
COMPUTER VISION. GRAPHICS, AND IMAGE PROCESSING 49, 68-84 (1990)

NOTE

Octree Generation from Object Silhouettes in
Perspective Views

SANJAY K. SRIVASTAVA AND NARENDRA AHUJA

Coordinuied Science L.uboratoty. iJniversit.v of Illinors Urhann-Chumporgn.
Urbanu, Illinois 61801-3082

Received October 26,1987; accepted March 29.1989

Octrees are useful for object representation when fast access to coarse spatial occupancy
information is necessary. This paper presents an efficient algorithm for generating octrees from
multiple perspective views of an object. The algorithm first obtains a polygonal approximation
of the object silhouette. This polygon is then decomposed into convex components. For each
convex component, a pyramid is formed treating the view point as its apex and the convex
components as a cross section. The octree representation of each of these pyramids is obtained
by performing intersection detection of the object with the cubes corresponding to octree
nodes. The intersection detection step is made efficient by decomposing it into a coarse-to-fine
sequence of intersection tests. The octree for one silhouette is obtained by taking the union of
octrees obtained for each component. An intersection of octrees corresponding to different
viewing directions gives the final octree of the object. An implementation of the algorithm is
given. The accuracy of the octree representation of the objects is evaluated. The ratio of the
actual volume of the object to the volume of the object reconstructed from the octree
representation is used as a performance index of the algorithm. 0 1990 Academic RUSS. I~C.

1. INTRODUCTION

In many robotics applications, such as motion trajectory planning, it suffices to
have an approximate representation of the space occupied by objects in the
workspace; a precise description of the objects is not necessary. This paper concerns
generation of one such representation- the octree.

The octree is a tree of degree eight which represents the space occupied by objects
contained in the work space defined by a “universe cube.” If this cube is empty or
completely filled by objects, then a single (root) node, marked white (empty) or
black (full), respectively, constitutes the octree representation. Otherwise, the uni-
verse cube is decomposed as shown in Fig. 1.1 into eight octants, which are
represented by eight children of the root node. The root node is marked grey to
indicate the partial occupancy of the workspace. Each octant is tested to see
whether it is completely occupied by objects, is partially occupied by objects, or is
completely contained in free space. The octree node corresponding to the o&ant. is
given a color black, grey, or white, respectively. This decomposition is carried out
recursively for grey nodes. The decomposition halts either when all leaf nodes are
found to be black or white, or when a prespecified level of resolution is reached. An

example of an object and its corresponding octree are shown in Fig. 1.2.
This paper concerns generation of the octree of an object from its images.

Specifically, given the silhouettes of perspective views of an object taken from
different directions, we wish to construct the octree representation of the object.

68
0734-189X/90 $3.00
Copyright 0 1990 by Academic Press, Inc
All rights of reproduction in any form reserved.

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 69

X
Y

FIG. 1.1. A cube and its decomposition into octants.

FIG. 1.2. An object (a) and its octree representation (b). r is the root node.

70 SRIVASTAVA AND AHUJA

This problem has been addressed by several researchers. Veenstra and Ahuja
present an algorithm for octree generation from a fixed number of orthographic
views [l, 21. In this approach, the images must be obtained from some subset of a set
of 13 fixed viewing directions corresponding to the 3 “face” views, 6 “edge” views,
and 4 “corner” views. These views are chosen because they provide a simple
relationship between the pixels in the image and the octant labels in the octree,
replacing the computation of detecting intersections between the octree space and
the objects by a table lookup operation. Chien and Aggarwal describe another
algorithm which constructs an octree from three orthographic projections [4]. The
intersections here are also inferred using a table lookup operation; however, their
algorithm accepts only up to three (orthogonal) viewing directions. In another
approach, Shneier et al. construct the octree by projecting each cube onto the image
plane and explicitly performing an intersection detection test for each node [3, 81.
Potmesil also uses a similar approach [7]. Both algorithms are similar to ours though
the intersection detection is performed in two-dimensions in their case.

We will present an algorithm that accepts images taken from arbitrary viewpoints.
While Shneier et al. estimate the octree nodes by projecting corresponding cubes in
the image and performing intersection test with the silhouette, we perform the
intersection test in the three-dimensional space. Given a silhouette, we obtain a
representation of the pyramid having apex at the viewpoint and the silhouette as a
cross section (Fig. 1.3). An octree is generated for the space occupied by the
pyramid, by recursively testing for the intersection of octree octants with the
pyramid. The intersection test exploits the simplicity of the three-dimensional
structure of cubes. Planar projections of the cubes are in general irregular hexagons,
and this makes the intersection detection in two dimensions complex. The algo-
rithms of Shneier et al. and Potmesil as well as the one presented here offer the
choice, when necessary, of obtaining a higher resolution octree than is possible with
silhouettes acquired from a limited set of directions [l, 41. The higher resolution
comes at a higher computational cost [l]. The final octree is generated by perform-
ing an intersection of the octrees obtained from the individual silhouettes. The next
section presents our octree generation algorithm (Section 2). Section 3 discusses the

FIG. 1.3. A pyramid formed by treating the view point P as its apex and the polygonal silhouette as
one of its cross sections. The pyramid is used as the best estimate of the object from the given view point,
for the purpose of constructing the octree representation of the object.

OBJECT SILHOUE’ITES IN PERSPECTIVE VIEWS 71

computational complexity of the algorithm and the results of the algorithm for a
collection of objects are given in Section 4. Section 5 summarizes the paper.

2. AN ALGORITHM FOR GENERATING OCTREE FROM SILHOUETTES

Our algorithm starts with the object silhouette and constructs a pyramid represen-
tation (Fig. 1.3) of the three-dimensional space occupied by the object. The pyramid
is treated as the best estimate of the object from the view point under consideration.
The nodes in the octree representation of the pyramid are then generated and
colored black, grey, or white, recursively, starting with the root node. These two
operations comprise the two major steps of the algorithm.

In the first step, we threshold the image to get a binary silhouette. Then, the
boundary of the silhouette is approximated by a polygon. We then decompose the
polygonal silhouette into convex components. For each convex component,
the semi-i&rite pyramid illustrated in Fig. 1.3 is constructed and then passed on to
the second step.

The second step checks for intersection between a semi-infinite pyramid and an
upright cube corresponding to an octree node. We decompose this intersection
detection step into a series of tests, each ex amining a distinct geometric configura-
tion of the cube and the pyramid. These tests exploit the known cubical and
pyramidal nature of the shapes to make intersection detection efficient, rather than
perform a general three-dimensional polyhedral intersection detection. The tests
performed earlier in the sequence are computationally less complex than those that
follow; the resulting coarse-to-fine strategy makes intersection detection computa-
tionally efficient. The first test approximates the pyramid by the smallest enclosing
cone and the cube by the smallest enclosing sphere. It is then easily determined if
the sphere and the cone do not intersect, in which case the octree node is white. If
they intersect, then the following second test eliminates a few cases of black and
grey nodes. The eight vertices of the cube are tested to see whether they lie inside or
outside the pyramid. If all the vertices are found to be contained inside the pyramid,
it is decided that the node is black; if some vertices are found to be inside and some
outside, the node is colored grey. If all vertices are found to be outside, then the
cube may or may not intersect with the pyramid. To resolve this problem, a third
test examines the location of the cube with respect to each of the faces of the
pyramid. If there is any face such that all eight vertices of the cube lie on the outside
of the face, then the cube is outside the pyramid. Figure 2.1 illustrates a two-dimen-
sional analog of this test, where a square is tested for being completely on the inside
or outside of an edge of polygon. Any intersections of the edges of the pyramid with
the extended faces of the cube are found. If any of the points of intersection are
contained inside the cube, then the node is colored grey; otherwise the node is
colored white.

These steps together determine an octree for each convex component of a given
polygonal silhouette. The fmal octree. for the pyramid obtained from a single
silhouette is the union of the octrees obtained for all convex components of the
silhouette. Such octrees obtained from the different silhouettes are intersected to
obtain the final octree of the object which represents the volume of intersection of
the different pyramids. We will now describe these steps in detail.

SRIVASTAVA AND AHUJA

FIG. 2.1. Geometry illustrating two-dimensional analog of a white node detected
square will be detected to be outside the polygon if it lies in the shaded region.

in Test 3. The

2.1. Processing the Silhouette

The first step is to threshold the picture to get a binary image showing the object
silhouette. Then the boundary of the silhouette is found. The boundary so obtained
is approximated by a polygon using an algorithm given by Pavhdis [S].l The
silhouette polygon may, in general, be non-convex. If so, it is decomposed into
convex polygons using another algorithm described by Pavlidis [51b2

Each of the convex polygons obtained above is treated as a separate object, and
its octree is constructed as per the following algorithm. The final octree for the given
silhouettes is the union of the octrees so obtained. The union can be derived in a
straightforward manner from the individual octrees.

A pyramid is constructed making the view point as the apex and the convex
polygon as a cross section, as shown in Fig. 1.3. The pyramid is represented as a

‘The polygon boundary is an ordered set of boundary pixels, denoted d,, d,, , d,. The vertices of
the polygon are chosen from d,‘s in the follotving manner. The algorithm starts from an arbitrary point
on the boundary (say d,) and traverses successive boundary points di to choose vertices. Let I be the line
joining do and d,. Then, a point j, 0 < j < i, is chosen as a vertex if distance (/, di) > threshold, and
d(l, d,) t d(l, dL) for all k, 0 < k i i.

*The algorithm starts by locating the non-convex corners of the polygon. It is tested whether the
polygon is a spiral, i.e., whether its non-convex comers are consecutive. If this is the case, then the
bisectrices of the non-convex comers are used for decomposing the polygon. This step is illustrated in
Fig. 2.2. If there are non-adjacent non-convex comers, lines joining two such corners are used for
decomposing the polygon. Two non-convex vertices are candidates for being joined if the line connecting
them lies completely inside the polygon. This is illustrated in Fig. 2.3. From such candidate pairs of
vertices, the ones with minimum distance between them are chosen for decomposition.

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 73

the bisectrix

FIG. 2.2. A spiral and a bisectrix used for decomposing the polygon into convex components.

circular list of the bounding constraints of the form

gi(X, y, 2) = UiX + biy + CiZ + di, (2.1.1)

where six + biy + ciz + d, = 0 is the equation of the ith plane passing through the
view point and an edge of the polygon. Whether a given point (x0, y,,, z,,) lies
inside, on or outside of the plane represented by a,x + biy + ciz + di = 0 can be
determined by checking if the value of gi(xO, y,, ze) is less than, equal to, or greater
than zero.

Next, the space. occupied by the pyramid is concisely represented by Comba’s
function [6],

ftx, YY z, = Cgitx9 Y1 z> + Igitx, YY z>I* (2.1.2)

We also partition the constraints (i.e., the equations gi(x, y, z)) into eight subsets
such that for each subset the coefficients ai, b,, and ci in (six + biy + tit + di) are
of a particular sign. That is,

G, = { gilUi> bi, Ci > O},
G, = { gila,, bi > 0, ci < 0},

. _

~~

a
b

(2.1.3a)

(2.1.3b)

FIG. 2.3. (a) A candidate pair of vertices for decomposing the polygon into convex components.
(b) A pair that cannot be used.

74 SRIVASTAVA AND AHUJA

and so on for Fj, 1 ~j I 8. This partitioning of the plane equations is used to
improve the effiaency of Test 3 described in Section 2.2.

All the steps discussed so far are performed before the actual construction of the
octree begins. They are performed once for each silhouette image and the results are
used by the intersection detection test which is discussed next.

2.2. Intersection Detection Test
The object represented by the silhouette is contained in the semi-infinite pyramid

whose representation is derived in the previous section. To obtain the octree
representation of the pyramid, the various nodes of the octree are examined
recursively, starting with the root node. The cube corresponding to each node is
tested for intersection with the pyramid and assigned a color based on the result of
the test. This test determines to a large extent the computational complexity of the
entire octree generation. Following is a coarse-to&e algorithm for detecting
intersection between a given cube and pyramid. The algorithm performs a series of
tests. Successive tests increase in complexity, but the frequency with which they are
used decreases.

Test 1. To determine whether the cube corresponding to a given node is com-
pletely outside the given semi-infinite pyramid, we fit a tightest fitting sphere around
the cube and a tightest fitting right circular cone around the pyramid. The center of
the sphere coincides with the center of the cube, and the diameter of the sphere
is the same as a major diagonal of the cube. For finding the cone, we fit a circle
around the polygon. The center of this circle is the center of gravity of the polygon
and its radius is the maximum distance from the center of gravity to the vertices of
the polygon. A cone is formed with the view point as its apex, and the line joining
the view point and the center of the circle as its axis. The surface of the cone is
constrained to be tangential to the sphere with the same center and diameter as the
circle around the polygon. A plane containing the apex of the cone and the center of
the sphere is illustrated in Fig. 2.4.

FIG. 2.4. A plane containing the axis of a cone when the surface of the cone is tangential to a sphere.
The cross section of the sphere cut by the plane is also shown.

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 75

FIG. 2.5. A plane passing through the center of a sphere and the axis of a cone when the sphere is
touching the cone from outside. AB is the perpendicular dropped from the center of the sphere on the
axis of the cone. AC is the radius of the sphere at the point of contact of the sphere and the cone. + is
the half angle of the cone.

Now, we will devise a test to decide whether the sphere and the cone intersect. Let
us assume that the sphere is just touching the cone. It is easy to see, using symmetry
arguments, that the center of the sphere, the point of contact of the sphere and the
cone, and the axis of the cone all lie in the same plane. This plane is illustrated in
Fig. 2.5. The cross section of the sphere and the cone cut by the plane are also
shown. Let A be the center of the sphere and AB be the perpendicular drawn on
the axis of the cone. Let C be the point of contact. Clearly, if angle CAB = $I then
AB = BD + AD = r + R set Cp, where r is the radius of the circular cross section of
the cone along the perpendicular mentioned above, R is radius of the sphere, and 4
is the half angle of the cone. The sphere is outside the cone if and only if the length
of the perpendicular dropped from the center of the sphere on the axis of the cone is
greater than r + R set 9. In such a case, the node is colored white since the cube is
totally outside the pyramid. If a decision cannot be made, the algorithm moves on
to the next step.

Test 2. Next, it is determined whether the cube is completely inside the pyramid.
This case is shown in Fig. 2.6. It follows from the definition of g,‘s (2.1.1) that a
point (x,,, yc, zO) is inside the pyramid if and only if gi(xO, yO, z,J < 0 for all i. We

FIG. 2.6. Illustration of a black node. The cube corresponding to the octree node is contained in the
pyramid representing the silhouette.

76 SRIVASTAVA AND AHUJA

use Comba’s function (2.1.2) to devise a simple method to carry out this test. It is
obvious that if all constraints gi(xO, y,,, zO) < 0 are satisfied then f(x,, yO, z,,) = 0.
Even if one of the constraints is violated then f > 0. Hence, computing Comba’s
function f gives us a simple test for deciding whether a given point is inside the
pyramid or not.

To test whether a cube is inside the pyramid, the algorithm performs the test
mentioned above on all its vertices. Since the pyramid is a convex polyhedron (as
the pyramid is constructed starting with a convex component of the silhouette as its
cross section), it will completely contain the cube if all the vertices of the cube are
contained inside it. Similarly, if some of the vertices are inside and some outside, we
know that the cube partially intersects the pyramid. In this case the node is colored
grey. If a decision cannot be made at this stage, the algorithm proceeds to the next
step.

Test 3. This step determines whether the cube is completely outside the pyramid
under consideration; it does not check for all cases of empty intersection but
eliminates a significant number of these cases.

This test determines if the cube is completely contained in one of the half spaces
defining the region outside the pyramid. A two-dimensional analog of this case, as
discussed in Section 2.1, is shown in Fig. 2.1. Let g(x, y, z) < 0 (2.1.1) define a
bounding plane of the pyramid, and let (xi, y,, zi), 1 I i I 8, be the vertices of the
cube. If for any bounding plane g, g(x,, yi, z,) 2 0 for all i, 1 I i < 8, then it is
decided that the cube is outside the pyramid and the corresponding node is colored
white.

If a decision could not be made at this stage, the algorithm moves on to the next
test.

Test 4. We are left with the case in which all the vertices are outside the pyramid
but no half space detining the region outside of the pyramid contains the cube. A
two-dimensional analog of this is shown in Fig. 2.7

To discriminate between the two cases, we perform a simple test. We find the
intersection of the edges of the pyramid with the extended faces of the cube. For
example, let the cube be defined by a, < x < a*, b, < y < b,, and ci < z < c2.
Clearly, one of the faces extended in all directions is defined by x = a,. We find the
point of intersection of an edge with the infinite plane x = a,. If this point satisfies

FIG. 2.7. Configurations of a square such that all the vertices of the square are outside the polygon
but no half plane dching the region outside the polygon contains it.

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 77

the constraints of the cube mentioned above, then we know that the pyramid and
the cube intersect. In this case, the node is colored grey. This test is carried out for
all the edges with respect to all the faces of the cube. If none of the points of
intersection lie inside the cube then the node is colored white, otherwise the node is
colored grey.

Algorithm

The above tests are straightforward to implement in an algorithm. However, a
direct implementation of Test 3 may be inefficient (Section 3). We use the following
formulation of Test 3 in our algorithm in the interest of computational efficiency.

Let one of the bounding constraints be ax + by + cz + d < 0, and let the cube
be defined by a, I x I a,, b, I y I b,, and ci 5 z I cz. Suppose we want to
know whether the given cube lies completely in the region defined by ax + by + cz
+ d 2 0. In other words, we want to determine whether the function g(x, y, z) =
ax + by + cz + d takes values which are only positive when the coordinates x, y,
and z are constrained by a, < x I az, b, I y I b,, and ci 5 z I cz. This reduces
to the problem of finding the minimum of the function g(x, y, z) under the
constraints a, 5 x S a2, b, I y < b,, and ci < z I c2 and checking whether it is
greater than zero. Let the coefficients a, b, and c in g(x, y, z) = ax + by + cz + d
be such that a, b > 0, andc < 0. Clearly, g is minimized by (a,, b,, cz). Hence we
can just evaluate g at (a,, b,, cz) and check whether it is greater than zero instead of
evaluating g at all the eight comers of the cube. Also, corresponding Comba’s
function g + lgl, evaluated at (a,, b,, cz), will be positive if and only if the cube is
on the outside of this plane. Now, consider

and

G = (gla, b > 0, c < 0}, (2.2.la)

f= c g+ IA-
@G

(2.2.lb)

If f, evaluated at (a,, b,, cz) is greater than zero then it implies that at least one of
g E G is such that corresponding Comba’s function is greater than zero. It can then
be concluded that the cube is on the outside of at least one of the planes. This
observation suggests the following test.

The set of planes is partitioned into eight subsets Gi’s (2.1.3) such that each
partition has planes with the corresponding coefficients a, b, and c of the same sign.
Then, for each subset Gi, Comba’s function fi (2.2.1) is formed. For a given cube,
all fi’s are evaluated at one of the comers of the cube, determined by the sign of the
coefficients in the elements of the corresponding set Gi. For example, for the cube
mentioned above, fi is evaluated at (aI, b,, q), fi is evaluated at (a,, b,, c,), and
so on. If any of these values turn out to be positive, it implies that the cube is
outside the pyramid and is then colored white.

3. COMPLEXITY ANALYSIS

This section discusses the computational complexity of the algorithm presented in
Section 2. Complexity of the various steps will be analyzed individually and then
their effects on the overall complexity of the algorithm will be discussed.

78 SRIVASTAVA AND AHUJA

As discussed in the previous section, the silhouette processing step of the
algorithm (Section 2.1) is performed once for each image. The next major step, i.e.,
the intersection detection step (Section 2.2), is performed once for each node of the
octree. Since the number of nodes will be usually very large (of the order of 8”,
where d is the depth of the octree), it is the second step which largely determines
the complexity of the algorithm. The complexity of the various tests involved in
intersection detection for a specific node is discussed next.

In Test 1 (Section 2.2), to check whether a cone enclosing the semi-infinite
pyramid intersects with the sphere around the cube takes constant time. In Test 2
(Section 2.2) Comba’s function is evaluated for eight different vertices of the cube
under consideration. Hence, once again a constant time is required to perform the
computation. In Test 3, we check for empty intersection. As was pointed out, the
obvious way of going about it is to check whether g(x, y, z) r 0, for all the eight
vertices of the cube. This test has to be carried out once for each plane. This
requires O(m) computations, where m = number of planes bounding the pyramid.
But in the efficient implementation of Test 3 in our algorithm (Section 2.2) Test 3
takes constant time. This is because, depending on the sign of coeEicients in the
equation, only one test is performed. Test 4 requires O(m) computations since an
intersection test has to be performed for each of the edges, which are m in number.
The overall complexity of the octree generation algorithm then is O(n - n,) -+-
O(mn,), where n, = number of nodes for which a decision was taken in the last
step of the algorithm and n = number of nodes in the octree. Test 4 is performed
only when a decision cannot be made in the earlier tests.

The complexity discussed so far is the complexity of constructing the octree for a
convex polygonal component of a single silhouette. To obtain the octree correspond-
ing to a given image by taking the union of octrees of the convex components
requires O(C,n ;) time, where n i is the number of nodes in the octree corresponding
to the i th component. This is because the union of octrees can be performed in
linear time with respect to the sum of the numbers of nodes in the octrees. Similarly,
determining the final octree by intersecting the octrees obtained from different
silhouettes can be performed in time which is linear in the sum of the numbers of
nodes in individual octrees.

4. PERFORMANCE ANALYSIS AND FiXP J5RIMENTAL RESULTS

In this section, we will discuss some issues regarding the performance of our
octree generation algorithm. A criterion for evaluating the performance will be
discussed. This will be followed by results of our algorithm on some examples.

Our algorithm is expected to derive at best a representation for a bounding
volume of the object, since it only works with silhouettes. The algorithm suffers
from some limitations which are inherent to the problem. The information
loss which occurs during formation of the image is one of them. The 2D quantiza-
tion error of the image is another. Further, if there are surface concavities in the
object they are lost in the image and hence will not be represented in the octree
generated by our algorithm. If there are any holes in the object, they can at best be
represented only partially. Consider a cube with a hole which goes through it frum
one face to the face opposite it. This hole will be present, at best, in some of the
images wherein one of the faces with the hole is facing the camera. Consequently, in

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 79

the cube reconstructed from the octree generated by our algorithm the hole will
appear smaller in volume. Also, it is possible that the hole does not appear in any of
the images, in which case it will not at all be represented in the octree of the object.
Other errors result from the inaccuracies in the octree representation itself, i.e., the
3D quantization that takes place due to limiting the depth of the octree. Beyond
these general sources of inaccuracies, our algorithm has shortcomings of its own. A
major problem is the information loss which occurs when the silhouette is approxi-
mated by a polygon. A tight polygonal fit to the silhouette will reduce this problem
but will increase the number of convex components and the number of edges in
each polygonal component. As discussed in Section 3 these factors will result in an
increase in the time complexity of the algorithm. Hence some compromise between
accuracy of the representation and time complexity has to be reached.

To evaluate the performance of the algorithm, we need to evaluate the quality of
the generated octrees. Clearly, the octree representation is not well suited for
applications where shape details of the object represented are important; surface-
based and other representations are more appropriate for such applications. How-
ever, in the cases where a coarse occupancy map of the space is desired, the octree
representation may Mike, since it would capture most of the object volume,
although not surface smoothness. Thus, a measure of error between the recon-
structed and true object volumes is appropriate to test the performance of the octree
generation algorithm. As a performance measure, we have chosen the ratio of the
actual volume of the object to the reconstructed volume of the object.

We conducted simulation experiments with a set of simple geometric shapes.
These include: cube, pyramid, sphere, octagonal prism, cone, cylinder, wedge, empty
cube (i.e., a cube with a hole), and diamond. To compute the performance for each
object we generated perspective views of the object located at a fixed distance, from
different viewing directions. Object silhouette was computed in each view. Subsets
of silhouettes were then used to construct the octree as described in Section 2. The
volume of the object represented by the constructed octree was computed and was
used to obtain the ratio of the known object volume to the reconstructed volume.
This ratio is recorded in Figs. 4.1-4.6 as the performance measure of the octree
generation algorithm. The performance index will, of course, depend on the orienta-
tion of the object. However, for cases in which a large number of viewing directions

FIGURE 4.1.

80 SRIVASTAVA AND AHUJA

Perfo-e Results
L Viewdktance = 10.0

Number of views = 18
Object Reconsaucted Volume Actual Volume Ratio
CUbe 9.9645 8.CHlOO 0.8110

pyramid 3.2161 2.6661 0.829 1
sphere 3.9669 4.1888 1.0559

octagonal-prism 1.7530 6.6274 1 0.8548 1

1 diamond

636 2.6944 0.8501
1.0658

loo 0.7550
9053

1 0.8599

FIGURE 4.2

is used, e.g., Figs. 4.2, 4.3, 4.5, 4.6, the viewpoint dependence may be low and the
observed performance index may be reasonably reliable.

The viewing directions were restricted to 13 and the viewing distances were
limited to two different values. The viewing directions used correspond to head-on
views of the: 3 pairs of parallel faces, 6 pairs of parallel edges, and 4 major
diagonals, of the universe cube. Each pair may lead to two different silhouettes
obtained from two antiparallel directions. The sets of silhouettes used in the
algorithm were extracted from 6 face views alone: 6 face views and 12 edge views (a
total of 18 views); and 6 face views, 12 edge views, and 8 comer views (a total of 26
views). Figs. 4.1-4.6 give the volume ratios computed experimentally for different
cases. Reconstructed objects are displayed in Fig. 4.7.

Clearly, the perfect performance corresponds to a ratio of 1. However, this level
of performance will not be achieved on an average with a finite number of views and
because of other limitations discussed earlier in this section. In general, the volume
of intersection of silhouette pyramids (Fig. 1.3) will be an overestimate of the true
volume of the object; this will lead to a ratio of less than 1. Quantization effects due
to image resolution, polygonal approximation of the silhouettes, and octree depth
limits will cause further deviation in the ratio. The actual performance ratio may

PerfonnaRcs Reatlts
Viewdistattee p: 10.0

FIGURE 4.3.

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 81

I Performance Results
View-distance = 20.0
Number of views = 6

Object Reconstructed Volume 1 Actual Volume (Ratio
CUbe 7.3984

pyramid 2.4
sphere 4.1102

octagonal-prism
cone

cyhkr
wedge 2.1081 1.600 0.7589

empty-cube 6.5763 6.0000 0.9124
diamond 3.4612 2.6670 0.7705

FIGURE 4.4.

Peafomuince Results
Viewdistance = 20.0

Nnmkr nf views I 18
me Actual Volmne Ratio

8.OCOO 1.0813
2.6667 1.0902
4.1888 1.0992
6.6274 1.0994

nlw48

FIGURE 4.5.

Object
cube

pymmid
sphere

Performance Results
View-distance = 20.0

Nlrmber of views = 26
Reconstructed Volume Actual Volume

7.3375 8.0000
2.3926 2.6667

Ratio
1.0903
1.1146 __-_

3.8109 4.1888 1.0992
octagonal-prism 5.8913 6.6274 1.1249

cone 2.3976 2.0944 0.8648
cylinder 5.7365 6.2832 1.0952

1976 1.64lOO 0.7627 wedge
emptyJ3he.

diamond

2.a
6.5154 6.0000 1 0.9209
3.3984 2.6670 1 0.7848

FIGURE 4.6.

82 SRIVASTAVA AND AHUJA

OBJECT SILHOUETTES IN PERSPECTIVE VIEWS 83

84 SRIVASTAVA AND AHUJA

even exceed 1. The former source of error will be more pronounced for less compact
objects, since for such objects the convex hull reconstructed by the silhouette
pyramids overestimates the actual volumes by a greater amount. This is evident
from the experimental results in Figs. 4.1-4.6, where the performance ratios for
cube, wedge, pyramid, diamond, etc. are among the worst, whereas the ratios for
sphere and cylinder are among the best.

As the viewing distance to the object increases, the perspective projection ap-
proaches orthographic projection. Thus, the volume of intersection of the silhouette
pyramids decreases with increasing viewing distance and becomes an increasingly
accurate estimate of the true object volume. This leads to a general increase in the
performance ratio observed going from Figs. 4.1-4.3 to Figs. 4.4-4.6, although there
are small exceptions to this increase (e.g., diamond, cylinder), presumably because
of the increased effect of image quantization as the object size in the image
decreases with increasing viewing distance.

As expected, the volume of the reconstructed object becomes an increasingly
better estimate of the actual volume as the number of views used increases (Figs.
4.1-4.3, 4.4-4.6).

5. SUMMARY

We have presented an algorithm to generate the octree representation of an object
from its silhouettes. The silhouettes are extracted from perspective projections of the
object from different view points. We have presented simulation results of running
the algorithm on views of a variety of simple objects. The performance index of the
algorithm was chosen to be the ratio of the actual volume of the object to the
volume represented by its computed octree. For most compact objects used, this
ratio was found to be above 0.85.

ACKNOWLEDGMENTS

The support of the National Science Foundation under Grant ECS 83-52408 and AT&T Information
Systems is gratefully acknowledged.

REFERENCES
1. N. Ahuja and J. Veenstra, Generating octrees from object silhouettes, IEEE Trans. Pattern And.

Much. Intell., 11, 1989, 137-149.
2. J. Veenstra and N. Ahuja, Line drawings of o&tee-represented objects, ACM Trans. Graphics 7, 1988,

61-75.
3. T. H. Hong and M. Shneier, Describing a robot’s workspace using a sequence of views from a moving

camera, IEEE Truns. Pattern Anal. Mach. Inteli. 7, 1985, 721-726.
4. C. H. Chien and J. K. Agganval, Volume/surface octrees for the representation of 3D objects,

Comput. Vision Graphics Image Process. 36, 1986, 100-113.
5. T. Pavlidis, Structurul Pattern Recognition, Springer-Verlag, New York/Berlin, 1977.
6. P. G. Comba, A procedure for detecting intersections of three-dimensional objects, J. Assoc. Comput.

Mach. 15, No. 3, 1968, 354-366.
7. M. Potmesil, Generating octree models of 3D objects from their silhouettes in a sequence of images,

Comput. Vision Graphics Image Process. 402 1987, l-29.
8. M. Shneier, E. Kent, and P. Mansbach, Representing workspace and model knowledge for a robot

with mobile sensors, in Proc. Seventh Int. Conf. on Pattern Recognition, Montreal, Canada, J@
1984, pp. 199-202.

