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Multiprocessor Pyramid Architectures for
Bottom-Up Image Analysis

NARENDRA AHUJA, MEMBER, IEEE, AND SOWMITRI SWAMY

Abstract-This paper descnbes three hieratchical organizations of
smaUl processors for bottom-up image analysis:pyramids, interleaved
pyramids, and pyramid trees. Progressvely lower levels in the hierar-
chies process image windows of decreasing size. Bottom-up analysis is
made feasible by transmitting up the levels quadrant borders and border-
related information that captures quadrant interaction of interest for a
given computation. The operation of the pyramid is ilustrated by ex-
amples of standard algodthms for intedor-based computations (e.g.,
area) and border-based computations of local properties (e.g., perimeter).
A connected component counting algodthm is outlined that illustrates
the role of border-related information in repreenting quadrant inter-
action. Interleaved pyramids are obtained by sharng processors among
several pyramids. They increase processor utilization and throughput
rate at the cost of increased hardware. Trees of shallow interleaved

Manuscript received February 23, 1983; revised July 18, 1983. This
work was supported by the Joint Serices Electronics Program, U.S.
Army, Navy and Air Force, under Contract N00014-79-C.0424.
N. Ahuja is with the Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign, Urbana, IL 61801.
S. Swamy was with the Coordinated Science Laboratory, University

of Iliinois at Urbana-Champaign, Urbana, IL 61801. He is now with
the Department of Computer Science, Gould Research Center, Rolling
Meadows, IL 60008.

pyramids, caUed pyramid trees, are introduced to reduce the hardware
requirements of large interleaved pyramids at the expense of increased
processing time, without sacrificing processor utilization. The three
organizations are compared with respect to several performance
measures.

Index Terms-Divide-and-conquer, image analysis, image decomposi-
tion, interleaving, paralel processing, performance evaluation, pipelining,
pyramid architectures.

I. INTRODUCTION
T HIS paper explores the use of hierarchical organization of
Tprocessors to perform strictly bottom-up computations.
Three architectures are described: pyramids, interleaved pyra-
mids, and pyramid trees. These architectures perform com-
putations that result in a small number of output bits (small
compared to the number of bits necessary to represent the en-
tire image). The architectures are thus intended to compute
image properties or to perform image analysis. They are not
suitable for performing image transformations, such as seg-
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mentation or enhancement, which provide a whole image as

output.
The central feature of the architectures described is a hier-

archy imposed on the image by a recursive square decomposi-
tion of the image. This hierarchy has formed the basis of
various pyramid approaches to be reviewed later in this section
and the quadtree representation of images. To obtain its quad-
tree, the image is overlaid with a sequence of increasingly fine
tessellations that define a recursive embedding of quadrants
and thus a hierarchy over image windows. The hierarchy is
described by a tree whose root node is associated with the en-

tire image. Each node in the tree represents a square window.
A nonleaf node has four children. Each child node is associ-
ated with a quadrant of the parent window. Leaf nodes cor-

respond to pixels or to windows of the smallest size.
Consider a set of images and the set of nodes in their tree rep-

resentations. Different mappings from the nodes (windows)
of possibly more than one tree (image) to a set of processors

define different processor hierarchies. The processors perform
computations on their corresponding windows. A single tree
(image) is processed a level at a time starting at the bottom
and progressing up the levels. The results of computations on

the images are obtained at the processors corresponding to the
root nodes. The terms node and processor will be used inter-
changeably. A nonleaf node receives the results of computation
from its children nodes and combines them, making use of the
way in which the children quadrants interact, to obtain the re-

sult for its own window. Information about quadrant inter-
action is necessary to make strictly bottom-up computation
possible. Clearly, it would be desirable to minimize the volume
of such information flow up the hierarchy. For such simple
computations as area. no information about quadrant inter-
action is necessary. For more involved computations such as

perimeter, quadrant borders completely specify quadrant
interaction. For complex computations such as connected
component counting, connectivity properties of quadrant in-
teriors consitute quadrant interaction and can be represented by
borders and certain border related structures (Section III-B-2).
A variety of image analysis tasks can be carried out efficiently
on such hierarchies. Bottom-up algorithms can be adapted
from literature to perform simple computations such as area

and perimeter. More complex computations that can be im-
plemented efficiently include connected component counting
and transformation of point sets into graphs.
The choice of the mapping, possibly many to one, from the

tree nodes to processors determines the different architectures
discussed in this paper. The first choice assigns one processor

to each node in the tree, yielding the standard multiprocessor
pyramid organization proposed by Uhr in 1971 [1] (see also
[2] - [4] ) and called "recognition cone." A similar organization,
called cellular pyramid acceptor, is also considered by Dyer
[5]. There, processors are organized as a complete quadtree
with additional interconnections between neighboring pro-

cessors at the same level. Each node has a finite set of states.
A node changes its state depending upon its current state and
the states of its parent, children and siblings, and in parallel
with all other nodes. A special case of bottom-up cellular pyr-

amid acceptor has also been considered [6] where each node

changes its state based upon its current state and the states of
its children. The interconnections among the processors in the
bottom-up cellular pyramids and in the first hierarchy discussed
in this paper are similar. However, each nonleaf node in the
latter case receives from its children the results of their com-
putations and explicit information about quadrant interaction
which cannot be naturally described in terms of states and state
transitions. A small general-purpose processor is assumed at
each node. An algorithm for counting the number of connected
components is outlined that highlights the need for a general
processor and complex border related information from
quadrants, and distinguishes the use of the first hierarchy from
the bottom-up pyramids described in [6]. In [7] Dyer con-
siders a pyramid machine where each node has a small pro-
cessor. He discusses the node interconnections and chip layout
aspects with respect to VLSI design. This paper addresses the
dataflow aspects and implementation of bottom-up algorithms.
The remaining two choices of the node to processor map-

pings are many to one. Both can be viewed as hierarchies using
different interconnections among pyramids. The first of these
two choices involves interleaving of pyramids where processors
at a single level of the hierarchy may simultaneously process
windows from several images. Interleaved pyramids achieve
high throughput at the cost of increased hardware. The second
choice involves a hierarchy of pyramids interconnected as a
tree, with each pyramid being capable of processing a subimage.
A large image is divided into sets of subimages which are pro-
cessed in parallel by the nodes of the pyramid tree. Pyramid
trees reduce input bandwidth and hardware costs as compared
to the interleaved pyramids at the expense of increased compu-
tation time.
The pyramid organization of processing elements has received

the attention of several researchers as noted earlier. Rosenfeld
[8] presents an enlightening treatment of cellular pyramids,
cellular arrays, other related machines, and their performance
with respect to commonly used image operations. Some of
the work is motivated by the quadtree representation [9], [10]
of images that use recursive decomposition [ I 1 ] of an image for
the purpose of compact representation rather than multipro-
cessing. Pyramids have also been used to obtain a hierarchical
representation of an image at several resolutions, not necessarily
to be processed by more than one processor; see Kelly [12],
Levine [13], Hanson and Riseman [2], Price and Reddy [14],
Rosenfeld [9], Tanimoto [15], and Tanimoto and Pavlidis
[16]. The coarser resolutions are obtained by, for example,
applying averaging operators to the pixels of a window. The
analysis at higher levels is approximate but quick, and is used
to "plan" the more detailed analysis at lower levels. Multires-
olution pyramids may have overlap between the windows of
adjacent nodes [17]. Multiresolution pyramids to represent
edges at different resolutions [181 have also been investigated.
A hierarchical architecture called active quadtree networks,

which is an adaptation of the quadtree representation to multi-
processing, has been described by Dubitzki et al. [191. They
assign a processor to each block in the quadtree representation
of the image. The number of and interconnections among pro-
cessors are thus image dependent.
Among the nonhierarchical architectures, a common approach
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is to assign a processor to each pixel or to each neighborhood
of pixels with local interconnections among processors. Ex-
amples of such mesh architectures are MPP [20], CLIP4 [21],
and DAP [221. Other architectures establish dynamic inter-
connections among processors (ZMOB [231], PASM [24] ).
Section II describes the architectural details of the multipro-

cessor pyramid. Section III briefly describes standard algo-
rithms for interior-based computations (e.g., area) and border-
based computations (e.g., perimeter). Section III further
describes a connected component counting algorithm to illus-
trate the role of border-based information in making bottom-up
analysis feasible. The computational complexity and memory
requirements are also discussed. Interleaved pyramids and pyr-
amid trees are described in Sections IV and V as architectures
for achieving increased processor utilization. Section VI de-
scribes performance measures that are used to evaluate the
architectures. Section VII presents concluding remarks. The
Appendix gives detailed derivations of the performance mea-
sures for the pyramid tree.

II. THE PYRAMID ARCHITECTURE

This section describes the pyramid architecture, the first and
the most basic of the three hierarchical organizations of pro-
cessing elements to be discussed in this paper.

A. Processor Hierarchy

Assume that the windows of the finest tessellation contain a
single pixel. If such is not the case, only trivial modifications
to the description need to be made. The pyramid architecture
is reviewed below using a notation similar to that used by Burt
et al. [17]. Consider a 2L X 2L image. A pyramid to process
this image is a layered arrangement of L + 1 square arrays of
processing elements (PE) A(0), A(l), * * *, A(L). The bottom
array is at level 0 and is of size 2L X 2L. Arrays at higher
levels have their dimensions reduced by half from level to level.
Thus, A(l) measures 2L-1 X 2L- 1 and any A(l), 0 < I S L,
measures 2L 1 X 2L- '. The number of PE's is reduced by a
factor of four from level to level. The number of PE's in A(l),
0 < 1 < L, is 22(L- 1). A(L) has a single PE which is the apex
of the pyramid (Fig. 1).
Each PE in the pyramid is indexed by a triple (i, j, 1), where

1 is its array level and i and j are its row and column numbers
within that array. Rows and columns in an array A(l) are
numbered 0. 1,.- * 2L - 1, from bottom to top and from
left to right, respectively. The interconnections among various
PE's in the pyramid are given by their i, j, and 1 coordinates,
viewing the pyramid as a three-dimensional structure. Each
PE (i, j, 1) has a position (x(i, 1), y(j, 1)) relative to the image.
Let the pixels be placed at the centers of the square windows
of the finest tessellation. If the origin of the x, y plane is as-
sumed to coincide with the bottom-left corner of the Euclid-
ean image, then the continuous coordinates of the bottom-
left pixel are given by

X(0, 0) =y(O, 0) = '2
where the north and east directions are labeled as positive x

A (L)
'1'lI", ,
,f

Fig. 1. Arrays in a (L + l)-level pyramid that can process a 2L X 2L
image.

and y axes, respectively. Then

X(i, 0) = i + 2 O< i < 2L - 1

Y(i, °) =i + 2 0 < j < 2L - 1.

At any level 1> 0

x(O, 1) = y(O, 1) = 2

and

x(i,1)=x(O,1)+i2' = 2' '(1 + 2i), < i<2L -_I1
y(i, l)= 2'-1(1 + 2j),

Each PE indexed (i, j, 1) corresponds to the 21 X 21 window
centered at (x(i, 1), y (j, 1)). The total length of the border of
this window is 4 (21 - 1) since each corner pixel is shared by
two edges. The PE's corresponding to the quadrants of (i, j, 1)'s
window constitute (i, j, 1)'s children at level (1 - 1). The
children PE's have indexes (2i+ 1, 2/, 1- 1), (2i+ 1, 2j+ 1,
1 - 1), (2i, 2j+ 1, 1 - 1) and (2i, 2j, 1- 1), respectively, (Fig.
2). A PE at level 1 = 0 corresponds to a single pixel which also
constitutes its four border segments.

B. Dataflow
As pointed out in Section I, the architecture to be described

performs bottom-up computations on the image. In order to
compute a given property at a window, its PE must receive
data from its children. The data transmitted by a PE to its par-
ent consist of the results of computation performed by the PE
on its corresponding window, and border-related information.
The latter is used by the parent PE to determine the interaction
among its window's quadrants. In all three architectures dis-
cussed in this paper, the image data is loaded into the PE's at
the base of the hierarchy in a manner determined by the archi-
tecture. Data paths are provided between each PE and its four
children along which it receives, in parallel, data from its chil-
dren. The hierarchical manner of computation necessitates
limited information flow bottom to top; otherwise the data
transmission time may dominate the overall computation time.
Now given a window, the structural relationships among its

quadrants must depend upon their adjacent borders. Therefore,
the quadrant interaction necessary for computing various prop-
erties may be expressed by borders and the relationships of
quadrant interiors to their borders. For example, borders are
required for perimeter computation (Section III-A), and con-
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outlined below are straightforward adaptations of algorithms
that have appeared in the literature. The connected component
counting algorithm described is new, but details are skipped to
maintain the focus of attention on the architectures.

NEST
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Fig. 2. The window corresponding to a node (i, j, 1) and its four
quadrants.

nectedness properties of border runs must be known to count
number of connected components (Section III-B). The total
volume of data to be transmitted from a PE to its parent is
proportional to the length of the borders of its corresponding
window-O(n) for an n X n window. It is assumed that the
data transmission rate is fixed for all data paths between PE's
at adjacent levels. Thus, data transmission time per PE cor-

responding to an n X n window is O(n). The total volume of
data transmitted per PE doubles with level. However, since
the number of PE's decreases by a factor of four per level, the
overall dataflow up the pyramid halves with level.

C. Processor Element Hardware

The PE's are small general-purpose processors with identical
CPU's and variable memory size. This is in contrast with the
finite-state machine model of a processor used in bottom-up
cellular pyramid acceptors, as pointed out in Section I. PE's at
different levels of the pyramid execute the same set of in-
structions on windows of different sizes, and hence on qifferent
data. The execution of most algorithms is data dependent.
This suggests that the PE's operate in a MIMD mode and that
the instruction and data memories are segregated. The total
size of the data memory for a PE at level k is 0(2k). The data
word size at all levels is fixed and is sufficiently large to hold
the results (O(log2 N) bits) for the largest (N X N) images of
interest.'

III. IMAGE ANALYSIS
This section considers several image analysis algorithms for

the pyramid architecture described in Section II. These algo-
rithms are also valid for the interleaved pyramids and pyramid
trees discussed in Sections IV and V. Binary images are con-

sidered where 0 and 1 denote the (white) background and
(black) foreground, respectively. The algorithms are divided
into two classes: interior-based algorithms, or those whose
computations on a window involve only the results on the
quadrants; and border-based algorithms, or those whose com-

putations involve both results of the computations on its quad-
rants, and their borders. The chosen classes represent two
major types of commonly performed image computations; each
type has a different time complexity. The interior-based and
simple border-based algorithms (e.g., local property counting),

Here and in the rest of the paper, the logarithm notation log x will
denote log2 x for simplicity.

A. Interior-Based Algorithms
These algorithms compute such properties of images that de-

pend upon numbers and coordinates of the black pixels, but
not on the relative positions of black and white pixels. Bottom-
up computation of total black area and centroid in quadtree
networks outlined in [19] can be used for pyramids. Each leaf
of the pyramid is assigned an area measure of 0 or 1, cor-
responding to its color. Each nonleaf node then computes its
area measure by adding the areas computed by its four children
nodes. The area computed at the root is the total black area
in the image. To compute the centroid of an image, the south-
west corner pixel in any window is given the coordinates (2,
Each black leaf is given the centroid coordinates of (1, 2).
The centroid at an interior node is computed as an area-
weighted mean of the centroid values received from the four
children nodes, with coordinates reexpressed with respect to
the origin of the parent window.

B. Border-Based Algorithms
The properties computed by algorithms described in this sec-

tion are determined by the number of black pixels and their
neighborhood configurations. The neighborhood information
is accumulated by processing border segments of adjacent
quadrants of increasing size, unlike in quadtrees [9] and quad-
tree networks [19], where such information is extracted from
blocks and their neighbors. Examples of border-based prop-
erties include local properties such as perimeter and genus, and
the number of connected components that involves global con-
nectivity among black pixels. Thus, additional information
about which pixels along the borders of a quadrant are con-
nected via black pixels in the quadrant's interior must be carried
up the pyramid, along with the borders themselves. In this
sense, the algorithms for such properties are more complex.

1) Local Property Counting: These algorithms are based upon
the frequencies of various local configurations of 1's and O's.
These frequencies are computed from the adjacent border seg-
ments of quadrants of increasing sizes as computation pro-
gresses up the pyramid. Two examples of such computations
are perimeter and genus.
The total perimeter of an image may be defined as the num-

ber of black-white pairs of neighbors in the image [25]. Thus,
leaves (pixels) are assigned a perimeter value of 0. The perim-
eter at an interior node has two components: 1) that due to
the black-white pairs of pixels within the node's quadrants,
which is the sum of the perimeter values assigned to its children
nodes, and 2) that due to the black-white pairs of pixels be-
longing to adjacent quadrants, which must be computed from
the pairs of border segments of quadrants which are adjacent
in the image. Computation at the root yields the total perim-
eter value for the image.
Genus of an image is defined as the number of components

minus the number of holes. It can be computed from the
histogram of the image defined over distinct classes of con-
figurations of its 2 X 2 neighborhoods [25]. Each node carries

EAST
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the histogram for its window, which is initialized to a vector of
zeros for leaves. The genus at a node is computed as a linear
sum ofthe histogram bin counts. An interior node at level I > 0
contains (21- 1)2, 2 X 2 neighborhoods formed by 1) the in-
teriors of its four quadrants, each contributing ((21 - 1)2 - 1)/4
neighborhoods, 2) four pairs of adjacent quadrant border seg-
ments, each pair contributing (21-l - 1) neighborhoods, and 3)
interior corner pixels of the quadrants, contributing the central
neighborhood. The histogram for the node is obtained by
computing the histograms of 2) and 3) and adding to them the
four already known histograms for 1). Dyer [261 gives a genus
algorithm for quadtrees that uses a similar approach. However,
as mentioned earlier, the neighborhood information is gathered
differently in quadtrees than in pyramids.
2) Connected Component Counting: Connected components

of a binary image will refer to the black regions in the image.
This section sketches an algorithm for bottom-up computation
of the number of connected components. The details of the
algorithm are tedious [281, and are skipped here to avoid di-
verting attention away from architectural issues.
Each node carries 1) a count of the number of components

within its window that do not reach its border, and 2) for each
component in the window that touches the border of that
window, a doubly linked list linking the component's border
intercepts (runs) in the same order as they are encountered
along a border scan (Fig. 3). Leaves are assigned a component
count of 0. The linked list of a leaf node is empty ifit is white,
and contains exactly one black run of unit length if the leaf is
black. Each interior node receives from its children their
counts and linked lists, and obtains its own count and linked
list in three steps. First, the NW and NE quadrants are merged
to obtain the count and linked lists for the northern half of
the window. The same procedure is then repeated on the SW
and SE quadrants. Finally, a third application of the proce-
dure merges the northern and southern halves. Following is a
brief description of the merge procedure illustrated for the
NW and NE quadrants.

First, the adjacent border segments of the NW and NE quad-
rants are logically oRed to get merged runs along a common
border. The merged runs represent components lying in the
NW and NE quadrants that are adjacent. A linked list is then
obtained to represent the corresponding connectivity among
runs along the common border. Next, a count is obtained of
those merged components that do not reach the extemal bor-
der segments (i.e., the border of the merged window). To do
this, the common border is scanned in one direction, say from
south to north, and congruence classes of runs are identified.
Each class consists of all the runs belonging to a single com-
ponent. Each class is examined for external links. If none of
the runs is linked to runs along the external border segments,
the class represents a component that does not reach the border
of the merged window. For each such component found, the
desired count is incremented by 1. Finally, a linked list is ob-
tained corresponding to the remaining components for the
new window formed by merging NW and NE quadrants. This
is done by performing a scan (say south to north) of each con-
gruence class of runs along the common border. A sequence
of successive runs along a chain having links to external border
segments is identified. For each scan, the nearest runs, if any,

Fig. 3. Components in an image window and the corresponding set of
doubly linked lists. Each list links successive border intercepts of a
single component that reaches the window border. Links are shown
by arcs joining pairs of border runs.

on the external border segments connected through runs on
the common border directly linked. This gives a set of linked
lists for the northern half. Over all congruence classes, the
total number of (run) accesses is proportional to the number
of runs in NW and NE quadrants [28]. The total number of
accesses and the overall computation time of the algorithm is
linear in the length of the border segments of the NW and NE
quadrants.

C. Complexity Issues
This section gives estimates of the random access memory

and computation time required by the pyramid to execute the
algorithms described in Section 111-A and B.

1) Memory Requirements: The total amount of local ran-
dom access memory required by all the PE's depends on the
type of computations to be performed. The interior-based
algorithms do not involve any crossborder computations. Con-
sequently, the amount of memory required at a PE at any level
reflects the requirements of a fixed number of arithmetic op-
erations on numbers representing area, centroid, etc. Since a
fixed memory word length of 0(log N) bits is used in PE's at
all levels, the total memory required by each PE for the interior-
based algorithms is 0(1) words.
The local property counting algorithms perform Boolean op-

erations on crossborder bit pairs while the connected compo-
nent counting algorithm generates and processes linked lists
representing run and component connectivities. Let Cm * n be
the memory required to store border information for an
n X n window; the constant Cm does not depend on the win-
dow size, but depends on the algorithm. Since the memory
required for arithmetic operations is small [0(1)] and border
information is restricted to 0(n), the above two algorithms
have memory requirements approaching the maximum for any
algorithm. The total memory required by the pyramid is

=
l

410gN-1 -C, . 2
1=0

= O(N2) words.

467



IE8EL TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-6, NO. 4, JULY 1984

2) Computation Time: The total computation time for an
N X N image is the sum of the numbers of arithmetic and logi-
cal operations at all log N + I levels of the pyramid and the
sum of the transmission times between all logN pairs of adja-
cent levels.
Interior-based algorithms perform a fixed number, say C, of

arithmetic operations at each PE in the pyramid and transmit
a fixed number of data words per PE. Hence the total number
of parallel arithmetic operations and parallel data transfers exe-
cuted is proportional to the number of levels: O(logN).
Border-based algorithms that count local properties perform a
fixed number of arithmetic operations at each PE plus a Boolean
operation on the edges requiring O(n) time for an n X n win-
dow. Thus, the total number of arithmetic/logical operations
executed is O(n). The connected component counting algorithm
has procedures that scan linked lists of length O(n) for an
n X n window. As has been pointed out in Section III-B, for
each of the procedures the total number of run accesses and
logical operations required is proportional to the number of
border runs. Scanning a linked list of length O(n) and relocat-
ing pointers in the list requires O(n) arithmetic and logical op-
erations. The time required by border-based algorithms to
transmit data for an n X n window is O(n). Thus, the sum of
the computation and data transmission times for border-based
algorithms for an n X n window is Ctn, where the constant Ct
depends on the algorithm but not on the window size. Thus,
the total number of operations for an N X N image is

log N
= E Ct2'= 0(N).

1=0

IV. INTERLEAVED PYRAMIDS

The pyramid architecture described in Section II is a natural
candidate for pipelining [4] since at any given time an image is
processed at a single level. Progressively higher levels define
successive segments in the pipeline. For interior-based algo-
rithms, the PE's at every level execute the same number of
arithmetic operations, requiring the same amount of time.
Pipelining, therefore, results in simultaneous utilization of all
the processors in the pyramid. For the border-based algorithms,
on the other hand, each PE corresponding to an n X n window
must process a volume O(n) of data. The actual processing time
is data dependent and, in general, is proportional to n. The PE
at the root of the pyramid has the largest volume of data, and
hence takes the longest time to process its window. The delay
between the inputs (outputs) of two consecutive images is
equal to the time taken by the PE at the root of the pyramid,
and is O(N). Pipelining therefore results in high utilization of
the PE at the root and progressively lower utilization of PE's
at lower levels, the utilization halving with each level down.
A simple method to better utilize the nonapex PE's is to

share them among several pyramids. This approach character-
izes the second hierarchy, called interleaved pyramids, that
achieves the high utilization of the apex processor at all levels.
To describe interleaved pyramids, first let Ctn denote, as before,
the time required to execute a border-based algorithm on an
n X n window, where C, is a constant that depends on the

(a)

(b)
Fig. 4. (a) The basic pyramid (solid lines) with additional nodes (dotted

lines) at level 1. (b) Interleaved pyramid with three levels.

algorithm and can be interpreted as the worst case execution
time. A PE cannot process windows at intervals less than Ctn.
This is to synchronize data transfer between levels. In case a
PE completes its execution in time less than Ctn, it idles for
the remaining time. The lower the level, the lower the pro-
cessor utilization, and hence larger the number of pyramids
that can share that level.

Fig. 4(a) shows the basic pyramid drawn in heavy lines. Since
a PE at level I has half the workload of its parent at level I + 1,
and hence is half as busy, it can be time-shared by two parents.
Consider the leaf nodes. Let us insert additional nodes at level
1 to double their number. Each leaf now sends data to two
different parents alternately [Fig. 4(a)]. Let us say that a leaf
initially inputs data to its left parent (position 0), then switches
to its right parent (position 1), and then back again. If the leaf
nodes transmit data to their parents every Ct time units, then
the left and right parents receive data at times 0 and Ct (modulo
2C1), respectively. The two sets of parents process different
data, received at level 0 at different times. The nodes at level
1 are in turn shared by two parents at level 1 [Fig. 4(b)].
Thus, level 2 has four sets of nodes, each set synchronously
transmitting and receiving data every 4Ct time units. The dif-
ferent sets receive data in a round robin fashion. The order in
which this happens is given by the integers represented by the
sequences of position bits along the paths from different sets
leading to level 0, level 0 positions representing the least sig-
nificant bits. Fig 4(b) shows interleaved pyramids containing
three levels. In general, an (L + 1)-level interleaved pyramid
has 22L input PE's and 2L output PE's. Nodes at any level /
belong to 21 different sets. The sets time-share the levels below,
each set transmitting and receiving data every 21Ct time units.
For an N X N image the root level has 21og N (=N) nodes
each of which outputs its data every NCt time units, the out-
puts being interleaved in time and appearing at times 0, Ct, * ,

(N - l)Ct. The N nodes represent the roots ofN interleaved
pyramids, that output results at the same rate at which images
are fed in.
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The image window to PE mapping used by the interleaved
pyramids may be obtained by considering the PE's at a given
level in an interleaved pyramid and the nodes at the same level
in the complete quadtree representations of the input images.
The number of PE's at level 1 of an interleaved pyramid is
22 logN- I. The number of nodes at level 1 in a single com-
plete quadtree is 4logN- I. Thus, nodes at level I in (22 logN- l)/
(4logN41)= 21 successive trees maps onto different PE's at
level 1 in the interleaved pyramid. Alternatively, a node in a
given position at level 1 in every (21 + I)st tree maps onto the
same PE at level 1. In contrast, the basic pyramid architecture
employs a one-to-one mapping between image windows (quad-
tree nodes) and PE's. Each node in the tree maps onto the PE
in the corresponding position in the pyramid.
Since the same computations on tree nodes are performed

both by the basic and the interleaved pyramids and only the
PE assignment to the nodes changes, the algorithms for the
basic pyramids are also valid for the interleaved pyramids.

V. PYRAMID TREES
Despite its high throughput rate, the interleaved pyramid

presents severe implementation problems, chiefly due to its
size. (The same is also true of the basic pyramid.) For ex-
ample, to process a 512 X 512 image, an interleaved pyramid
requires about a half million PE's at ten different levels. More-
over, for maximum speed, the entire image must be fed in
parallel. This problem is alleviated by the third hierarchy,
called pyramid tree, which provides a way of reducing the
required number of PE's and the input memory bandwidth
at the cost of a decrease in the throughput rate.

Since the number of PE's in interleaved pyramids grows very
fast with the number of levels, shallow interleaved pyramids
are desirable. However, interleaved pyramids with fewer than
logN + 1 levels can only process images smaller than N X N.
Consider interleaved pyramids with k levels. Let N = 2L and
L = pk, where p and k are positive integers. The image array
of 2L X 2L pixels may be represented as a 2k X 2k array of
2k(p-1) X 2k(p-1) windows of pixels. If the results of com-
putation and border-related information pertaining to these
windows are available, they may be processed by a k-level
interleaved pyramid, each of whose bottom level PE's receive
data corresponding to four windows. Since a 2k(P-1) X
2k(p-i) window may still be too large to be processed by a
single k-level interleaved pyramid, it can be further divided
into a 2k X 2k array of 2k(p-2) X 2k(p-2) windows of pixels.
If such a recursive division is continued for (p - 1) steps,
2 X2 arrays of 2k P-(p-l)] X 2k P(P1) i.e., 2k X 2k
windows of pixels are obtained. The final set of 2k X 2k
windows requires a (k + 1)-level interleaved pyramid. The
required interconnection of interleaved pyramids is a tree
(Fig. 5). For a 2L X 2L image, where L = pk, the tree has p
levels. The leaf nodes are (k + 1)-level interleaved pyramids
and accept pixel inputs. Such a two-step hierarchy (tree of
interleaved pyramids) of PE's, called pyramid tree, defines the
third organization described in this paper. The branching
factor of the tree will be discussed below.
Let a PE in the pyramid tree have the index (It, Ip), meaning

2K Edges -* \

2K-1 Edges -*X
...

Level P-1

Level P-2

Level 0

Fig. 5. A pyramid tree.

that the PE is located at level Ip of an interleaved pyramid that
is itself located at level lt of the tree. Consider a nonleaf inter-
leaved pyramid at level lt, 2 < It < p - 1. It has 22(k-1) PE's at
level 0 [index (It, 0)] and 2k-1 PE's at level k - 1 [index (It,
k - 1)] . Each PE with index (It, 0), It > 2, receives data for
four windows, each of size 2k(1t-1) X 2k(lt -1) processed by
PE's indexed (It- 1, k - 1). Thus, data for 22k windows are
received from interleaved pyramids each of which has 2k-1
output PE's. This requires (22k)/(2kk1) = 2k+ 1 children
interleaved pyramids at level It - 1. However, as will be seen
later, for synchronization purposes we will allow only 2k
children (Fig. 5). Thus each child PE indexed (It - 1, k - 1)
sends data for two windows in the 2k X 2k array of windows.
Now consider the pyramids at level It = 1. Each such inter-

leaved pyramid must receive data from output PE's of (k + 1)-
level interleaved pyramids at level It = 0. Since level 0 pyra-
mids have 2k output PE's each, where each output PE supplies
data for two windows serially, the number of children inter-
leaved pyramids per interleaved pyramid at level lt = 1 is
(22k)/(2k 2) = 2k-1 (Fig. 5). PE's indexed (1t, 0), lt > 1,
receive four (window) inputs each, whereas PE's with index
(0, 0) receive single pixel inputs. Fig. 6(a) shows a schematic
of a pyramid tree for a 512 X 512 image with k = p = 3. The
root node and its 2k = 8 children nodes constitute the top
p - 1 = 2 levels of the pyramid tree. Thus, each of these nodes
represents a three-level interleaved pyramid. Each of the level-l
nodeshas2k-1 = 4 children nodes, each representing a k + 1 = 4
level interleaved pyramid.

Fig. 6(b) shows a 512 X 512 pixel image divided into an
8 X 8 (2k X 2k) array of 64 X 64 windows. These windows
are processed in two batches (for synchronization) by the level-I
pyramids to provide inputs to the root node. The division of
the windows into two batches and the order in which the win-
dows within each batch are processed is not unique; one way
is shown in Fig. 6(b). In this example an 8 X 8 array is divided
into its northern and southern halves. The windows in the
northern half are processed prior, to those in the southern half.
In either half, each of the 2k = 8 level-I interleaved pyramids
processes all windows from a single column in the order shown
by the integer labels.

Fig. 6(c) represents one of the 64 X 64 windows divided into
an 8 X 8 array of subwindows to be processed by 2k-1 = 4 of
the bottom level interleaved pyramids that have a common
parent. As in Fig. 6(b), the array is divided into its northern
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Fig. 6. (a) A schematic for a pyramid tree with k -p =3. Each node
represents an interleaved pyramid. (b) An 8 X 8 array of 64 X 64
windows of a 512 X 512 image to be processed by the interleaved
pyramids at level 1. (c) An 8 X 8 array of 8 X 8 windows to be pro-
cessed by a set of four level-0 interleaved pyramids.

and southern halves. In either half, each of the four inter-
leaved pyramids processes all the windows from two columns
with the same column-header and in the order shown by the
integer labels.

It will now be seen that such a serial-parallel mode of data-
flow does not render any node idle due to lack of data. This is
because the time required by a node to process current data
is also the time required to receive the data for the following
computation. In the following, It is denoted by I for short.
An interleaved pyramid represented by a node at level 1,
I < I16 p 1, of the tree has inputs that correspond to win-
dows of size 2kl X 2kl. The processing time in a PE at the base
of that pyramid is Ct * 2k1+ 1 , and therefore the output latency
of that pyramid is Ct * 2kl+I, provided the inputs arrive at the
same rate (Section III-B). This node's 22k inputs are divided
into 2k groups each of size 2k with inputs within a group
arriving serially since they are the interleaved outputs (each
output being used twice) of a single interleaved pyramid one
level below. T*hus, all the inputs arrive in the time required to
produce 2k interleaved outputs serially in an interleaved pyra-
mid at level I - 1. Using an inductive argument on I for I > 1,
the output latency of such a pyramid at level 1 - 1 is Ct
2k(1-1)+I, and hence- the total time to produce all 2k outputs
within a group is Ct * 2k1+ 1 as is required.

TIhe mapping between image windows and PE's in a pyramid
tree may be obtained in two steps. First, the mapping between
image windows and interleaved pyramids in the tree is given by
the recursive division of the image into 2k X 2k subarray of

windows, as described earlier in this section. Next, within an
interleaved pyramid, the image window to PE mapping is the
same as described in Section V. Together, the two steps deter-
mine the general image window to PE mapping in pyramid
trees. Algorithms designed for the basic pyramids may also be
used by PE's in pyramid trees.

VI. PERFORMANCE MEASURES
This section evaluates 1) the number P of PE's and 2) the

total memory M required by the basic (pipelined) pyramid,
the interleaved pyramid, and the pyramid tree. The perfor-
mance of the architectures is compared with respect to 3) the
input bandwidth B, 4) the output latency L (reciprocal of the
throughout), and 5) the image turnaround time T. The input
bandwidth measures the degree of parallelism of dataflow at
the input. As seen from the discussion in Sections IV and V,
the interleaved pyramids and vvramid trees offer retdiiredl
output latencies partly at the expense of increased PE and
memory requirements. To compare the three architectures
with respect to the effective PE and memory utilization, the
above measures 1) and 2) will be normalized with respect to
4) to obtain two additional measures. The first of these
measures PT, is the number of PE's used per unit output
latency. This measure reflects overall processor utilization-
the smaller its value, the better the utilization. A deficiency
of this measure is that it assigns the same weight to PE's at
all levels and does not take into account their different memory
sizes. To remedy this, the total memory MT required per unit
output latency is computed. Taking their weighted sum in
some technology dependent proportion, PT and MT together
measure the overall efficiency of a design.

A. Basic Pyramid
1) Number ofProcessors:

logN 4N2
p= E 41t

1=0

2) Total Memory:

M= E 41ogN-I .Cm -21
1=0

= CmN(2N -1 ).
3) Input Bandwidth: The input bandwidth is the number of

parallel pixel inputs to the PE's at the bottom level of the
pyramid. Since there are as many PE's at the bottom level as
the number of pixels, and all pixels are loaded in parallel, B is
given by

B = 4logN =N2

4) Output Latency: The pipelining results in an interval of C
time units [see Section III-C-2] between successive outputs
of the interior-based algorithms. For the border-based algo-
rithms, the PE at the root of the pyramid takes the longest time
to process its window. Therefore the delay between two con-
secutive input (output) images is the time taken by the PE at
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the root of the pyramid. Therefore

L = C, for interior-based algorithms

= CtN, for border-based algorithms.

5) Image Turnaround Time: The image turnaround time is
the time required to process an entire image. This is simply
the sum of the processing times required at all the levels of the
pyramid. For the interior-based algorithms,

T=C(logN+ 1).

For the border-based algorithms,

logN
T= E Ct * 21

1=0

=Ct -(2N - 1).

6) Number ofProcessors Per Unit Output Latency:

PT = C( = CN2, for interior-based algorithms

=2/ 4 3= CtN - (4N 13) =
3 CtN , for border based algorithms.

3) Input Bandwidth:

B = N2 (same as for the basic pyramid).
4) Output Latency:
L = Ct.

5) Image Turnaround Time:

T = Ct(2N - 1) (same as for the basic pyramid).

6) Number ofProcessors Per Unit Output Latency:
PT = Ct * (2N2 - N).
7) Total Memory Per Unit Output Latency:
MT= CtCm * N2 log 2N.

Note that the output latency is equal to the processing time
of a PE at the base of the pyramid. The expressions for PT
and MT indicate that the interleaved pyramid achieves a factor
of N improvement in processor utilization and a factor of
N/logN improvement in memory utilization over the pipe-
lined basic pyramid. This is achieved by approximately a
3 increase in the number of processors and a logN increase
in the amount of memory.

7) Total Memory Per Unit Output Latency:

MT = C - CmN(2N - 1), for interior-based algorithms
= CmN(2N- 1)CtN= CtCmN2 (2N- 1),

for border-based algorithms.

B. Interleaved Pyramid
The interleaved pyramid has a performance similar to the

basic pipelined pyramid, for processing interior-based algo-
rithms. For border-based algorithms, it provides the same kind
of improvement in performance over the basic pipeline pyra-
mid, as pipelining provides over the basic pyramid for process-
ing interior-based algorithms-both increase utilization of lower
level PE's and the throughput rate. However, the interleaved
pyramid uses many more PE's than the basic pyramid, although
the coWputation time and memory size required at a single PE
corresponding to an n X n window remain Ctn and Cm n, re-
spectively, as in the basic pyramid. The performance measures
described earlier are computed below for the interleaved pyra-
mids executing the border-based algorithms.

1) Number ofProcessors:
logN

P = E, 22 logN- I

1=0

=N(2N- 1).
2) Total Memory:

C. Pyramid Tree
The performance of the pyramid tree is a function of the

parameters p and k. The derivations of the performance mea-
sures are more involved than for the previous two cases. There-
fore, only the results are listed below; the detailed derivations
are provided in the Appendix. Once again, the perform4nce
measures obtained are for the more complex case of the border-
based algorithms.

1) Number ofProcessors: Let P(p, k) denote the total num-
ber of PE's in the pyramid tree required to process an N X N
image (N= 2Pk). Then,

N -2k 2k-I for p > 2

PN(2N- 1) for p= 1.

The following table gives values of P(p, k) for small values
of p and k. It indicates the large reduction in h4rdware as
compared to the other two architectures.

p
k

2

3

4

1 2 3 4
28 62 254 1022
120 508 4092 32 764
496 4088 65 528 1.049 X 106

(number of nodes at level 1).
(memory required per node at level 1)

2) Total Memory: The memory M(p, k) required by the
pyramid tree can be expressed as

M(l,k)=Cm * 22k(k+ 1)

and

M(p, k)=- (k + 1) p 2k(P+1) for p > 1.
2

logN
M= E

1=0

logN
= E 22logN- .I C 21

1=0

=CmN2 log 2N.
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TABLE I

Total
i of memory Output InPut Turnaround
PE s size latency Bandwidth time PET M

T

4N,,2 ~ 2 2 3 3
Basic Pyramid 3 o(N O(N) o(N ) O(N) O(N ) | (N

2 2 2 2
Interleaved Pyramid 2N -N O(N logN) 0(1) O(N ) O(N) O(N ) O(N logN)

Pyramid Tree zNl+N 0(Nl+l/p log N) (N1-/p 0(Nl+l/) 0 (N+N -/p) O(N2) O(N logN)

(p > 1)

Normalized (relative to Cm ) values of M(p, k) for several small
values ofp and k are given as follows.

p

k\

2

3

4

1 2 3 4

48 176 104 5376

256 1920 22 528 237 568

1280 19 456 448 X 2'0 37 X 218

3) Input Bandwidth.

N.B N 2k
2

4) Output Latency:

L = 2Ct *N/2k

5) Image Turnaround Time:

T < 2Ct * (N + N1 -1/P)
6) Number ofProcessors Per Unit Output Latency:

PT=Ct N(2N- 1).

7) Total Memory Per Unit Output Latency:

MT < Cm Ct p(k + 1)N2

< 2Cm CtN2 logN.

These expressions indicate that the asymptotic performance
of the pyramid tree is the same or better compared to the
basic pipelined pyramid, although at a substantial reduction in
the number of PE's, memory, and input bandwidth.

VII. CONCLUSIONS

This paper describes three multiprocessor pyramid architec-
tures for bottom-up image analysis: pyramids, interleaved
pyramids, and pyramid trees. Bottom-up analysis is made
feasible by transmitting up the pyramid levels quadrant borders
and border-related information that captures quadrant inter-
action of interest for a given computation. A small general-
purpose processor is used as the processing element (PE).

Since output is available only at the apex PE's, the only
time-efficient computations are those whose results are
expressible in a small number of bits, to keep the data output
operation from dominating the overall processing time. The
algorithms described in the paper compute 0 (log N) bit results
on an N X N image. However, other computations can be
performed if the time required for outputting the results
from apex PE('s) is acceptable (e.g., when the basic pyramid
is not pipelined, or when slow loading of input image makes
the outputting time at the apex irrelevant). Certain transfor-
mations on point patterns constitute one class of such compu-
tations. For instance, the Voronoi tessellation of the plane
defined by a set of points (nuclei) is the partition of the plane
into cells in which each cell contains exactly one nucleus, and
all points within the cell are closer to this nucleus then to any
other. Similarly, the minimal spanning tree defined by a set
of points is a tree that spans all points while minimizing the
total cost, say the sum of edge lengths. Such transformations
on point patterns are useful in a wide variety of applications
[27], and involve specifying 0(NlogN) bits for a pattern
consisting of N points [0(logN) bits for each of the line
segments defining the desired graph]. The architectures
described in this paper also offer the possibility of using
four-way divide-and-conquer based algorithms, instead of the
often used two-way divide-and-conquer paradigm, thus reduc-
ing the computation time requirements of the above transfor-
mations from 0(N log2 N) to 0 (N 10g4 N).

Interleaved pyramids result in high utilization of PE's at all
levels, unlike the basic pyramids where PE's at lower levels are
increasingly idle. The pyramid tree offers a solution to the
problems of large input bandwidth and large number of PE's
required for a purely interleaved pyramid. The designer is
provided with parameters that can be manipulated to achieve
suitable tradeoffs between the hardware cost and processing
time.
Table I summarizes the performance measures 1)-7) for

all three architectures described in this paper. One note of
caution must, however, be added. The implementation of
pipelining and interleaving assumes that images can be loaded
in parallel and at as fast a rate as desired. This is not possible
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if, for example, one does not have parallel access to the input
image pixels (e.g., outputs of individual sensors). In such cases
the input image loading time may dominate the processing
time, and hence may make fast processing capabilities super-
fluous. Parallel optical transmission of the sensor information
using flber optics is one solution to designing the focal plane
architectures [7] which will make parallel loading of images
possible.

APPENDIX
The performance measures given in Section VI-C are derived

below, for the pyramid executing the border-based algorithms.
1) Number of Processors: Let P(p, k) be the total number

of PE's in the pyramid tree required to process an N X N
image (N = 2Pk). Recall that each of the level-1 nodes has
2k- 1 children nodes, and all higher level nodes have 2k children
each. The number of k-level interleaved pyramids at level
1, 1 l p - 1, is thus 2k(p-1-l). The number of level-1
nodes is 2k(p -2), and hence, the number of leaf nodes (each
of which is a k + 1-level interleaved pyramid) is 2k(p-2) * 2k-1.
If H(k) denotes the number of PE's in a k-level interleaved
pyramid, then

H(k + 1) 2k(p-2)+ k- + H(k) .-' 2k(p-i--

P(p, k) =
for p>2

H(k+1) for p-1.

Now, from Section III-B- 1, H(k) = 2k-1(2k - 1). Substituting
for H(k) and H(k + 1) in the expression for P(p, k) gives

N 2k -2k- 1 fop > 2
P(p,k) {N= §k1 : ~

N(2N- 1) for p=1.

2) Total Memory: Let M(p, k) be the total memory required
by the pyramid tree. To compute M(p, k), we will compute
the memory requirements of a nonleaf node and a leaf node
separately. A nonleaf node at level 1, 1> 1, of the tree is a
k-level interleaved pyramid which, according to the result of
the previous section, requires a memory of Cm * 22(k-1) - k X
21k+1 Here, the factor 21k+1 occurs because of the fact that
the inputs are windows of size 21k X 21k rather than single
pixels. However, unlike the interleaved pyramid of Section
IV, the interleaved pyramid at level 1 of the tree does not
receive all its inputs in parallel and therefore must use extra
memory in the PE's at its base to store serially arriving inputs
of size 2Ik. There are 22(k-1) PE's at the base and each PE
needs an extra memory of Cm 21k+1 . The total memory re-
quirement of a nonleaf node at level 1 is therefore

=Cm *22(k 1) * k 21k+1+C . 22(k- 1) 21k

CC2k(l+ 2) (k + 1).
2

There are 2k (p-l- ) such nodes at a level 1, 1 <.lp - 1.
Among the 2k(p-2)+(k-1) leaf nodes, each is a (k+ 1) level
interleaved pyramid requiring a memory of Cm * 22k - (k + 1).
Thus, the memory required by the pyramid tree to process an

N X N image, M(p, k), is obtained by adding the memory re-
quirements of the nonleaf and leaf nodes.
For the case p > 1

M(p, k) = (k + 1) 2k(P-i-l) * 2k(l+2)
1=1

+Cm .2k(p -2) + (k-1) 22k (k + 1)

=Cm2k(p+1)((ki)+ ( l)+ (k;+1)

m (k+1)*p2k(P+1)
2

For the case p = 1

M(l, k) = Cm 22k(k + 1).

3) Input Bandwidth: The input bandwidth is the number of
parallel pixel inputs. Since the interleaved pyramids corre-
sponding to the leaf nodes of the tree accept single pixel inputs,
the total number of PE's at the base of the 2k(p -2) + k1- level-O
pyramids in the tree must equal the bandwidth. Thus,
B = (number of interleaved pyramids at level 0

of the pyramid tree) - 22k
2k(p-2)+k-1 .22k

2kp+k- N k222
4) Output Latency: To compute the output latency of the

pyramid tree, observe that the outputs of pyramids at any
given level of the tree occur in synchronism. Therefore, the
entire tree may be viewed as a segmented pipeline with the
delay at a given segment equal to the output laten-cy of an
interleaved pyramid at that level. The maximum such delay
occurs at the interleaved pyramid at the root of the tree.
The PE's comprising the base of the interleaved pyramid at

the root of the tree process borders of size 2k(p-1)+l X
2k(p-1)+1, and hence require processing time Ct * 2
The interleaved pyramid is thus able to accept new inputs at
a maximum rate of Ct 2k(p )+ . Such an input rate is
actually achieved because the output latency of an interleaved
pyramid one level down (whose 2k 1 outputs are fed serially
to the pyramid at the root) is Ct * 2k(P-2)+1; hence, 2k out-
put values (with each output PE used twice) are available at
the rate of Ct * 2k(p-1) +1, the maximum rate at which inputs
are accepted by the interleaved pyramid at the root. From
Sections IV and VI-B, it follows that the output latency of the
interleaved pyramid at the root is Ct * 2k(p-1) + . Therefore,

L = output latency of the interleaved pyramid at the root
of the tree

= Ct * 2k(p-i)+i

= 2Ct *N/2k

5) Turnaround Time: The turnaround time is the total time
required to process an image. Let us first compute the time
taken by a nonleaf node at level 1, 1 < I Sp - 1, to process a
set of 22k input windows each of size 2k1 X 2kl which arrive
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in parallel in batches of size 2k. From the discussion at the
beginning of this section, the output latency of nodes one
level down, i.e., at level 1- 1, is Ct * 2k(l-)+1. Hence, 2k
batches of inputs to nodes at level I arrive serially in time
Ct - 2k(l-1)+1 * 2k. These inputs are then processed by the
k-level interleaved pyramid with the PE's at level j, O <j < k - 1,
taking time Ct * 2k 1. The total time required by the node
is thus the sum of the time required to collect all the inputs
and the time required to process these inputs through the
k levels. Thus, the total timne is

=Ct * 2k+ + ,E 2k++
j=o

Ct.2k+1 *2kl

The single pixel inputs to a leaf node in the pyramnid tree
arrive in parallel and are processed by the k + I levels of the
interleaved pyramid in total time Ct * (2k+1 - 1). Since the
input bandwidth of the pyramid tree is N/2 * 2 , the pro-
cessing time for a single set ofN/2 * 2k pixel inputs is

=c, (2k+il )+C, 2k+1 . Pf kl
1=1

<2C, -N.

There are 2N2IN2k sets of pixel inputs per image occurring at
intervals of time Ct. The turnaround time for the entire image
is therefore given by

TnCt * 2NI2k + 2Ct -N

=2Ct * (N+N' - 'P).
6) Number of Processors Per Unit Output Latency: PT is

obtained as the product of 1) and 4). Thus,

PT=(2N- 1)2k-1 * 2Ct.N/2k
=Ct,-N(2N- 1)=O(N2).

7) Total Memory Per Unit Output Latency: MT is obtained
as the product of 2) and 4). Thus,

MT< Cm * N* 2k * p * (k + 1) * 2Ct * NI2k
2

<Cm * Ct C p(k+ 1) *N2
= 0(N2 log N).
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Picture Indexing and Abstraction Techniques
for Pictorial Databases

SHI-KUO CHANG, SENIOR MEMBER, IEEE AND SHAO-HUNG LIU

Abstract-We present an approach for picture indexing and abstrac-
tion. Picture indexing facilitates information retrieval from a pictorial
database consisting of picture objects and picture relations. To con-
struct picture indexes, abstraction operations to perform picture object
clustering and classification are formulated. To substantiate the ab-
straction operations, we also formalize syntactic abstraction rules and
semantic abstraction rules. We then ilustrate by examples how to
apply these abstraction operations to obtain various picture indexes,
and how to construct icons to facilitate accessing of pictorial data.
Index Terms-Database abstraction, pictorial database, pictorial

information retrieval, picture indexing.

1. INTRODUCTION
A DVANCES in hardware technology have paved the way
-for sophisticated pictorial information systems, with

application areas including knowledge-based image understand-
ing systems, office information systems, and integrated manu-
facturing information systems. A common requirement of
these systems is the need to model and access pictorial data
with ease. Researchers working on pictorial information sys-
tems have developed the concept of logical pictures, which
consist of picture objects and picture relations [8], [29],
[351. The relational database approachhasalsobeenextended
in developing pictorial database models and pictorial query
languages [4] -[6].
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This paper presents an approach for picture indexing and
abstraction. Picture indexing facilitates pictorial information
retrieval from a pictorial database. In traditional database
systerms, the use of indexing to facilitate database accessing has
been well established. Although there were suggestions to use
picture icons as picture indexes [32], no theoretical frame-
work has been established for picture indexing. In this paper,
we attempt to provide such a conceptual framework for picture
abstraction, indexing, and retrieval.

In Section II, picture objects, picture relations, and logical
pictures are introduced. In Section III, we discuss picture
query. Section IV presents structured picture retrieval using
picture trees. Examples are presented to motivate the concept
of picture indexing. In Section V, two types of abstraction
operations are introduced. Type-l abstraction performs clus-
tering and indexing, and type-2 abstraction performs classifica-
tion and cross-indexing. Conceptually, type-l abstraction
performs generalization and integration, and type-2 abstrac-
tion performs differentiation. They can be recursively applied
to obtain various picture indexes. In Sections VI and VII, we
present abstraction rules, which include both syntactic abstrac-
tion rules and semantic abstraction rules. In Section VIII, we
illustrate by example how to construct icons to facilitate ac-
cessing of pictorial data, and discuss applications of the pro-
posed approach for picture indexing and abstraction.

11. THE LOGICAL PICTURE

Researchers in image processing and pattern recognition have
traditionally regarded pictures as two-dimensional arrays of
pixels (or picture elements), which are called physical pictures
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