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Octrees are useful for object representation when fast access to coarse spatial occupancy 
information is necessary. This paper presents an efficient algorithm for generating octrees from 
multiple perspective views of an object. The algorithm first obtains a polygonal approximation 
of the object silhouette. This polygon is then decomposed into convex components. For each 
convex component, a pyramid is formed treating the view point as its apex and the convex 
components as a cross section. The octree representation of each of these pyramids is obtained 
by performing intersection detection of the object with the cubes corresponding to octree 
nodes. The intersection detection step is made efficient by decomposing it into a coarse-to-fine 
sequence of intersection tests. The octree for one silhouette is obtained by taking the union of 
octrees obtained for each component. An intersection of octrees corresponding to different 
viewing directions gives the final octree of the object. An implementation of the algorithm is 
given. The accuracy of the octree representation of the objects is evaluated. The ratio of the 
actual volume of the object to the volume of the object reconstructed from the octree 
representation is used as a performance index of the algorithm. 0 1990 Academic RUSS. I~C. 

1. INTRODUCTION 

In many robotics applications, such as motion trajectory planning, it suffices to 
have an approximate representation of the space occupied by objects in the 
workspace; a precise description of the objects is not necessary. This paper concerns 
generation of one such representation- the octree. 

The octree is a tree of degree eight which represents the space occupied by objects 
contained in the work space defined by a “universe cube.” If this cube is empty or 
completely filled by objects, then a single (root) node, marked white (empty) or 
black (full), respectively, constitutes the octree representation. Otherwise, the uni- 
verse cube is decomposed as shown in Fig. 1.1 into eight octants, which are 
represented by eight children of the root node. The root node is marked grey to 
indicate the partial occupancy of the workspace. Each octant is tested to see 
whether it is completely occupied by objects, is partially occupied by objects, or is 
completely contained in free space. The octree node corresponding to the o&ant. is 
given a color black, grey, or white, respectively. This decomposition is carried out 
recursively for grey nodes. The decomposition halts either when all leaf nodes are 
found to be black or white, or when a prespecified level of resolution is reached. An 

example of an object and its corresponding octree are shown in Fig. 1.2. 
This paper concerns generation of the octree of an object from its images. 

Specifically, given the silhouettes of perspective views of an object taken from 
different directions, we wish to construct the octree representation of the object. 
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FIG. 1.1. A cube and its decomposition into octants. 

FIG. 1.2. An object (a) and its octree representation (b). r is the root node. 
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This problem has been addressed by several researchers. Veenstra and Ahuja 
present an algorithm for octree generation from a fixed number of orthographic 
views [l, 21. In this approach, the images must be obtained from some subset of a set 
of 13 fixed viewing directions corresponding to the 3 “face” views, 6 “edge” views, 
and 4 “corner” views. These views are chosen because they provide a simple 
relationship between the pixels in the image and the octant labels in the octree, 
replacing the computation of detecting intersections between the octree space and 
the objects by a table lookup operation. Chien and Aggarwal describe another 
algorithm which constructs an octree from three orthographic projections [4]. The 
intersections here are also inferred using a table lookup operation; however, their 
algorithm accepts only up to three (orthogonal) viewing directions. In another 
approach, Shneier et al. construct the octree by projecting each cube onto the image 
plane and explicitly performing an intersection detection test for each node [3, 81. 
Potmesil also uses a similar approach [7]. Both algorithms are similar to ours though 
the intersection detection is performed in two-dimensions in their case. 

We will present an algorithm that accepts images taken from arbitrary viewpoints. 
While Shneier et al. estimate the octree nodes by projecting corresponding cubes in 
the image and performing intersection test with the silhouette, we perform the 
intersection test in the three-dimensional space. Given a silhouette, we obtain a 
representation of the pyramid having apex at the viewpoint and the silhouette as a 
cross section (Fig. 1.3). An octree is generated for the space occupied by the 
pyramid, by recursively testing for the intersection of octree octants with the 
pyramid. The intersection test exploits the simplicity of the three-dimensional 
structure of cubes. Planar projections of the cubes are in general irregular hexagons, 
and this makes the intersection detection in two dimensions complex. The algo- 
rithms of Shneier et al. and Potmesil as well as the one presented here offer the 
choice, when necessary, of obtaining a higher resolution octree than is possible with 
silhouettes acquired from a limited set of directions [l, 41. The higher resolution 
comes at a higher computational cost [l]. The final octree is generated by perform- 
ing an intersection of the octrees obtained from the individual silhouettes. The next 
section presents our octree generation algorithm (Section 2). Section 3 discusses the 

FIG. 1.3. A pyramid formed by treating the view point P as its apex and the polygonal silhouette as 
one of its cross sections. The pyramid is used as the best estimate of the object from the given view point, 
for the purpose of constructing the octree representation of the object. 
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computational complexity of the algorithm and the results of the algorithm for a 
collection of objects are given in Section 4. Section 5 summarizes the paper. 

2. AN ALGORITHM FOR GENERATING OCTREE FROM SILHOUETTES 

Our algorithm starts with the object silhouette and constructs a pyramid represen- 
tation (Fig. 1.3) of the three-dimensional space occupied by the object. The pyramid 
is treated as the best estimate of the object from the view point under consideration. 
The nodes in the octree representation of the pyramid are then generated and 
colored black, grey, or white, recursively, starting with the root node. These two 
operations comprise the two major steps of the algorithm. 

In the first step, we threshold the image to get a binary silhouette. Then, the 
boundary of the silhouette is approximated by a polygon. We then decompose the 
polygonal silhouette into convex components. For each convex component, 
the semi-i&rite pyramid illustrated in Fig. 1.3 is constructed and then passed on to 
the second step. 

The second step checks for intersection between a semi-infinite pyramid and an 
upright cube corresponding to an octree node. We decompose this intersection 
detection step into a series of tests, each ex amining a distinct geometric configura- 
tion of the cube and the pyramid. These tests exploit the known cubical and 
pyramidal nature of the shapes to make intersection detection efficient, rather than 
perform a general three-dimensional polyhedral intersection detection. The tests 
performed earlier in the sequence are computationally less complex than those that 
follow; the resulting coarse-to-fine strategy makes intersection detection computa- 
tionally efficient. The first test approximates the pyramid by the smallest enclosing 
cone and the cube by the smallest enclosing sphere. It is then easily determined if 
the sphere and the cone do not intersect, in which case the octree node is white. If 
they intersect, then the following second test eliminates a few cases of black and 
grey nodes. The eight vertices of the cube are tested to see whether they lie inside or 
outside the pyramid. If all the vertices are found to be contained inside the pyramid, 
it is decided that the node is black; if some vertices are found to be inside and some 
outside, the node is colored grey. If all vertices are found to be outside, then the 
cube may or may not intersect with the pyramid. To resolve this problem, a third 
test examines the location of the cube with respect to each of the faces of the 
pyramid. If there is any face such that all eight vertices of the cube lie on the outside 
of the face, then the cube is outside the pyramid. Figure 2.1 illustrates a two-dimen- 
sional analog of this test, where a square is tested for being completely on the inside 
or outside of an edge of polygon. Any intersections of the edges of the pyramid with 
the extended faces of the cube are found. If any of the points of intersection are 
contained inside the cube, then the node is colored grey; otherwise the node is 
colored white. 

These steps together determine an octree for each convex component of a given 
polygonal silhouette. The fmal octree. for the pyramid obtained from a single 
silhouette is the union of the octrees obtained for all convex components of the 
silhouette. Such octrees obtained from the different silhouettes are intersected to 
obtain the final octree of the object which represents the volume of intersection of 
the different pyramids. We will now describe these steps in detail. 
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FIG. 2.1. Geometry illustrating two-dimensional analog of a white node detected 
square will be detected to be outside the polygon if it lies in the shaded region. 

in Test 3. The 

2.1. Processing the Silhouette 

The first step is to threshold the picture to get a binary image showing the object 
silhouette. Then the boundary of the silhouette is found. The boundary so obtained 
is approximated by a polygon using an algorithm given by Pavhdis [S].l The 
silhouette polygon may, in general, be non-convex. If so, it is decomposed into 
convex polygons using another algorithm described by Pavlidis [51b2 

Each of the convex polygons obtained above is treated as a separate object, and 
its octree is constructed as per the following algorithm. The final octree for the given 
silhouettes is the union of the octrees so obtained. The union can be derived in a 
straightforward manner from the individual octrees. 

A pyramid is constructed making the view point as the apex and the convex 
polygon as a cross section, as shown in Fig. 1.3. The pyramid is represented as a 

‘The polygon boundary is an ordered set of boundary pixels, denoted d,, d,, , d,. The vertices of 
the polygon are chosen from d,‘s in the follotving manner. The algorithm starts from an arbitrary point 
on the boundary (say d,) and traverses successive boundary points di to choose vertices. Let I be the line 
joining do and d,. Then, a point j, 0 < j < i, is chosen as a vertex if distance (/, di) > threshold, and 
d(l, d,) t d(l, dL) for all k, 0 < k i i. 

*The algorithm starts by locating the non-convex corners of the polygon. It is tested whether the 
polygon is a spiral, i.e., whether its non-convex comers are consecutive. If this is the case, then the 
bisectrices of the non-convex comers are used for decomposing the polygon. This step is illustrated in 
Fig. 2.2. If there are non-adjacent non-convex comers, lines joining two such corners are used for 
decomposing the polygon. Two non-convex vertices are candidates for being joined if the line connecting 
them lies completely inside the polygon. This is illustrated in Fig. 2.3. From such candidate pairs of 
vertices, the ones with minimum distance between them are chosen for decomposition. 
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the bisectrix 

FIG. 2.2. A spiral and a bisectrix used for decomposing the polygon into convex components. 

circular list of the bounding constraints of the form 

gi(X, y, 2) = UiX + biy + CiZ + di, (2.1.1) 

where six + biy + ciz + d, = 0 is the equation of the ith plane passing through the 
view point and an edge of the polygon. Whether a given point (x0, y,,, z,,) lies 
inside, on or outside of the plane represented by a,x + biy + ciz + di = 0 can be 
determined by checking if the value of gi(xO, y,, ze) is less than, equal to, or greater 
than zero. 

Next, the space. occupied by the pyramid is concisely represented by Comba’s 
function [6], 

ftx, YY z, = Cgitx9 Y1 z> + Igitx, YY z>I* (2.1.2) 

We also partition the constraints (i.e., the equations gi(x, y, z)) into eight subsets 
such that for each subset the coefficients ai, b,, and ci in (six + biy + tit + di) are 
of a particular sign. That is, 

G, = { gilUi> bi, Ci > O}, 
G, = { gila,, bi > 0, ci < 0}, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . _ 

~~ 

a 
b 

(2.1.3a) 

(2.1.3b) 

FIG. 2.3. (a) A candidate pair of vertices for decomposing the polygon into convex components. 
(b) A pair that cannot be used. 
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and so on for Fj, 1 ~j I 8. This partitioning of the plane equations is used to 
improve the effiaency of Test 3 described in Section 2.2. 

All the steps discussed so far are performed before the actual construction of the 
octree begins. They are performed once for each silhouette image and the results are 
used by the intersection detection test which is discussed next. 

2.2. Intersection Detection Test 
The object represented by the silhouette is contained in the semi-infinite pyramid 

whose representation is derived in the previous section. To obtain the octree 
representation of the pyramid, the various nodes of the octree are examined 
recursively, starting with the root node. The cube corresponding to each node is 
tested for intersection with the pyramid and assigned a color based on the result of 
the test. This test determines to a large extent the computational complexity of the 
entire octree generation. Following is a coarse-to&e algorithm for detecting 
intersection between a given cube and pyramid. The algorithm performs a series of 
tests. Successive tests increase in complexity, but the frequency with which they are 
used decreases. 

Test 1. To determine whether the cube corresponding to a given node is com- 
pletely outside the given semi-infinite pyramid, we fit a tightest fitting sphere around 
the cube and a tightest fitting right circular cone around the pyramid. The center of 
the sphere coincides with the center of the cube, and the diameter of the sphere 
is the same as a major diagonal of the cube. For finding the cone, we fit a circle 
around the polygon. The center of this circle is the center of gravity of the polygon 
and its radius is the maximum distance from the center of gravity to the vertices of 
the polygon. A cone is formed with the view point as its apex, and the line joining 
the view point and the center of the circle as its axis. The surface of the cone is 
constrained to be tangential to the sphere with the same center and diameter as the 
circle around the polygon. A plane containing the apex of the cone and the center of 
the sphere is illustrated in Fig. 2.4. 

FIG. 2.4. A plane containing the axis of a cone when the surface of the cone is tangential to a sphere. 
The cross section of the sphere cut by the plane is also shown. 
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FIG. 2.5. A plane passing through the center of a sphere and the axis of a cone when the sphere is 
touching the cone from outside. AB is the perpendicular dropped from the center of the sphere on the 
axis of the cone. AC is the radius of the sphere at the point of contact of the sphere and the cone. + is 
the half angle of the cone. 

Now, we will devise a test to decide whether the sphere and the cone intersect. Let 
us assume that the sphere is just touching the cone. It is easy to see, using symmetry 
arguments, that the center of the sphere, the point of contact of the sphere and the 
cone, and the axis of the cone all lie in the same plane. This plane is illustrated in 
Fig. 2.5. The cross section of the sphere and the cone cut by the plane are also 
shown. Let A be the center of the sphere and AB be the perpendicular drawn on 
the axis of the cone. Let C be the point of contact. Clearly, if angle CAB = $I then 
AB = BD + AD = r + R set Cp, where r is the radius of the circular cross section of 
the cone along the perpendicular mentioned above, R is radius of the sphere, and 4 
is the half angle of the cone. The sphere is outside the cone if and only if the length 
of the perpendicular dropped from the center of the sphere on the axis of the cone is 
greater than r + R set 9. In such a case, the node is colored white since the cube is 
totally outside the pyramid. If a decision cannot be made, the algorithm moves on 
to the next step. 

Test 2. Next, it is determined whether the cube is completely inside the pyramid. 
This case is shown in Fig. 2.6. It follows from the definition of g,‘s (2.1.1) that a 
point (x,,, yc, zO) is inside the pyramid if and only if gi(xO, yO, z,J < 0 for all i. We 

FIG. 2.6. Illustration of a black node. The cube corresponding to the octree node is contained in the 
pyramid representing the silhouette. 
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use Comba’s function (2.1.2) to devise a simple method to carry out this test. It is 
obvious that if all constraints gi(xO, y,,, zO) < 0 are satisfied then f(x,, yO, z,,) = 0. 
Even if one of the constraints is violated then f > 0. Hence, computing Comba’s 
function f gives us a simple test for deciding whether a given point is inside the 
pyramid or not. 

To test whether a cube is inside the pyramid, the algorithm performs the test 
mentioned above on all its vertices. Since the pyramid is a convex polyhedron (as 
the pyramid is constructed starting with a convex component of the silhouette as its 
cross section), it will completely contain the cube if all the vertices of the cube are 
contained inside it. Similarly, if some of the vertices are inside and some outside, we 
know that the cube partially intersects the pyramid. In this case the node is colored 
grey. If a decision cannot be made at this stage, the algorithm proceeds to the next 
step. 

Test 3. This step determines whether the cube is completely outside the pyramid 
under consideration; it does not check for all cases of empty intersection but 
eliminates a significant number of these cases. 

This test determines if the cube is completely contained in one of the half spaces 
defining the region outside the pyramid. A two-dimensional analog of this case, as 
discussed in Section 2.1, is shown in Fig. 2.1. Let g(x, y, z) < 0 (2.1.1) define a 
bounding plane of the pyramid, and let (xi, y,, zi), 1 I i I 8, be the vertices of the 
cube. If for any bounding plane g, g(x,, yi, z,) 2 0 for all i, 1 I i < 8, then it is 
decided that the cube is outside the pyramid and the corresponding node is colored 
white. 

If a decision could not be made at this stage, the algorithm moves on to the next 
test. 

Test 4. We are left with the case in which all the vertices are outside the pyramid 
but no half space detining the region outside of the pyramid contains the cube. A 
two-dimensional analog of this is shown in Fig. 2.7 

To discriminate between the two cases, we perform a simple test. We find the 
intersection of the edges of the pyramid with the extended faces of the cube. For 
example, let the cube be defined by a, < x < a*, b, < y < b,, and ci < z < c2. 
Clearly, one of the faces extended in all directions is defined by x = a,. We find the 
point of intersection of an edge with the infinite plane x = a,. If this point satisfies 

FIG. 2.7. Configurations of a square such that all the vertices of the square are outside the polygon 
but no half plane dching the region outside the polygon contains it. 



OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 77 

the constraints of the cube mentioned above, then we know that the pyramid and 
the cube intersect. In this case, the node is colored grey. This test is carried out for 
all the edges with respect to all the faces of the cube. If none of the points of 
intersection lie inside the cube then the node is colored white, otherwise the node is 
colored grey. 

Algorithm 

The above tests are straightforward to implement in an algorithm. However, a 
direct implementation of Test 3 may be inefficient (Section 3). We use the following 
formulation of Test 3 in our algorithm in the interest of computational efficiency. 

Let one of the bounding constraints be ax + by + cz + d < 0, and let the cube 
be defined by a, I x I a,, b, I y I b,, and ci 5 z I cz. Suppose we want to 
know whether the given cube lies completely in the region defined by ax + by + cz 
+ d 2 0. In other words, we want to determine whether the function g(x, y, z) = 
ax + by + cz + d takes values which are only positive when the coordinates x, y, 
and z are constrained by a, < x I az, b, I y I b,, and ci 5 z I cz. This reduces 
to the problem of finding the minimum of the function g(x, y, z) under the 
constraints a, 5 x S a2, b, I y < b,, and ci < z I c2 and checking whether it is 
greater than zero. Let the coefficients a, b, and c in g(x, y, z) = ax + by + cz + d 
be such that a, b > 0, andc < 0. Clearly, g is minimized by (a,, b,, cz). Hence we 
can just evaluate g at (a,, b,, cz) and check whether it is greater than zero instead of 
evaluating g at all the eight comers of the cube. Also, corresponding Comba’s 
function g + lgl, evaluated at (a,, b,, cz), will be positive if and only if the cube is 
on the outside of this plane. Now, consider 

and 

G = (gla, b > 0, c < 0}, (2.2.la) 

f= c g+ IA- 
@G 

(2.2.lb) 

If f, evaluated at (a,, b,, cz) is greater than zero then it implies that at least one of 
g E G is such that corresponding Comba’s function is greater than zero. It can then 
be concluded that the cube is on the outside of at least one of the planes. This 
observation suggests the following test. 

The set of planes is partitioned into eight subsets Gi’s (2.1.3) such that each 
partition has planes with the corresponding coefficients a, b, and c of the same sign. 
Then, for each subset Gi, Comba’s function fi (2.2.1) is formed. For a given cube, 
all fi’s are evaluated at one of the comers of the cube, determined by the sign of the 
coefficients in the elements of the corresponding set Gi. For example, for the cube 
mentioned above, fi is evaluated at ( aI, b,, q), fi is evaluated at (a,, b,, c,), and 
so on. If any of these values turn out to be positive, it implies that the cube is 
outside the pyramid and is then colored white. 

3. COMPLEXITY ANALYSIS 

This section discusses the computational complexity of the algorithm presented in 
Section 2. Complexity of the various steps will be analyzed individually and then 
their effects on the overall complexity of the algorithm will be discussed. 
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As discussed in the previous section, the silhouette processing step of the 
algorithm (Section 2.1) is performed once for each image. The next major step, i.e., 
the intersection detection step (Section 2.2), is performed once for each node of the 
octree. Since the number of nodes will be usually very large (of the order of 8”, 
where d is the depth of the octree), it is the second step which largely determines 
the complexity of the algorithm. The complexity of the various tests involved in 
intersection detection for a specific node is discussed next. 

In Test 1 (Section 2.2), to check whether a cone enclosing the semi-infinite 
pyramid intersects with the sphere around the cube takes constant time. In Test 2 
(Section 2.2) Comba’s function is evaluated for eight different vertices of the cube 
under consideration. Hence, once again a constant time is required to perform the 
computation. In Test 3, we check for empty intersection. As was pointed out, the 
obvious way of going about it is to check whether g(x, y, z) r 0, for all the eight 
vertices of the cube. This test has to be carried out once for each plane. This 
requires O(m) computations, where m = number of planes bounding the pyramid. 
But in the efficient implementation of Test 3 in our algorithm (Section 2.2) Test 3 
takes constant time. This is because, depending on the sign of coeEicients in the 
equation, only one test is performed. Test 4 requires O(m) computations since an 
intersection test has to be performed for each of the edges, which are m in number. 
The overall complexity of the octree generation algorithm then is O(n - n,) -+- 
O(mn,), where n, = number of nodes for which a decision was taken in the last 
step of the algorithm and n = number of nodes in the octree. Test 4 is performed 
only when a decision cannot be made in the earlier tests. 

The complexity discussed so far is the complexity of constructing the octree for a 
convex polygonal component of a single silhouette. To obtain the octree correspond- 
ing to a given image by taking the union of octrees of the convex components 
requires O(C,n ;) time, where n i is the number of nodes in the octree corresponding 
to the i th component. This is because the union of octrees can be performed in 
linear time with respect to the sum of the numbers of nodes in the octrees. Similarly, 
determining the final octree by intersecting the octrees obtained from different 
silhouettes can be performed in time which is linear in the sum of the numbers of 
nodes in individual octrees. 

4. PERFORMANCE ANALYSIS AND FiXP J5RIMENTAL RESULTS 

In this section, we will discuss some issues regarding the performance of our 
octree generation algorithm. A criterion for evaluating the performance will be 
discussed. This will be followed by results of our algorithm on some examples. 

Our algorithm is expected to derive at best a representation for a bounding 
volume of the object, since it only works with silhouettes. The algorithm suffers 
from some limitations which are inherent to the problem. The information 
loss which occurs during formation of the image is one of them. The 2D quantiza- 
tion error of the image is another. Further, if there are surface concavities in the 
object they are lost in the image and hence will not be represented in the octree 
generated by our algorithm. If there are any holes in the object, they can at best be 
represented only partially. Consider a cube with a hole which goes through it frum 
one face to the face opposite it. This hole will be present, at best, in some of the 
images wherein one of the faces with the hole is facing the camera. Consequently, in 
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the cube reconstructed from the octree generated by our algorithm the hole will 
appear smaller in volume. Also, it is possible that the hole does not appear in any of 
the images, in which case it will not at all be represented in the octree of the object. 
Other errors result from the inaccuracies in the octree representation itself, i.e., the 
3D quantization that takes place due to limiting the depth of the octree. Beyond 
these general sources of inaccuracies, our algorithm has shortcomings of its own. A 
major problem is the information loss which occurs when the silhouette is approxi- 
mated by a polygon. A tight polygonal fit to the silhouette will reduce this problem 
but will increase the number of convex components and the number of edges in 
each polygonal component. As discussed in Section 3 these factors will result in an 
increase in the time complexity of the algorithm. Hence some compromise between 
accuracy of the representation and time complexity has to be reached. 

To evaluate the performance of the algorithm, we need to evaluate the quality of 
the generated octrees. Clearly, the octree representation is not well suited for 
applications where shape details of the object represented are important; surface- 
based and other representations are more appropriate for such applications. How- 
ever, in the cases where a coarse occupancy map of the space is desired, the octree 
representation may Mike, since it would capture most of the object volume, 
although not surface smoothness. Thus, a measure of error between the recon- 
structed and true object volumes is appropriate to test the performance of the octree 
generation algorithm. As a performance measure, we have chosen the ratio of the 
actual volume of the object to the reconstructed volume of the object. 

We conducted simulation experiments with a set of simple geometric shapes. 
These include: cube, pyramid, sphere, octagonal prism, cone, cylinder, wedge, empty 
cube (i.e., a cube with a hole), and diamond. To compute the performance for each 
object we generated perspective views of the object located at a fixed distance, from 
different viewing directions. Object silhouette was computed in each view. Subsets 
of silhouettes were then used to construct the octree as described in Section 2. The 
volume of the object represented by the constructed octree was computed and was 
used to obtain the ratio of the known object volume to the reconstructed volume. 
This ratio is recorded in Figs. 4.1-4.6 as the performance measure of the octree 
generation algorithm. The performance index will, of course, depend on the orienta- 
tion of the object. However, for cases in which a large number of viewing directions 

FIGURE 4.1. 



80 SRIVASTAVA AND AHUJA 

Perfo-e Results 
L Viewdktance = 10.0 

Number of views = 18 
Object Reconsaucted Volume Actual Volume Ratio 
CUbe 9.9645 8.CHlOO 0.8110 

pyramid 3.2161 2.6661 0.829 1 
sphere 3.9669 4.1888 1.0559 

octagonal-prism 1.7530 6.6274 1 0.8548 1 

1 diamond 

636 2.6944 0.8501 
1.0658 

loo 0.7550 
9053 

1 0.8599 

FIGURE 4.2 

is used, e.g., Figs. 4.2, 4.3, 4.5, 4.6, the viewpoint dependence may be low and the 
observed performance index may be reasonably reliable. 

The viewing directions were restricted to 13 and the viewing distances were 
limited to two different values. The viewing directions used correspond to head-on 
views of the: 3 pairs of parallel faces, 6 pairs of parallel edges, and 4 major 
diagonals, of the universe cube. Each pair may lead to two different silhouettes 
obtained from two antiparallel directions. The sets of silhouettes used in the 
algorithm were extracted from 6 face views alone: 6 face views and 12 edge views (a 
total of 18 views); and 6 face views, 12 edge views, and 8 comer views (a total of 26 
views). Figs. 4.1-4.6 give the volume ratios computed experimentally for different 
cases. Reconstructed objects are displayed in Fig. 4.7. 

Clearly, the perfect performance corresponds to a ratio of 1. However, this level 
of performance will not be achieved on an average with a finite number of views and 
because of other limitations discussed earlier in this section. In general, the volume 
of intersection of silhouette pyramids (Fig. 1.3) will be an overestimate of the true 
volume of the object; this will lead to a ratio of less than 1. Quantization effects due 
to image resolution, polygonal approximation of the silhouettes, and octree depth 
limits will cause further deviation in the ratio. The actual performance ratio may 

PerfonnaRcs Reatlts 
Viewdistattee p: 10.0 

FIGURE 4.3. 
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I Performance Results 
View-distance = 20.0 
Number of views = 6 

Object Reconstructed Volume 1 Actual Volume ( Ratio 
CUbe 7.3984 

pyramid 2.4 
sphere 4.1102 

octagonal-prism 
cone 

cyhkr 
wedge 2.1081 1.600 0.7589 

empty-cube 6.5763 6.0000 0.9124 
diamond 3.4612 2.6670 0.7705 

FIGURE 4.4. 

Peafomuince Results 
Viewdistance = 20.0 

Nnmkr nf views I 18 
me Actual Volmne Ratio 
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2.6667 1.0902 
4.1888 1.0992 
6.6274 1.0994 

nlw48 

FIGURE 4.5. 
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Performance Results 
View-distance = 20.0 

Nlrmber of views = 26 
Reconstructed Volume Actual Volume 

7.3375 8.0000 
2.3926 2.6667 

Ratio 
1.0903 
1.1146 __-_ 

3.8109 4.1888 1.0992 
octagonal-prism 5.8913 6.6274 1.1249 

cone 2.3976 2.0944 0.8648 
cylinder 5.7365 6.2832 1.0952 

1976 1.64lOO 0.7627 wedge 
emptyJ3he. 

diamond 

2.a 
6.5154 6.0000 1 0.9209 
3.3984 2.6670 1 0.7848 

FIGURE 4.6. 
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even exceed 1. The former source of error will be more pronounced for less compact 
objects, since for such objects the convex hull reconstructed by the silhouette 
pyramids overestimates the actual volumes by a greater amount. This is evident 
from the experimental results in Figs. 4.1-4.6, where the performance ratios for 
cube, wedge, pyramid, diamond, etc. are among the worst, whereas the ratios for 
sphere and cylinder are among the best. 

As the viewing distance to the object increases, the perspective projection ap- 
proaches orthographic projection. Thus, the volume of intersection of the silhouette 
pyramids decreases with increasing viewing distance and becomes an increasingly 
accurate estimate of the true object volume. This leads to a general increase in the 
performance ratio observed going from Figs. 4.1-4.3 to Figs. 4.4-4.6, although there 
are small exceptions to this increase (e.g., diamond, cylinder), presumably because 
of the increased effect of image quantization as the object size in the image 
decreases with increasing viewing distance. 

As expected, the volume of the reconstructed object becomes an increasingly 
better estimate of the actual volume as the number of views used increases (Figs. 
4.1-4.3, 4.4-4.6). 

5. SUMMARY 

We have presented an algorithm to generate the octree representation of an object 
from its silhouettes. The silhouettes are extracted from perspective projections of the 
object from different view points. We have presented simulation results of running 
the algorithm on views of a variety of simple objects. The performance index of the 
algorithm was chosen to be the ratio of the actual volume of the object to the 
volume represented by its computed octree. For most compact objects used, this 
ratio was found to be above 0.85. 
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