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Abstract

We propose an image sharpening method that auto-
matically optimizes the perceived sharpness of an im-
age. Image sharpness is defined in terms of the one-
dimensional contrast across region boundaries. Re-
gions are automatically extracted for all natural scales
present that are themselves identified automatically.
Human judgments are collected and used to learn a
function that determines the best sharpening parame-
ter values at an image location as a function of certain
local image properties. We use the Gaussian mixture
model (GMM) to estimate the joint probability density
of the preferred sharpening parameters and local im-
age properties. The latter are then adaptively estimated
by parametric regression from GMM. Experimental re-
sults demonstrate the adaptive nature and superior per-
formance of our approach over the traditional Unsharp
Masking method.

1 Introduction

Image sharpening is an important class of enhance-
ment techniques. Spatial sharpening methods modify
pixel values near edges [7, 5]. GradientShop method
[4] sharpens salient edges and smoothens homogeneous
area in gradient domain. The control parameters in any
sharpening method play an important role in determin-
ing the perceptual quality of an output image. Over-
sharpening can result in noise amplification or loss in
naturalness of photographs. In addition, different parts
of an image may require different degrees of sharpen-
ing, as demonstrated by Figure 1. Adaptive parameter
selection is required in order to obtain the most percep-
tually pleasing appearance.

It is not clear which local image properties the hu-
man eyes use to characterize the context so as to select
the best parameters. It is also unknown what compu-
tational criteria may be used to automatically identify
which image among a set of enhanced alternatives has
been sharpened the best.

This paper is aimed at finding an automated method
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that maximizes the perceptual sharpness while preserv-
ing naturalness and the color of a given image. We hy-
pothesize a set of image properties to model the con-
text for selection of sharpening parameters. We assume
these properties also imply some feature (sub)space
which, once identified, could be used to uniquely spec-
ify and estimate the best sharpening parameters. We
learn this (sub)space through a set of training exam-
ples for which human judgments are obtained by best
mapping the space defined by the local properties of a
judged sub-image to a (sub)space defined and learning
the function that maps the (sub)space to the best sharp-
ening parameter values. This function thus facilitates
adaptive enhancement across an image since only the
local image properties determine the value the function
takes.

2 Motivation

A region is modeled as being homogeneous in in-
tensity surrounded by a ramp. A ramp is a non-step
transition between two adjacent regions in a real world
image, resulting from factors such as circular lens aper-
ture, sensor noise, round objects, out-of-focus blur and
atmospheric turbulence. Edges (curves) exist inside
the ramps (thick transition areas) where step transitions
would occur if the contrast was increased indefinitely.
Our approach explicitly identifies the ramps and the re-
maining, homogeneous parts of the regions using the
image segmentation algorithm described in [1, 8, 2]
(Figure 2). To increase the region contrast, we increase
the slope of the ramp by adding an overshoot at its high
end, and an equal undershoot at the other end, as shown
in Figure 3. Our sharpening parameter is the magnitude
of the overshoot/undershoot.

Underlying our approach is the presumption that hu-
man preferences for the best sharpening parameter val-
ues are consistent over time and across people, de-
scribed and verified in [6]. We collected a dataset of the
most preferred sharpening parameter values as a func-
tion of local context parameters.

Section 3 presents our algorithm to automatically es-
timate the sharpening parameter values from the col-
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Figure 1: Two image patches are enhanced using four different sharpening levels: a,b,c,d. The red and green patches appear to be
the most pleasing at level b and c, respectively. Thus, the degree of desired sharpness, and therefore the sharpening operation, must
adapt to the image being sharpened. Using a single, sharpening parameter globally, across the entire image, can produce parts of

the image to appear unnatural.
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Figure 2: (a) Input image. (b) Edge map from segmentation.

(c) Ramp map.
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Figure 3: The region-based sharpening model reduces the
perceived ramp width by adding overshoot and undershoot.
The intensify profiles are taken along the red bar in the input
and output images. The best overshoot/undershoot is deter-
mined by a supervised learning process from a dataset of train-
ing images and the associated human preferences for sharp-
ness.

lected data on human preferences (Section 4). Section
4 presents the results followed by the conclusion.

3 Algorithms

We now describe our sharpening method, feature
(sub)space selection, and the estimation of sharpening
parameter.

3.1 Region-based sharpening

The sharpening method has a single parameter that
locally controls the contrast increase in the detected
edges. Edge pixels are detected by the segmentation
algorithm [3]. Ramp pixels are estimated from the edge
pixel location by the ramp definition [3]. At each end
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of the one-dimensional profile forming the ramp pix-
els, we add/subtract the first-order derivative of a one-
dimensional Gaussian to increase the ramp value at
higher end and reduce it at the lower end, thus increas-
ing the contrast represented by the ramp. The output
intensity I,(p) at a ramp pixel p is then obtained by
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where d,, is the distance from p to the nearest edge pixel.
The local contrast ¢(p) is estimated as a difference be-
tween the average intensity of the neighboring regions
along the 1-D intensity profile. In Equation 1, we fixed
0. = 0.7 so that the overshoot and undershoot are lo-
cated inside the spatial ramp area. The control parame-
ter is the scaling factor o > 0, which is determined via
supervised learning from our collected data (Section 4).

3.2 Feature selection
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As illustrated in Figure 4, different sharpening pa-
rameter values are chosen to yield images that appear
the most pleasing to human eyes. Now the eye ap-
peal depends on more than just the ramp profile. Sev-
eral other image features affect our judgment of pre-
ferred sharpness. Key features include interior color
of a region, local contrast, edge orientations and ramp
widths. These low-level visual features are extracted
from a 20 x 20 neighborhood of a ramp pixel. In CIE-
L*a*b color space, the mean, variance and maximum
pixel values (3x3) are collected from non-ramp pix-
els. The mean, variance and maximum contrast values
(3%3) are also collected from ramp pixels. The mean
and variance of ramp widths (2) and edge orientations
in horizontal/vertical and diagonal directions (2) are ex-
tracted as features. This yields a 22-dimensional feature
vector (3 X 3+ 3 x 3+ 2+ 2) is formed, whose dimen-
sionality is reduced to 14 by Principle Component Anal-
ysis, and the feature space is transformed so that feature
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Figure 4: (a) and (b) Human subjects were asked to sharpen
the parts highlighted in red, using our region-based sharpen-
ing model. They chose the sharpening parameter values to ob-
tain the sharpest and most pleasing images. They chose differ-
ent values: o=0.1 for (a) and 0.73 for (b). (c) and (d) display
normalized one-dimensional intensity profiles along the blue
lines in (a) and (b), showing different overshoot/undershoot.
Our goal is to define a function that estimates the parameter o
from the local image properties.

points and their nearest neighbors have the same sharp-
ening parameter values, thus enabling similar images to
be sharpened similarly [9].

3.3 Sharpening parameter estimation

We formulate the problem of estimating the con-
trol parameter «v as a parametric regression problem to
learn the data distribution by Gaussian Mixture Model
(GMM). At each ramp pixel, we extract a feature vector
t € RP as described in Section 3.2. GMM is used to
estimate the joint probability of x = [t7a] € RPT!,
where « is the optimal sharpening parameter value. In
the training stage, the data set of NV points is represented
asan N x (D + 1) matrix X in which the n** row is
given by x,,. We maximize the log likelihood function

N K
n=1 k=1

where N (-) is a Gaussian with mean y and covariance
3., and 7 is weight to the Gaussian. By the expectation-
maximization algorithm, these GMM parameters are es-
timated, and the value K is chosen to minimize the
Akaike information (AIC).

In the testing stage, given a test ramp pixel t, we
find o that maximizes p(x|u, 2, 7), x = [tTa]. For
simplicity of notation, let A* denote Z,:l.
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where for efficiency reason, A, = A]B-‘rl,D-‘rl’ By =

D D D
223':1 AIZ)H,J'(tj —uy), Gk = 355, Zj:l(ti -
(D) i1
)AL (t; = py), and Dy = me/ ((2m) 52 3)).
Since exp(—z) is monotonically non-increasing, the
likelihood is maximized for the following values of a7 :
o = argamin(Apa® + Bra + Cy).

4 Results

We have collected 770 images while attempting
to represent their natural diversity by including land-
scapes, urban scenes, objects, etc. From 9 human sub-
jects at 4 different times, sharpening parameter values
were obtained to yield the output images most pleasing
to their eyes. In total, we collected 3440 training and
3440 testing sub-image windows of size 20 by 20. Me-
dian values of the sharpening parameters were taken as
the ground truths. GMM was estimated with 25 Gaus-
sian components.

Performance was evaluated on the test set by com-
paring the estimated parameter values with the ground
truth. Mean of the resulting error was 0.0889, which is
better than the performances of the algorithms in Two
other estimation methods, Support vector machine and
K-nearest neighbors (K = 1), were also compared with
the GMM algorithm we have chosen (Table 1).

Table 1: Error performance for 3 algorithms. GMM achieved
the best performance with the lowest error.

] | Mean | Median | Variance |
SVM | 0.0914 | 0.1250 0.0115
KNN | 0.1149 | 0.0920 0.0121
GMM | 0.0889 | 0.0750 0.0071

We compare our results with corresponding results
of unsharp masking (UM) which is the most commonly
used method of sharpening (Figures 5, 6 and 7.) These
demonstrate the superior quality of our results.

To conclude, our approach uses low-level image fea-
tures to characterize human perceptual preferences and
to learn to quantify subjective, psychophysical judg-
ments to enhance images that appear both pleasing and
realistic.
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Figure 5: Results: (a) An input image. (b) Our result. (¢) and (d) Photoshop UM applied once (c) and twice (d). (b) provides the
maximum sharpness without distortion in both boxes. The blue box in (c) and the red box in (d) have sharpness similar to ours.
However, the sharpness in the red box of (c) is below the desired level, while that in the blue box of (d) brings introduces artifacts
near edges. Our adaptive approach chooses the best sharpness parameters.
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Figure 6: Results: (a) Input image. (b) Our result. (c) UM applied by Photoshop twice. (d) Our estimates of sharpening parameter
values in ramp pixels: brighter the pixel, larger the estimate. (e) Zoomed in displays of a window near the top left from: (top) input
image, (middle) our result, and (bottom) UM. UM amplifies noise in the smooth area while our result does not.
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Figure 7: (a),(c) Input images. (b), (d) Our results.
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