

00
11

0

0
3

8

O
ll

0.

00
01

4
0.

00
01

4
0.

01
9

0.
05

5

0 ,H

0
T

A
B

L
E

2b

S
im

u
la

ti
o

n

D
at

a
fo

r
O

b
je

ct

(b
)

in
 F

ig
.

5

n
4

5
6

7

V

15
0.

8
12

06

96
51

77

21
0

rx

r2

rl

r2

T1

r~

r~

r2

--

0,
1,

0
0,

1,
0

1,
1,

1
--

0

,1
,0

0

,1
,0

1,

1,
1

--

0
,1

,0

0
,1

,0

1,
1,

1
_

-9
0

°

-3
0

°

-3
0

°

_
-9

0

°
-3

0

°
-3

0

°
--

-9

0

°
-3

0

°
-3

0
 °

--

3
2

,0
,0

8

,0
,0

2,

 -
2

,0

--

6
4

,0
,0

1

6
,0

,0

4,
 -

4
,0

--

1

2
8

,0
,0

3

2
,0

,0

8,
 -

8
,1

6

37
6

37
6

68
4

72
1

12
88

12

88

29
28

31

14

49
04

49

04

12
62

2
13

27
7

97

97

23
1

25
0

33
7

33
7

90
7

10
07

14

57

14
57

36

67

40
34

97

10
1

23
5

25
2

33
7

34
3

91
3

10
10

14

57

14
64

36

73

40
41

0.

00
80

0.

08
0

0.
19

0.

21

0.
03

5
0.

03
5

0.
09

4
0.

10

0.
01

9
0.

01
9

0.
04

7
0.

05
2

"n

©

n
o

--

0
,1

,0

0
,1

,0

1,
1,

1

,~
,

--

-9
0

"
-3

0
*

-3

0

°

T
--

1

6
,0

,0

4
,0

,0

1
,-

1
,0

B

40

40

15

2
12

9

I
17

17

55

64

M

17

21

58

67

I/
V

0

.1
1

0

.I
I

0.
36

0.

42

oo

182 W E N G A N D A H U J A

\ / / , j /

v- - % ~ /

iiiiiiiiiiilE /
\" :~iii!iii~i " " "

% / 2k

FIG. 6. Two-dimensional illustration for Theorem 1.

constant). The average space and time complexity is bounded by O (K n) , where K is
the number of nodes in source tree and the universe space has side-length 2 n.

A P P E N D I X A (LEMMA)

LEMMA. Let T and I be the number o f total nodes and the internal nodes,
respectively, then 1 = (T - 1)/8.

Proo f Let L be the number of the leaves. Consider each internal node corre-
sponds to an eight-person game. Originally there are L players to take part in the
games. Seven players lose after each game. Only the winner participates in the rest
of the games. Finally only one player survives after I games. So we have L - 71 = 1
or I = (L + I - 1) /8 = (T - 1)/8. Q.E.D.

A P P E N D I X B (T H E O R E M 1)

THEOREM 1. Let B m be the number o f black leaves in an octree representing a cube
o f side-length 2 m at arbitrary orientation and position, then

B,, < 24.25 • 4 " - 200 • 2" + 1454.

Proo f Let C be an m-cube and C ' be the cube by growing C in all direction by
0.5 as shown in Fig. 6. Any unit cubes completely inside of C ' must be black since
their centers are on or inside C. a and b in Fig. 6 are the biggest depth unfilled by
black blocks on two sides if only k-cubes or bigger ones are considered, a or b can
not be greater than v~- • 2 k otherwise another k-cube should have been black. So
a + b < 2¢3- • 2 k. Let o k be the number of k-cubes in C ' with the bigger cubes are
considered as the corresponding number of k-cubes. Let w k be the number of exact
k-cubes in C ' . Then, w k = o k - 8Ok+ v The volume filled by black k-cubes or bigger
ones is no less than [2" + 1 - (a + b)] 3 > (2 m + 1 - 2v/3 - • 2k) 3. So v k >_ (2 " +

1 - 2!/~ • 2k)3/(2k) 3 = (2 " - k -- 2V~- + 2 -k) 3. O"_ 2 > (2 2 -- 2f3- + 2 - ' + 2) 3 >
0, V i is integer. So v,._ 2 > 1. Black unit cubes is no more than (2 " + 1) 3 -
8(2 " - 1 - 2 v ~ - + 2-1) 3, the whole volume subtracted by the low bound of o 1.
Summing up all the low bounds of k-cubes of exact size, the low bound of B,,

OCTREES OF OBJECTS 183

follows for m > 3:

B,,, < (2" + 1) 3 - 8(2 "-1 - 2v/3 - + 2-1) 3

m - 1
+ 2 [(2 i - 2V~- + 2 -{" - i ') 3 - 8(2 i-1

i = 4

+(23 -- 2V~- -- 2 - (" 3)) 3 - - 8 " 1 + 1

m - 1

= (2 " + 1) 3 - 7 Y'. (2 i - 2 v ~ + 2 (' - i + 1)) 3 _ 8 . 1 + 1
i = 3

< (3 + 14V/3)4 " -- 249" 2" + 2522 -- 728X/3-

- 2 ~ + 2 ('-i+t))3]

When m > 3, 1 / 2 " < 1/23. We have

B" < (3 + 14V~)4" - 249-2 m + 2522

-728v~- - 3 • 4" + 28fj-2" + 192

= v~4" - (248 - 28VrJ-)2 " + 2714 - 728V~-

< 24.25 • 4" - 200- 2 m + 1454.

Since B" < (2" + 1) 3, the theorem also holds for m > 0. Q.E.D.

APPENDIX C (THEOREM 2)

THEOI~M 2. Let I" be the number of internal nodes in an octree representing a
cube of side-length 2" at any orientation and position in 2 ~ × 2" × 2" space, then for
m > 3

I ' < 5 . 7 6 . 4 " + 1 7 - 2 m + 8 n + 7 6 m - 2 7 7

I 0 < 8 n - 7 , I x < 8 n + 12, 12_< 8 n + 101.

Proof Consider that an upright m-cube C is displaced to a new position. To
construct the octree for it the subdivision will continue down to at least level m. A
cube can overlap at most eight octants of higher level and overlap at most 27
octants of the same level. So at most

n-1
2 7 + • 8 + l = 8 (n - m) + 2 0 (3)

i = m + l

gray nodes of level m or higher would be generated. If subdivisions are proceeded
further below level m, those cubes that have relation "partial" with C would
probably become gray nodes and those have relation "inside" will become a black
leaf node and be condensed to their parent later as shown in Fig. 7. Such k-cubes
that have "part ial" or "inside" relations with C are no more than

(2" + ~/-5(2 ~ - 1) + ¢~-2k) 3
= (2" k + 2v/5 _ 73-2 k)3 (4)

(2k) 3

83 43 23
--3(4 m ~-~) + 28V~-(2 m ~-~) - 252(1 - ~ 7)

184 W E N G AND A H U J A

- - -

', \}i {i i }iiiiii E{i{{}i {{,, ,,
%

FIG. 7. Two-dimensional illustration for Theorem 2. F: Displaced cube to be represented. E: All the
k-cubes completely inside E are black. H: All the k-cubes with centers on or inside H have "part ial"
relations. G: All the k-cubes which have "inside" or "partial" relations are included in G.

because all such nodes are included in a cube C ' of side-length 2 " + v~-(2 k - 1)
+ ¢~-2 k as shown in Fig. 7. Among them at least

(2" + 1 - 2~/-52k) 3

(2k) 3
= (2 " - k - 27~- + 2 - k) 3 (5)

k-cubes are black as discussed in the proof of Theorem 1. F rom (4) and (5), at most

(2 " - k + 27~- - V/-32-k) 3 -- (2 " - k -- 2 f 3 + 2 - k) 3 (6)

gray nodes are at level k. With (3) and (6) we have, for m > 3

I m < 8 (n - m) + 2 0
m - I

+ 2 [(2m-k +
k = l

2 5 ~ - 3
- 4 " +

7

449 + 983~/-J-

7

48 + 224v~-

7

2~/3- - ~/3-2-k) 3 - (2 " - k -- 2 f 3 + 2 - k) 3]

(16 + 6) 2 " + 8n + (48~/3 - - 8) m

752 + 528vC3 1
+

7 2 m

1 8 + 247~- 1
+

4 " 7 8 "

< 5.76 • 4 " + 17 • 2 " + 8n + 76m - 277. (7)

OCTREES OF OBJECTS 185

When m < 3 from the above arguments, we have

n-1

I 0 < 1 + Y[8 = 8 n - 7 .
i=1

From (3), I 1 < 8(n - 1) + 20 = 8n + 3.2. From (3) and (4),

12 < 8 (n - 2) + 2 0 + [(22-1 + 2/ /~-- 7~-2-t) 3] = 8n + 101. Q.E.D.

ACKNOWLEDGMENT

This research was supported in part by the National Bureau of Standards under
Grant COMM 60NANB4D0004 and the National Science Foundation under Grant
ECS 83-52408.

REFERENCES

1. N. Ahuja, L. S. Davis, D. L. Milgram, and A. Rosenfeld, Piecewise approximation of pictures using
maximal neighborhoods, IEEE Trans. Comput. C-27, 1978, 375-379.

2. N. Ahuja, R. T. Chien, R. Yen, and N. Bridwell, Interference detection and collision avoidance
among three dimensional objects, in Proceedings, 1st National Conf. on Artificial Intelligence,
August 19-21, 1980, pp. 44-48.

3. N. Ahuja and C. Nash, Octree representation of moving objects, Comput. Vision. Graphics Image
Process., 26, 1984, 207-216.

4. D. Ballard and C. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982.
5. C. H. Chien and J. K. Aggarwal, A volume/surface octree representation, in Proceedings, 7th Int.

Conf. on Pattern Recognition, 1984, pp. 817-820.
6. C. R. Dyer, The space efficiency of quadtrees, Comput. Graphics Image Process., 19, 1982, 335-348.
7. C. M. Eastman, Representations for space planning, Comm. ACM, 13, 1970, 242-270.
8. I. Gargantini, Linear octrees for fast processing of three-dimensional objects, Compt. Graphics Image

Process., 20, 1982, 365-374.
9. G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Trans. Pattern Anal.

Machine lntell. PAMI-I, No. 2, 1979, 145-153.
10. C. L. Jackins and S. L. Tanimoto, Oct-trees and their use in representing three-dimensional objects,

Comput. Graphics Image Process., 14, 1980, 249-270.
11. K. Maruyama, A Procedure for Detecting Intersections and Its Application, University of Illinois,

Computer Science Technical Report No. 449, May 1971.
12. W. N. Martin and J. K~ Aggarwal, Volumetric descriptions of objects from multiple views. IEEE

Trans. Pattern Anal. Machine Intell., PAMI-5, No. 2, 1983, 150-158.
13. D. Meagher, Geometric modeling using octree encoding, Comput. Graphics Image Process., 19, 1982.
14. D. Meagher, Efficient synthetic image generation of arbitrary 3D objects, in Proceedings, IEEE

Computer Soc. Conf. on Pattern Recog_ and Image Proc., 1982, pp. 473-478.
15. W. Osse and N. Ahuja, Efficient octree representation of moving objects in Proceedings, 7th Int.

Conf. on Pattern Recognition, 1984, pp. 821-823.
16. A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, New York, 1982.
17. H. Samet, Computing perimeters of regions in images represented by quadtrees, IEEE Trans.

Pattern Anal. Machine Intell., PAMI-3, No. 6, 1981, 683-687.
18. M. Shneier, Calculations of geometric properties using quadtrees, Comput. Graphics Image Process.,

16, 1981, 296-302.
19. M. Shneier, E. Kent, and P. Mansbach, Representing workspace and model knowledge for a robot

with mobile sensors, in Proceedings, 7th Int. Conf. on Pattern Recognition, 1984, pp. 199-202.
20. S. N. Srihari, Hierarchical representations for serial section images, in Proceedings, 5th Int. Conf. on

Pattern Recognition, 1980, pp. 1075-1080.
21. J. Veenstra and N. Ahuja, Octree generation of an object from silhouette views, in Proceedings,

IEEE Int. Conf. on Robotics and Automation, 1985, pp. 843-848.

