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A multiscale region detector is derived from properties of a v ‘G (Laplacian-of-Gaussian) 
scalespace. The detector finds all image regions that have small gray-level variation relative to 
a neighborhood of their size. These regions may he nested. Since the region detector is 
designed as a coarse estimator of region size and shape, it is better suited for texture element 
extraction than for general image segmentation. Uniform gray level regions are represented by 
a configuration of best-fitting disks of appropriate sizes and locations contained within the 
regions. The sizes and locations of best disks are estimated from the observed response of the 
v ‘G operator across the image and across scales, using an analytic expression for the response 
of v2G to disks. Both positive-contrast and negative-contrast regions are detected, and an 
estimate of region contrast is computed. Results are shown for a variety of natural textures. 
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1. INTRODUCTION 

A low-level operation often required for image analysis is the extraction of 
regions of relatively uniform gray level. The desirable properties of a region detector 
depend on the application. In this paper were focus on region detection for texture 
analysis. Region detectors used in other contexts are described by Haralick and 
Shapiro [8] (image segmentation) and Schachter [18], Hartley et al. [9] (target 
detection). For texture analysis, a region detector must respond to densely placed 
texture elements, which may vary greatly in size (especially when the texture is seen 
under perspective). Regions used to represent texture elements may be nested, as 
when subtexture is present. 

Several approaches to texture-element extraction have been described in the 
literature. Wang et al. [21] describe three methods based on gray-level thresholding: 
(1) thresholding with a fixed percentage of pixels above threshold, (2) histogram 
peak sharpening, and (3) the “superslice” algorithm, which evaluates thresholds 
based on agreement with an edge map. Yet another threshold-selection method is 
used by Matsuyama et al. [15]: their criterion for threshold selection is that many 
regions with similar properties be produced. Voorhees and Poggio [20] extract 
texture elements by convolving the image with a v ‘G filter and then selecting 
components of above-threshold pixels that have suitable geometric properties, such 
as compactness. Vilnrotter et al. [19] construct edge repetition arrays to estimate the 
size and spacing of texture elements; these estimates are then used to extract the 
texture elements. Maleson et al. [12] construct elliptical approximations to regions 
of uniform gray level. Davis [7] detects texture elements of known shape using a 
Hough transform of the edge map. Texture coarseness has been estimated by 
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comparing the outputs of coarse and fine spot detectors [lo, 231. Hong et al. [ll] 
extract texels by grouping facing pairs of edge points into region boundaries. 

Most of the texture-element extraction methods reviewed above were applied to 
texture discrimination problems. Many of these methods rely on a frontal view of 
the texture, where the average texture-element size does not vary throughout the 
image. Such methods are not suitable for the more difficult task of extracting texture 
elements when texture is seen under perspective, as must be done for obtaining 
surface orientation information from a perspective view of the texture. Ohta et al. 
[17] discuss one approach to this problem, but do not address the problem of 
finding texture elements in real images. The region detector we describe here has 
been used to extract texture gradients in images of natural textures, such as the ones 
shown in parts (a) of Figs. 1 to 6 (Blostein and Ahuja [3]). The goal is to obtain 
estimates of the location, size, shape, and contrast of the texture elements. The 
detector does not precisely localize region boundaries and hence may not be suitable 
for image segmentation. However, since texture elements are inherently variable in 
size and shape, an approximate detection of texture-element shape is adequate for 
many applications. Our detector does not rely on threshold selection. It is tolerant 
of gray-level noise and insensitive to lighting changes. Uniform image regions of all 
sizes are detected; these regions may be nested. 

2. OVERVIEW OF THE REGION DETECTOR 

Uniform image regions vary in size, shape, and contrast. The uniformity and 
contrast of small regions have significance when measured relative to a small 
surrounding neighborhood in the image, whereas the uniformity and contrast of 
large regions have significance relative to a proportionally larger image neighbor- 
hood. A uniform image region is composed of gray levels which are uniform relative 
to the gray-level changes occurring at its own scale; such a region may nevertheless 
contain internal variations of gray level that are significant at a smaller scale. In 
applications where the size of interesting regions is unknown in advance, the region 
detector must be capable of identifying nested regions. The design of a region 
detector is complicated by the fact that uniform image regions may have any shape. 

The Laplacian-of-Gaussian (V 2G) filter has been useful in a variety of multiscale 
image analysis tasks; it has desirable noise suppression properties and is suitable for 
local image analysis as in edge detection and spot detection. As described in Section 
3, a scale space of v 2G-convolved images can be used to robustly extract all 
circular image regions of relatively uniform gray level. This disk detection is 
performed by comparing the local image response to the response expected for an 
image of an ideal circular region of constant gray level. Unions of overlapping and 
adjacent disks are used to represent arbitrary regions (Section 4): large disks define 
the rough shape of a region, with overlapping smaller disks capturing finer shape 
details such as protrusions and concavities. Section 5 describes an implementation 
of the region detector; the performance of the region detector is analyzed in 
Section 6. 

3. FINDING CIRCULAR DISKS WHICH BEST FIT UNIFORM IMAGE REGIONS 

The region-extraction algorithm operates by finding best-fitting disks and then 
constructing unions of overlapping disks to describe uniform image regions. The 
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disk-fitting process is based on an analysis of the scale-space behavior of uniform 
image regions. The term scale space, introduced by Witkin [22], denotes a represen- 
tation of the image response to convolution with v 2G filters over a range of scales, 
A scale-space representation of a signal has many features that could be analyzed. 
Witkin [22] concentrates on the behavior of zero crossings over a range of scales, 
whereas Crowley and Parker [6] represent peaks and ridges extracted over a range of 
scales.’ We summarize these papers before turning to our own scale-space analysis. 

3.1. Scale Space 

Witkin [22] builds on the theory of edge detection developed by Marr and 
Hildreth [13] (see also Marr [14]) in which edges are located as the zero crossings in 
the Laplacian of a Gaussian-smoothed image. Marr and Hildreth suggest using a 
selection of filter in order to capture edges at different scales, but do not adequately 
address the problem of combining the edge images obtained from various filter sizes. 
Witkin introduces a scale-space representation of v 2G zero crossings over a 
continuous range of scales. A scale-space representation is constructed by convolv- 
ing the original signal with v *G filters for all possible choices of the filter size (I. 
The scale-space representation of l-dimensional signal occupies an x--u plane, 
whereas the scale-space represenation of a 2-dimensional signal (such as an image) 
occupies an x-y-o volume. Gaussian smoothing has two effects: simplification 
through removal of fine-scale features and distortion through dislocation, broaden- 
ing, and flattening of the surviving features. Salient zero-crossing contours may he 
identified at coarse scales and then traced to fine scales for accurate localization. 
Witkin [22] describes an efficient represenation of the zero crossings of a l-dimen- 
sional signal (in the x-u plane). Extending this representation to encode the zero 
crossings of 2-dimensional signals is difficult. 

Crowley and Parker [6] represent scale-space peaks and ridges. The pattern of 
scale-space peaks and connecting ridges characterizes object shape in a form that is 
suited to object recognition or matching: the coarse shape information captured by 
the large filter sizes is used to bring the objects into approximate registration, and 
then the more detailed shape information captured by the small filter sizes is used to 
refine the matching. 

As described in Section 3.2., we use the (a/aa)v *G filter as part of the 
region-detection algorithm, for analyzing the behavior of images across scales.’ The 
other partial derivatives of v 2G, ( a/dx)v 2G and (d/ay)v 2G, are commonly used 
to calculate edge strength at zero crossings [14]. Normally x and y partial deriva- 
tives are estimated by subtracting neighboring pixels in the v “G*I image. The 
equivalent method of estimating the u partial is to subtract the v 2G convolution 
outputs at two different filter sizes. However, such discrete derivative approxima- 
tions are very error prone, especially if the neighboring u values are not very close. 
Direct convolution with a (a/au)v 2G filter gives accurate results and allows a 
rather sparse set of u values to be used to sample the scale space. 

‘Crowley and Parker use a difference-of-Gaussian operator, which is a discrete approximation to 
(L?/ao)G and hence to v’G. By the diffusion equation, v*G = (l/a)( a/?Ia)G. 

2 We originally started investigating this filter as a tool for analyzing the movement of c’(; zero 
crossings across scales. 



MULTISCALE REGION DETECTOR 25 

3.2. A Closed-Form Expression for the v ‘G Response of a Disk Image 

We now describe a method of estimating the size of uniform disks from the 
variation of v ‘G response with scale. As discussed in Section 4, unions of 
overlapping disks constitute the final output of the region detector. In order to judge 
how to fit disks to an image, we first analyze the v ‘G response expected from an 
idealized image of a circular region on a uniform background. We use this ideal 
response as a reference for fitting disks to an arbitrary image. Two parameters are 
needed to describe a disk at a given image location: disk radius and disk contrast. 
At least two image measurements must be made to recover these two parameters. 
The two measurements we use are (1) the v ‘G response and (2) the (a/aa)v “G 
response, both measured at the center of the disk. We now derive the expected 
values of these two measurements for an ideal disk. 

Given a function Z(x, y) which specifies the intensity of an image, the v ‘G 
response3 of this image at (x, y) is given by the convolution 

v 2~(~, y)*l(x, y) = //‘” 2a2 - 2’ ’ “) e~(u2+u2)/2021(x - U, y - U) dudu. 
-* 

0) 

Mathematical analysis of the response of the v 2G filter to most images is difficult 
because the convolution integrals of Eq. (1) do not have closed-form solutions. 
However, a closed-form solution can be derived for the center point of a circular 
disk of constant intensity. We analyze the v ‘G response at the center of an ideal 
circular disk in the continuous domain; to generate the v 2G convolution of 
digitized images, we sample the v 2G filter values and perform a discrete convolu- 
tion. The image of a disk of diameter D and contrast C is defined by 

disk image : I(& Y) = 
i 

C ifx2+y25D2/4 
0 elsewhere (2) 

We set x and y to zero in Eq. (1) to derive the v 2G response at the center of the 
disk (see [2] for a more detailed derivation): 

vzG(x, y)*l(x, y) = /j+w2u2 - r42 + u2)e~~u2_d~/202~(-~, -,r~) dudu. 

--oo 

Changing to polar coordinates and using 1(x, y) from Eq. (2) 

v~G(~, y)*~(~, y) = ~~~‘*/_:(202 - p2)e~p*‘2”“pd~& 

2mC 

(J 
D/2 =- 

u4 0 
2pa2e- P=/@ dp - 

I 

D/2p3e - p2/202 & . 
0 i 

3The expression we use for v’G is the Laplacian of an unnormalized Gaussian (e-‘2/2’*). In keeping 
with tradition in the literature, we negate the v*G equations, so that filters with a positive center lobe 
result. 
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Using integration by parts on the second integral, we cancel the first integral to 
obtain 

v ‘G 
7rCD2 

response at the center of the disk =ge 
,+/go’ (3) 

(b) Cc) 

FIGS. la-c. (a) The rock pile. (b) Disks corresponding to positive-contrast regions of relatively 
uniform gray level. Disks are shown with a darkness proportional to the contrast of the region. This set of 
disks includes all of the disks from (g), (i), (k), and (m). At pixel locations covered by several disks, the 
disk of higher contrast is displayed. (c) Positive-contrast regions are represented by sets of overlapping 
disks. Region intensity corresponds to nesting level: the outermost regions are black, nested regions are 
gray and doubly-nested regions are again black. (Regions nested more than two levels deep have been 
omitted.) 
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Taking the derivative with respect u, we obtain 

a 
aa v *G response at the center of the disk 

These equations have been verified experimentally using discrete convolutions of 
v 2G and (a/aa)v ‘G masks with synthesized images of isolated disks. The v 2G 
and (d/aa)v *G values at the centers of the disks match the values predicted by the 
equations to within roundoff and discretization errors. 

If we have measured values for v *G*I and (a/au@ *G*I at the center of the 
disk, the disk diameter and contrast can be recovered using Eqs. (3) and (4). First 
the disk diameter D is calculated as 

D = 2u/{u( ;v2G*I)/(v2G*I)) + 2. 

Substituting D into Eq. (3), we obtain the contrast C as 

2u2 
c= -,~2/802(V*G*I), 

77D2 

Application of these equations to a real image, where the disk center locations are 
not known a priori, is discussed in the next section. 

Cd) (e) 

FIGS. Id, e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to the contrast of the region. At pixel locations covered by 
several disks, the disk of higher contrast is displayed. (e) Negative-contrast regions are represented by 
sets of overlapping disks. Region intensity corresponds to nesting level: the outermost regions are black, 
nested regions are gray and doubly nested regions are again black. (Regions nested more than two levels 
deep have been omitted.) 
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4. DETECTION OF IMAGE REGIONS OF RELATIVELY UNIFORM 
GRAY LEVEL 

An arbitrary region of relatively uniform gray level can be represented by a 
configuration of uniform disks, each of which is locally maximal. i.e., contained 
within the region but not within any other uniform disk [4; 16, Chap. II]. Locally 
maximal disks, in general, have significant overlap. Thus, each disk is surrounded 
not by background alone, but both by background and other locally maximal disks: 

FIGS. If-i. Details of the disk-fitting process for positive-contrast regions. (f) Convolution of the 
rock-pile image with a v*G filter of size o = 6: the center lobe of the v2G filter has a diameter of 4 
pixels. (g) Disks detected at this filter size. The disk diameters range from 2 to 6 pixels. (h) Convolution 
of the rock-pile image with a v *G filter of size e = 2fi ; the center lobe of the v ‘G filter has a diameter 
of 8 pixels. (i) Disks detected at this filter size. The disk diameters range from 6 to 10 pixels. 
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a disk usually touches the region boundary at two points or along a small fraction of 
its circumference. Since these disks do not fit the model of Eq. (2), the analysis for 
estimation of disk diameter and contrast of Section 3 cannot be applied without 
error. Often, Eq. (5) leads to an overestimation of the disk diameter when applied at 
the center point of a maximal disk. In Section 6 we discuss the extent of the 
overestimation error. In the rest of the paper we will use Eqs. (5) and (6) to estimate 
the diameter and contrast of the locally maximal disks, ignoring the estimation 
error. 

FIGS. Ij-m. (j) Convolution of the rock-pile image with a v ‘G filter of size u = 3fi; the center lobe 
of the v'G filter has a diameter of 12 pixels. (k) Disks detected at this filter size. The disk diameters 
range from 10 to 14 pixels. (1) Convolution of the rock-pile image with a v *G filter of size u = 4fi: the 
center lobe of the v*G filter has a diameter of 16 pixels. (m) Disks detected at this filter size. The disk 
diameters range from 14 to 18 pixels. 
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(b) CC) 

FIGS. 2a-c. (a) A plowed field. (b) Disks corresponding to positive-contrast regions of relatively 
uniform gray level. Disks are shown with a darkness proportional to their contrast. (c) Positive-contrast 
regions are represented by sets of overlapping disks. Region intensity corresponds to nesting level: the 
outermost regions are black, nested regions are gray. and doubly nested regions are again black. (Regions 
nested more than two levels deep have been omitted.) 

4.1. Fitting Disks to Real Images 

To fit a disk, Eqs. (5) and (6) use the v2G*I and (~?/~?a)v~G*l values at the 
center of the disk. To apply these equations to real images, we must first identify 
suitable locations for the disk centers. We choose extrema of the v 2G*I images as 
possible disk-center locations. The disks fit to local maxima have positive contrast 
(regions brighter than the surround), whereas the disks fit to local minima have 
negative contrast (regions darker than the surround). Using extrema of v *G*Z as 
disk centers is justified by the following considerations. For a given region, local 
v 2G extrema occur at the centers of locally maximal disks for filters whose size 
matches the diameter of the disk (w = D, i.e., D = 2fi0).~ If (I is too small for the 

4The size of a v’G filter is characterized by 0, the standard deviation of the Gaussian distribution, 01 
by W, the width of the positive center lobe of the v2G filter; w = 260. 
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given region, then the extrema occur off center (and application of Eq. (5) underesti- 
mates the region diameter). If u is too large for the given region, then Gaussian 
smoothing merges neighboring regions, making Eq. (5) inappropriate for represent- 
ing regions at the scale of the given region. Applying Eqs. (5) and (6) at v 2G 
extrema for a selection of filter sizes assures that some u value falls into the range at 
which it is appropriate to analyze the local shape of each region. To fit disks as 
accurately as possible, we accept a disk only if the computed diameter D is close to 
the width of the v *G center lobe: D = 2aa. If the latter condition does not hold 
for a given filter size u and a given v *G extremum, the region size is more 
accurately analyzed using a different u value. 

4.2. Representing Image Regions as a Union of Disks 
After all disks have been detected for a particular image, sets of overlapping disks 

are created to describe uniform image regions. Typically a few large disks model the 
basic shape of the region, with smaller disks near the region border corresponding to 
protrusions in the region shape. A large detected region has gray levels that are 
uniform relative to its own scale; it may nevertheless contain internal variations of 
gray levels that are uniform relative to a smaller scale. Nested regions are con- 
structed whenever small disks are spatially contained within larger regions. The 
contrast of a region as a whole is computed as a weighted average of the contrasts of 
the disks constituting the region. 

It may be noted that the detected regions often serve as the starting point for 
further analysis, where the goal is to extract image structure defined not only by 
gray-level criteria, but also by other constraints or world knowledge. For example, 
identification of texture elements in perspective views involves enforcing consistency 
in the geometric properties of the texture elements [3]. Here, however, we restrict 
our attention to detecting regions having relatively uniform gray levels. 

Cd) (e) 

FIGS. 2d, e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to their contrast. (e) Negative-contrast regions are 
represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 
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5. IMPLEMENTATION 

The first step in processing an image I is to compute v 2G*I and (d/ilu)v 2G*I 
for a selection of filter sizes. To compute v 2G*I for a particular u value, the image 
is convolved with a mask whose coefficients are taken from 

202 - *2 

CT4 
e-r2/2n-' 

To compute (d/da)v 2G*I for a particular u value, the image is convolved with a 
mask whose coefficients are taken from 

6r2u4 - r4 - 4u4 -r2/2d 
U7 

e 

(b) CC) 

FIGS. 3a-c. (a) Fleecy clouds. (b) Disks corresponding to positive-contrast regions of relatively 
uniform gray level. Disks are shown with a darkness proportional to their contrast. (c) Positive-contrast 
regions are represented by sets of overlapping disks. Region intensity corresponds to nesting level: the 
outermost regions are black, nested regions are gray, and doubly nested regions are again black. (Regions 
nested more than two levels deep have been omitted.) 
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In our current implementation, six different v *G and ( a/&r)v 2G convolutions are 
evaluated, using u values of fi, 2fi, 3fi, 40, 50, and 6fi. The center lobes of 
the six v *G filters have diameters of 4, 8, 12, 16, 20, and 24 pixels, respectively. We 
perform the convolutions via multiplication in the Fourier domain. This is the only 
computation-intensive step of the region detection. Computation time can be 
reduced by using algorithms designed for simulatneous computation of v 2G 
convolutions for a range of u values. Burt [5] and Adelson and Burt [l] present 
efficient recursive algorithms for computing convolutions with Gaussians of many 
different sizes. Differences of Gaussians can be used to construct approximations to 
v *G convolutions. Note that the (d/kb)v *G*I values are needed only at sparse 
image locations (at extrema in the v *G*I images) and could therefore be efficiently 
computed in the spatial domain. 

The second step in processing the image I is to mark the locations where disks 
will be fit. In order to find disks that model positive-contrast image regions, each 
v 2G*I image is scanned to find local maxima: any pixel larger than all eight of its 
neighbors is marked as a disk-center location. Similarly, in order to find disks that 
model negative-contrast image regions, each v *G*I image is scanned to find local 
minima: any pixel smaller than all eight of its neighbors is marked as a disk-center 
location. 

Next, disk-diameter D and disk-contrast C are computed at each of the marked 
locations, using the v*G*Z and (d/au)v *G*I values observed at that location 
(Eqs. (5) and (6)): 

D = 20 /{u( &v2G*I)/(v2G*I)} + 2, C = $eD2/8a’(v2G*I). 

(d) (4 

FIGS. 3d, e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to their contrast. (e) Negative-contrast regions are 
represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 
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Disks are detected most accurately at a filter size close to their diameter (D = M’ = 
2fia); therefore only a restricted range of disks diameters is accepted from each 
filter size. In the current implementation, the detected disk diameter must be within 
two pixels of the filter size. (Adjacent filter sizes differ by four pixels.) For example. 
of the disks detected by the filter of width 12 pixels (u = 36), we keep only those 
with diameters in the range 10 to 14 pixels. 

The details of disk detection (the first step in region detection) are illustrated in 
Fig. 1 for an image of a rock pile. Parts (b) and (f) to (m) of Fig. 1 show the 
positive-contrast disks in detail; the disks detected at various filter sizes are shown 
separately. The image area occupied by each disk is given an intensity proportional 
to the disk contrast. Note that more disks are detected at small filter sizes than at 

(b) CC) 

FIGS. 4a-c. (a) Ripple marks in a shallow area. (b) Disks corresponding to positive-contrast regions 

of relatively uniform gray level. Disks are shown with a darkness proportional to their contrast. (c) 
Positive-contrast regions are represented by sets of overlapping disks. Region intensity corresponds to 
nesting level: the outermost regions are black, nested regions are gray, and doubly nested regions are 
again black. (Regions nested more than two levels deep have been omitted.) 
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large filter sizes: the expected distance between v2G*I zero crossings is propor- 
tional to u [14, p. 1361, and hence the density of local maxima (or minima) is 
proportional to l/a2. Part (b) of Fig. 1 shows the complete set of disks detected for 
the rockpile image. Only one disk can be displayed at pixel locations covered by 
several disks; since we display the disk of higher contrast, low-contrast disks that 
are spatially contained within high-contrast disks are not visible. Sets of overlapping 
disks are used to represent complete image regions; the rockpile regions are 
illustrated in part (c) of Fig. 1. 

6. PERFORMANCE ANALYSIS 

Figures 1 to 6 illustrate the performance of the region extraction on a variety of 
images. (These are a subset of the seventeen images presented in Blostein [2].) The 
images contain positive-contrast regions, which are brighter than the surround, as 
well as negative-contrast regions, which are darker than the surround. The positive- 
contrast and negative-contrast regions detected in each image are illustrated 
separately. Part (a) of each figure shows the original image. The images are 
rephotographed illustrations from books; they were digitized off the photographic 
negatives using a drum scanner. The images are 512 by 512 pixels; the image sizes in 
the figures vary because image borders have been trimmed. Parts (b) and (c) 
illustrate the positive-contrast regions: the maximal disks are shown in (b) and the 
complete regions are shown in (c). Parts (d) and (e) similarly illustrate the negative- 
contrast regions. The disks in parts (b) and (d) are shown with an intensity 
proportional to disk-contrast. In these displays, preference is given to high-contrast 
disks wherever several disks overlap. The regions in parts (c) and (e) are shown with 
intensities that were chosen to display nested regions well: the outermost regions are 
black, nested regions are gray, and doubly nested regions are again black. To reduce 

W (e) 

FIGS. 4d,e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to their contrast. (e) Negative-contrast regions are 
represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 
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(b) (cl 

FIGS. 5a-c. (a) Sunflowers. (b) Disks corresponding to positive-contrast regions of relatively uniform 
gray level. Disks are shown with a darkness proportional to their contrast. (c) Positive-contrast regions 
are represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 

the complexity of the displays, regions nested more than two levels deep have been 
omitted. There are typically less than 30 such regions per image. 

As can be seen from the figures, regions are detected quite reliably over a large 
range of sizes and in the face of significant noise. (Very large regions, such as the 
snow-tongue in Fig. 1, are fragmented because our implementation does not 
generate disks with a diameter greater than 26 pixels. A larger v *G filter size could 
easily be added if larger regions are desired.) The region detector is insensitive to 
lighting changes; this can be seen well in Fig. 2, where clumps of dirt are detected 
both in the sunlit as well as the shadowed parts of the field. 

The most notable weakness of the region extraction is the inaccurate representa- 
tion of elongated regions. This is not surmising, since the only shape primitive used 
is a circular disk. (The use of primitives with elongated shapes could lead to better 
detection of elongated regions.) Here we analyze the result produced by our region 
detector when it is applied to an elongated image region. Two sources of error are 
apparent: (1) the calculated disk diameters overestimate the widths of elongated 
regions and (2) long thin regions tend to appear as a string of disconnected disks. 
We discuss these two types of errors in turn. 
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60 (6 

FIGS. 5d.e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to their contrast. (e) Negative-contrast regions are 
represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 

We estimate the error of fitting disks to elongated regions by comparing the v *G 
response of a disk to the v *G response for an infinitely long bar. Consider an image 
of an infinitely long bar of width B, where the bar is brighter than the background. 
Our current implementation models this bar by fitting disks along the centerline of 
the bar, since this is where local maxima in the v 2G image occur. (If the bar has 
perfectly uniform intensity, a ridge of uniformly high values occurs along the 
centerline of the bar. However, any small fluctuations in bar intensity make some 
ridge points higher than others, resulting in a series of local maxima along the 
centerline of the bar.) The disk diameters will overestimate the bar width since the 
formula 

is used to obtain the diameters D that model the bar width B, whereas the correct 
formula for the bar (derived in the Appendix) is 

B = 2y/{o( $vzG*l)/~v2G*I)] + 1. 

The first term under the square root symbols is small, since we accept a disk only if 
the diameter is close to the filter size: D = w = 2fia. When D = 2fia we have 
( J/8a)v2G*Z)/(v2G*Z) = 0, so the calculated disk diameter overestimates the 
bar width by a factor of fi. Thus, in an image of an infinitely long region, the 
region width is overestimated by a factor of approximately fi. For regions that are 
more moderately elongated the overestimation is less serious. 

Using a circular disk as a shape primitive, we hope to model elongated regions by 
a string of overlapping disks. However, in the current implementation the disks that 
model an elongated region are often placed too sparsely, so that a disconnected 
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(b) (C) 

FIGS. 6a-c. (a) Aerial view of Levittown, Pennsylvania. (b) Disks corresponding to positive-contrast 
regions of relatively uniform gray level. Disks are shown with a darkness proportional to their contrast. 
(c) Positive-contrast regions are represented by sets of overlapping disks. Region intensity corresponds to 
nesting level: the outermost regions are black, nested regions are gray, and doubly nested regions arc 
again black. (Regions nested more than two levels deep have been omitted.) 

chain of disks results. One possible remedy is to fit disks more closely. Currently we 
fit disks at local maxima (or minima) of the v 2G*I images. An elongated region 
gives rise to a ridge of large values in the v 2G*I image. Such a region could be 
better modeled by fitting a disk at each ridge point rather than just at each local 
maximum. However, it is difficult to formulate simple and accurate criteria for 
judging when a ridge point is significant enough to be used as a disk center. 

Despite its shortcomings in representing elongated regions, the region detector 
permits fairly accurate estimation of the gradient of texture-element area, even. for 
textures composed of elongated texture elements f33. 
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Cd) (cl 

FIGS. 6d,e. (d) Disks corresponding to negative-contrast regions of relatively uniform gray level. 
Disks are shown with a darkness proportional to their contrast. (e) Negative-contrast regions are 
represented by sets of overlapping disks. Region intensity corresponds to nesting level: the outermost 
regions are black, nested regions are gray, and doubly nested regions are again black. (Regions nested 
more than two levels deep have been omitted.) 

7. SUMMARY 

A multiscale region detector is developed from the response of an ideal disk to 
convolution with a Laplacian-of-Gaussian (V *G) over a range of scales. A region of 
arbitrary shape is detected as a union of disks contained in the region. Uniform 
regions are detected over a large range of sizes and in the face of significant noise. 
The region detector has a straightforward implementation which does not involve 
parameters that must be tuned to particular images. The region detector requires 
little computation beyond the generation of v *G convolutions for a range of filter 
sizes. The detector is designed as a coarse estimator of the location, size, shape, and 
contrast of texture elements. It is not proposed for general image segmentation. 

APPENDIX 

In this Appendix we analyze the v *G convolution output for a bar image. A bar 
of width B and contrast C is defined as 

bar image : G? Y> = ( 
C ifO<x<B 
0 elsewhere. 

We show that at the center of the bar, 

B = Zo\/jo( ~~‘G*III(v2G*I~) + 1. 

This parallels the result of Eq. (5) obtained for a disk image. We begin with an 
analysis of the v *G response to a step-edge image; the bar response is computed as 
the sum of two step-edge responses. 
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Consider an image of a vertical step edge at x = B defined by 

step-edge image : 
C ifx2B 
0 elsewhere. (9) 

Using this definition of 1(x, y) in Eq. (1) gives 

x-b J J 
+‘x 2a2 - ( u2 + u’) 

u4 
,-(U*+Vz,/2+‘dudu 

-m -0c 

Thus 

v 2G response of step edge: (10) u 

This expression is the closed-form solution for the v 2G response of a vetical step 
edge of contrast C located at x = B. The v *G response of the vertical bar of width 
B and contrast C, as defined in Eq. (7), is the sum of two step-edge responses: 

v 2G response of a bar = (step up at x = 0) + (step down at x = B) 

(x - B)e-“-f”:2”2), (11) 

Substituting x = B/2 into Eq. (11) 

v 2G response at the center of a bar: 
&CB P/XoJ e- (‘12) 

0 

Taking the derivative with respect to sigma, 

a 
z v 2G response at the center of a bar: fiCB($ - +-‘i/sn2. (13) 
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Equations (12) and (13) can be combined to yield the desired expression 

B = 20 Jio( $o’G*l)/(aWI)} + 1. 
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