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An algorithm is described that updates an object’s octree representation as the object is 
linearly translated through space. This is accomplished by performing simple arithmetic on the 
path representations of the nodes to be translated. Among others, one advantage of the 
algorithm is in devising collision-free and efficient trajectories of moving objects in robotics. 

1. INTRODUCTION 

An important class of representations of three dimensional objects is based upon 
recursive decomposition of space until each element of the decomposition is com- 
pletely within or outside the object of concern, or the limit of resolution is reached. 
A common method involves cubical regions of space and their decomposition into 
octants. This gives an octree description of the occupancy of space by objects 
[l, 7,12,13]. A given tree is defined for a certain choice of the origin and the 
orientation of the coordinate axes. Different choices of the locations of the axes give 
drastically different trees because the objects get decomposed differently. A slight 
shift in an object’s location may result in a much larger or more compact tree. This is 
the major disadvantage that decomposition-based representations have when com- 
pared to variable position block representations such as medial axis transforms [12] 
and piecewise approximation [2]. The latter representations do not change as an 
object is moved, but they may be computationally more expensive to obtain. 

When dealing with a static environment, the octree description will need to be 
derived only once for a given choice of the axes. However, it is often necessary to 
represent scenes containing moving objects. For example, in robotic manipulation of 
environment, representations of dynamic scenes are necessary to design collision-free 
and efficient trajectories for object movement. Trees must be continuously obtained 
to reflect varying positions of objects with respect to ftxed axes. Since the tree shapes 
are very sensitive to object locations [5], one approach is to track the moving objects 
or compute their positions continuously, and rederive tree representations for each 
configuration of interest. For applications such as collision avoidance, tests must be 
made fairly often to detect potential collisions and to take appropriate measures to 
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avert them. The exact frequency of the tests is determined by the motion parameters 
and must be sufficiently high to allow only limited changes in the object configura- 
tions between successive test instants. Thus, successive configurations are closely 
related, and hence, so must be their octrees, despite significant changes in the octree 
shapes. This interdependence may be exploited to save some computation in 
obtaining successive trees by updating current trees instead of rederiving them 
completely. This paper describes an algorithm for updating an octree as the 
represented object undergoes translation. 

Section 2 reviews the octree representation of three-dimensional objects. Section 3 
describes an algorithm to update the octree of an object as the object undergoes 
translation. The algorithm updates the octree by performing simple arithmetic on the 
path representations of the nodes to be translated. Section 4 summarizes the 
experimental results. Section 5 presents concluding remarks. 

2. OCTREES 

The octree representation [l, 6,7,11,12,13] of the occupancy of space by objects is 
obtained by recursive decomposition of the space into octants (Fig. 1). To obtain the 
octree for a given object, we start with the entire space as a single (starting) block. If 
the block under consideration is completely contained within the object it is left 
alone; otherwise, it is divided into eight octants (Figs. 1,2a) each of which is treated 
similarly. The splitting continues until all the blocks are either completely within or 
completely outside the object (Fig. 3a), or a block of minimum allowed size 
(representing the finest resolution) is reached. 

Such recursive subdivision (Fig. 2b) allows a tree description (Fig. 2c) of the 
occupancy of space. Each block corresponds to a node in the tree. Let us label a leaf 
black or white if it corresponds, respectively, to a block which is completely 
contained within the object or within the free space. Nonleaf nodes are labeled gray, 
and have children unless they are of the minimum allowed size, in which case they 

FIG. 1. A block and its decomposition into o&ants. The south-west, south-east, north-west, and 
north-east octants in the lower layers are labeled 0, 1,2, and 3, respectively. The corresponding octants in 
the upper layer are labeled 4, 5, 6, and 7. 
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FIG. 2. (a) A simple object. (b) Recursive subdivision of space superimposed on the object in (a) to 
obtain its representation. (c) Octree for the object in (a); r denotes the root node. Black (white) leaves are 
indicated by darkened (empty) circles. 

are relabeled black. The free space covered by such nodes is thus treated as part of 
the object in order to be conservative in detecting interference. 

The root (level 0) of the octree represents the largest sized block (the overall 
representation space). Successively lower levels represent blocks whose side lengths 
halve with each lower level. The separation between adjacent blocks at a given level 
also halves for each lower level. The size of the smallest block is limited by 
resolution. We will denote the side length of the smallest block by unity. Then the 
total number of possible levels L is log, (side length of largest block). The leaves of 
the octree may occur at many levels. The octree may have fewer than L levels if the 
object can be represented by blocks of side lengths larger than unity. 

An equivalent but more economical and simpler representation is obtained if only 
the object volume is explicitly represented, and the remaining space is assumed to be 

FIG. 3. Translating a unit size block parallel to the positive y axis. The links not leading to any node 
denote “NIL” links or white children. (a) A unit-size object block r057. (b) The object in (a) translated by 
a unit distance. (c) The object in (a) translated by 5 distance units. 
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free. Thus, only the black leaves in the octree are retained. The white children of a 
gray node are deleted and their corresponding links in the parent are marked 
distinctly, say pointing to “NIL.” Thus in Fig. 2c the leaves which are empty circles 
can be deleted. In this paper we will use such a tree representation to reduce the 
storage space and the time taken by the tree-updating algorithms. 

3. TRANSLATION 

Given the translational motion parameters of an object and the time interval after 
which its octree must be updated, the object displacements along the three orthogo- 
nal (x, y, z) axes can be computed. In this section we describe an algorithm that 
receives the octree of an object and the displacement triple, and provides the octree 
of the translated object. The three axial components of the translation vector are 
used sequentially to move the nodes in the tree to their new positions, and the tree is 
compacted before the algorithm terminates. Each of the translational components is 
assumed to be an integral distance, a multiple of the unit distance representing the 
smallest block’s dimensions. 

3.1 Translating a Unit Block 
Consider moving a block of unit size a unit distance parallel to the positive x axis. 

In general, the blocks in the initial representation corresponding to octants in the 
western half of a nonleaf node will move to occupy adjacent o&ants in the eastern 
half (Fig. 1). The corresponding nodes in the tree, having labels 0, 2, 4, and 6, will 
acquire the labels 1, 3, 5, and 7, respectively (Fig. 1). Thus the new labels are 
obtained by adding 1 to the old labels. Symmetrically, the nodes corresponding to 
octants in the eastern half of a node, having labels 1, 3, 5, and 7, will change their 
labels to 0, 2, 4, and 6, respectively, corresponding to adjacent octants to the west. 
Thus the new labels are obtained by adding 7, modulo 8, to the old label. However, 
the new o&ants do not share the same parent node. The new parent block is that to 
the east of the original parent block. Thus the parent node in the tree must also 
move. This means that along with the label of the original node the label of its 
parent node also changes. Depending upon the position of the originally moved 
node in the tree, the label change may propagate to any height up the tree. 

TABLE 1 
Label Increments (Module 8) Representing 

Unit Displacements 

Increment after unit 
Initial displacement along 

label +x +Y +z 

0 +1 +2 +4 
1 +I +2 +4 
2 +1 +6 +4 
3 +7 +6 -t4 
4 +1 +2 +4 
5 +7 +2 +4 
6 +1 +6 +4 
I +I +6 +4 
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Translation parallel to the y axis differs from that parallel to the x axis in that the 
labels change, modulo 8, by 2 or 6 (Fig. l), and the roles of east and west octants are 
played by south and north octants, respectively. Similarly, translation along the z 
axis changes, modulo 8, the labels by 4. Table 1 lists the required increments in the 
values of the labels of nodes when translated by a unit distance in the positive 
direction along all the three axes; Table 2 lists the corresponding label transitions. 
When along with a node its parent must also change labels, this is indicated in Table 
2 by appending a “carry” (a 1) to the left of the new label of the node, meaning that 
the parent octant should also be moved to the adjacent octant in the direction of 
translation. 

Consider, for example, the octree of a unit size block shown in Fig. 3a. Let us 
denote the leaf by the sequence r057 formed by appending to root r the labels 
encountered along the path leading from the root to the leaf. To move the leaf block 
by a unit distance parallel to the positive y axis, we perform the following addition 
(Table 2): 

r057 
001 - 

r075 

Addition of 7 and 1 generates the label 5 and carry 1. Because of the carry, label 5 
is once again updated using Table 2. The resulting tree is shown in Fig. 3b. 
Translation by more than a unit distance along a positive axis is performed as 
follows. The translation is first expressed as a binary integer. Since the dimensions of 
the blocks corresponding to nodes at successively higher levels double, successively 
more significant bits of the binary integer may be associated with translations by 
side lengths of nodes (or corresponding blocks) at successively higher levels. The 
least significant bit of the binary integer is associated with the lowest possible level 
whose nodes represent unit-size blocks. The position of the translated leaf node is 
given by the sum, according to Table 2, of the sequence r** . . . * denoting the 
original leaf and the binary integer representing the desired translation. As an 
example, suppose we want to move the block in Fig. 3a by 5 (binary 101) units 
parallel to the positive y axis. The following addition gives the octree after transla- 

TABLE 2 
Label Transitions Representing Unit Displacements 

Initial 

label 

0 
1 
2 
3 
4 
5 
6 
I 

Final label after unit 
displacement along 

+x +Y +.Z 

1 2 4 
10 3 5 
3 10 6 

12 11 I 
5 6 10 

14 1 11 
1 14 12 

16 15 13 
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r057 
101 

r275 

Translation of a leaf by t, t > 0, parallel to a negative axis is equivalent to a 
translation by -t parallel to the corresponding positive axis. Since to obtain the 
octree a block is divided into two halves along each of the three axes, the various 
additions listed in Table 2 are binary additions, where the pairs of “bit” labels are 
chosen from among the integers 0 through 7. A negative translation is performed 
exactly as before but using the 2’s complement representation of - t. For example, 
to translate r275 by 5 units parallel to the negative y direction, we perform a 
translation by -5 (2’s complement 011) units parallel to the positive y axis, as 
follows: 

r275 
011 - 

r1057 
carry lost- 

where the carry out of the most significant position is ignored. This gives the 
translated node-the original leaf node in the previous example. 

3.2 Translating an Object 

The leaf nodes of the octree of an arbitrary object represent blocks of various sizes 
constituting the object and their configuration. The leaves may occur at different 
levels. To translate the object some distance, we first obtain projections of the 
translation along the three axes. Each of these translations is then performed by 
executing the following steps. The displacement value is represented as a binary 
integer. Let H be the least significant bit position in the binary representation 
containing a 1. Each black leaf node in the tree is recursively assigned eight black 
children down to level H. Then the nodes at levels 5 H are traversed in postorder 
such that at any given level, nodes in the direction of translation are encountered 
before those in the opposite direction. Thus, if the translation is positive in sign, the 
traversal is postorder and from right to left; all eight children of a node are traversed 
right to left (in order of decreasing labels) before the node itself is traversed. 
Conversely, if the displacement is negative in sign the traversal is postorder and 
from left to right. Due to the notation used for labeling a node’s children, positive 
displacements always shift nodes to the right and negative displacements always 
shift nodes to the left. As the tree is traversed, each level H node is translated as 
follows. 

First, using Table 2, the label sequence, say rs’, describing the destination location 
after translation of the given node is computed from the position sequence rs of 
the node known from the traversal algorithm, and the binary integer representing the 
displacement. The destination location is then accessed, starting from the root 
of the tree and moving down according to s’. This may require adding new branches 
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and nodes when the path s’ does not already exist, e.g., when the last node is 
translated. Finally, the data (color, children links) of the source node is copied into 
the destination node, and the original node is marked gray with no children. (This 
node represents currently free space. If no object blocks move into the space 
represented by this node, i.e., it remains gray with no children, at the end of 
translation, it will be deleted during the tree compaction phase before the algorithm 
terminates.) 

When the traversal is complete all the leaf nodes have been translated. One could 
say that the program metaphorically swings through the octree, encounters nodes to 
be shifted, and “throws” each such node behind its own path of progression to 
perform the shift. At any point during the traversal the nodes ahead of the point of 
procession have not yet been translated and nodes behind the point of procession 
have all been translated. As the final step, the tree is traversed again in postorder to 
delete superfluous nodes. Each gray node having no children, as well as the 
corresponding child link of its parent node, are deleted. Black siblings are deleted 
and their parent marked as a black leaf. The resulting octree thus contains only 
black leaf nodes. 

This algorithm was implemented in PASCAL on a PDP-11/40. Note that the 
algorithm allows only translation by an integer (i.e., integral multiple of smallest 
block size). Nonintegral translations or translations by distances smaller than the 
unit resolution cannot be performed exactly. To do so, either the resolution must be 
increased, or the magnitude of the translation rounded off to the nearest integer to 
obtain an approximate representation. 

3.3 Analysis 

The translation algorithm described above consists of three major steps performed 
on the octree obtained by adding black nodes as described in Section 3.2. 

(1) Traverse the tree levels 2 H. 
(2) For each level H node encountered in (1): 

(i) Compute the destination location. 
(ii) Access the destination node. If it does not already exist, insert the neces- 

sary node sequence in the tree. 
(iii) Copy the source node data into the destination node. 
(iv) Modify data in the source node (mark it gray with no children). 

(3) Traverse the tree again for compaction. 

Consider step 2. Substeps 2i, 2iii, and 2iv each requires O(1) number of opera- 
tions. Step 2ii, however, must follow a path from root to level H, performing O(1) 
operations at each node along the path. Thus, this substep requires O(H) opera- 
tions. 

Step 1 requires a number of operations proportional to the number of nodes in the 
octree at levels I H. The traversal in step 3 involves an octree that, in general, 
contains more nodes than the tree in step 1, because of the presence of leftover gray 
nodes. O(1) operations are performed at each node. Thus, the total number of 
operations required in step 3 is O(number of nodes in the tree at levels I H). 

Let N, and N, denote the total number of nodes at levels 5 H and H, 
respectively, in the tree in step 1. Let N’ denote the number of tree nodes in step 3. 
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a) et, otter 
1. CREy 

e. GREV 
0. GREr 

2. CREY 
6. GREy 

e?, BLACK 
6. GREV 

B. GREY 
0. BLACK 
1. RLACK 
2. BLACK 
3. BLACK 

1. GREv 
fi. BLACK 
1. @LACK 
2. BLACK 
3. ILACK 

2. GREY 
8. BLACK 
1. BLACK 
2. OLACK 
3. BLACK 

3. GAEY 
0. BLACK 
1, ELACK 
2. BLACK 
3. BLACK 

b) 0, GRET 
5. GREY 

2. GREV 
0, GRCY 

0. GRET 
0. GREY 

1. GREI 
a. BLACK 
3. SLACK 
6. 9LACK 
1. BLACK 

5. GyET 
2. GRET 

8, euclc 
I, BLACK 
2. BLACK 
3, BLACK 

3. GREY 
0, 9L&CK 
1. BLACK 
a. BLbCU 
3. BLACK 

2. GRCY 
2. GRtr 

3. GREV 
0. 9LACK 
1. 9LACK 
0, BLACK 
5. FLACK 

7. GREV 
0. GRLV 

0. 9LACK 
1. BLACK 
2, BLACK 
3. BLACK 

1. GREY 
0. BLACK 
1. BLACK 
2. 9LACK 
3. BLACK 

FIG. 4. Octree map output of the translation algorithm. Nodes not shown are white. (a) The original 
object. (b) The object in (a) translated by (4, - 50,O). 

Then the total number of operations needed to perform the translation is on the 
order of 

o(q + N,) + O(iv,H) + O(W) = O(N,H) + O(W) 
= O(N,H + N’). 

4. EXPERIMENTAL RESULTS 

The algorithm given in Section 3 was implemented in PASCAL on a PDP-11/40. 
A program was written to generate octrees from face descriptions of blocky objects 
having faces parallel to the coordinate planes. The translation algorithm was then 
applied to the resulting octrees. The octrees were output as indented node lists 
instead of tree structures for simplicity. Figure 4a shows the node lists of the octree 
of a simple parallelopiped. Figure 4b shows the original tree after translation. 

5. CONCLUSIONS 

A major advantage of the spatial decomposition based representations is the ease 
with which various parts of space can be accessed and knowing if they contain parts 
of the objects represented. In this respect they differ from maximal block-fit-based 
representations [2,12], in which occupancy of a given region must be determined by 
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conducting a search over the blocks comprising the representation. However, the 
latter have the advantage that object movement is trivial to perform since the 
representation explicitly lists all blocks. The decomposition-based representations 
build associations between object segments and cells in the decomposition, thus 
splitting the object and making object manipulation more cumbersome and obscure. 
Translation and rotation [7] algorithms help to relate the node configuration in the 
octree to the object structure to simplify object manipulation, while still retaining the 
explicit representation of space occupancy. Algorithms similar to those for octrees 
can be obtained for updating quadtrees of two-dimensional moving objects or image 
regions. The need for translation and rotation algorithms for image regions from 
their regular decomposition was pointed out by Klinger and Dyer [8]. 

Our motivation for the work reported here came from the problem of collision 
avoidance among objects in robotics. Detecting interference between two objects is 
easy if octree representations of the objects are given, since it requires a single 
parallel traversal of the two trees [l]. However, for moving objects it is essential to 
have efficient updating procedures for keeping the representation current. One octree 
is maintained for the entire static environment and one is maintained for each of the 
moving objects. Given translation, rotation, and other geometric manipulation 
algorithms, the collision avoidance methods based on octrees outlined in [l] should 
be feasible. We have done some preliminary work on planning collision-free and 
efficient trajectories for moving an object to a given destination. 

A rotation by integral multiples of 90” does not change the number of nodes in 
the tree, and the nodes in the new tree have a one-to-one correspondence with those 
in the tree before rotation. Jackins and Tanimoto [7] present an algorithm to update 
the octree after rotation. They give the relationship between a node’s labels before 
and after rotation by integral multiples of 90”. If arbitrary rotations are allowed, the 
number of blocks required to represent an object may become excessively large. 
Moreover, the trend towards fragmentation may be persistent even when symmetric 
pairs of rotations are performed. This is because when a compactly represented 

Initial Position Rotated 60' 

FIG. 5. Block fragmentation due to rotation of a two-dimensional object. (a) Initial blocks. (b) Blocks 
after rotation. 
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object is rotated by an arbitrary angle, it may be representable only approximately 
by, say, a staircase of relatively small blocks (Fig. 5). A pure inverse rotation will not 
restore the tree to the original shape because of the approximations made in the 
original rotation, unless the shapes of the objects represented by the tree are 
monitored and any approximation errors are detected and corrected continuously. 
These latter procedures may be computationally too expensive to retain the edge the 
octree representation may have over more direct surface or volume based representa- 
tions [3,4,9,10,14]. The problems encountered in implementing arbitrary rotations 
are also faced in representing objects having complex shapes. 
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