Gross Motion Planning - A Survey

Hwang, Yong K.; Ahuja, Narendra

ACM Computing Surveys; Sep 1992; 24, 3; ABI/INFORM Global

pg. 219

Gross Motion Planning—A Survey

YONG K. HWANG
Sandia National Laboratories, Albuquerque, New Mexico 87185

NARENDRA AHUJA

Beckman Institute and Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801

-~
Motion planning is one of the most important areas of robotics research. The complexity
of the motion-planning problem has hindered the development of practical algorithms.
This paper surveys the work on gross-motion planning, including motion planners for
point robots, rigid robots, and manipulators in stationary, time-varying, constrained,
and movable-object environments. The general issues in motion planning are explained.

Recent approaches and their performances are briefly described, and possible future

research directions are discussed.

Categories and Subject Descriptors: 1.2.8 [Artificial Intelligence): Problem Solving,
Control Methods, and Search—graph and tree search strategies; heuristic methods;
1.2.9 [Artificial Intelligence]: Robotics; 1.2.10 [Artificial Intelligence]: Vision and

Scene Understanding—motion

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Collision detection, computational geometry,
implementation, motion planning, obstacle avoidance, path planning, spatial

representation

INTRODUCTION

Until recently, robots were primarily
employed for carrying out programmed,
repetitious tasks. Methodologies and
algorithms for autonomous functioning
were examined, but their implementa-
tion was hindered by the slow computing
hardware. With the rapid advances in
semiconductor and computing technol-
ogy, it has become feasible to build robots
that can function at reasonable speeds.
Much research has been done to develop
theories and algorithms needed for robots
to process information and interact with
the environment. Examples of such capa-
bilities include perception, reasoning,
planning, manipulation, and learning.

This paper is concerned with the state of
the art of the research done on
autonomous motion planning.

Consider a highly automated factory
wherg mobile robots pick up parts and
deliver them to assembly robots (Figure
1). The robots must find their way to
parts, pick them up, and move to the
assembly stations. All these motions have
to be executed without colliding with
objects and other robots. Paths of the
robots have to be short, and the pickup
operations should not include unneces-
sary movements. Without a motion plan-
ner for the robots and arms, human
operators have to constantly specify the
motions. An automatic motion planner
will relieve the operators from this

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and /or specific permission.

© 1992 ACM 0360-300 /92 /0900-0219 $01.50

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220 . Y. K. Hwang and N. Ahuja

CONTENTS

INTRODUCTION
" 1. NATURE OF MOTION-PLANNING PROBLEM
i 1.1 Definition of Terms
1.2 Complexity of Motion Planning
1.3 Classification of Motion-Planning Problems
1.4 Classification of Motion-Planning Algorithms
2. BASIC ISSUES AND STEPS IN
MOTION PLANNING
2.1 World Space vs. Configuration Space
2.2 Object Sensing and Representation
2.3 Approaches to Motion Planning
2.4 Search Methods
2.5 Local Optimization of Motion
3. SURVEY OF RECENT WORK
3.1 Stationary Environmenis
3.2 Time-Varying Environment
3.3 Motion Planning with Constraints
3.4 Movable-Object Problem
3.5 Comparison Tables
4. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

—-

tedious job and enable them to control at
a supervisory level. In turn, this in-
creases efficiency by eliminating human
errors. The need for collision avoidance
and efficient motion leads to the problem
of motion planning (MP). Motion plan-
ning can be broadly classified as either
gross- or fine-motion planning.

Gross-motion planning is concerned
with the problems involving free space
much wider than the objects’ sizes plus
the positional error of the robot. This
ensures that positional error will not
cause unexpected collisions while execut-
ing the collision-free paths generated by
gross motion planners. Fine-motion plan-
ning deals with the problem of moving
objects when the space is so narrow that
the required accuracy of motion exceeds
a robot’s positional accuracy. Each prob-
lem requires a different approach to plan
motion.

This paper presents a survey of recent
developments in gross-motion planning.
It summarizes the past work, mostly in
computational geometry and robotics,
and discusses possible directions for
future research. It is directed toward
people interested in motion-planning

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Figure 1. Robots in an automated factory. Mobile
robots deliver parts from the warehouse to assem-
bly robots. Mobile robots need to find short paths
while avoiding objects and other robots. The assem-
bly robots also need to avoid collisions during their
assembly motions.

research or in implementing an algo-
rithm on real robots. There are several
different classes of motion-planning
problems. Motion planning can be static
or dynamic, depending on whether the
information on the robot’s environment
is fixed or updated. If obstacles are sta-
tionary (moving), it is called time invari-
ant (time varying). If robots can move
some objects, *it is called the movable-
object problem. If motions of more than
one robot are planned, it is called the
multimovers problem. If the robot can
change its shape it is conformable. Mo-
tiongplanning is either constrained or un-
constrained, depending on whether there
are constraints on a robot’s motion other
than the geometric interference. These
include bounds on a robot’s velocity and
acceleration and constraints on the cur-
vature of a robot’s paths.

In order to review the past work in
these categories, a classification scheme
is developed in Section 1. Complexity of
motion planning is also discussed in Sec-
tion 1. Section 2 discusses the basic issues
and steps common to all motion-planning
approaches. Section 3 surveys work on
motion planning following the classifica-
tion scheme presented in Section 1, and
for each class surveying different
approaches according to how they address
the issues described in Section 2. Section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 concludes this paper with suggestions
for developing efficient MP algorithms.

1. NATURE OF MOTION-PLANNING
PROBLEM

This section introduces the definitions of
terms used in MP. The complexity of MP
is then discussed to show how hard
MP is. Readers not interested in com-
plexity analysis may skip this part
(Section 1.2). Next, classification of the
different gross-motion-planning prob-
lems and algorithms are presented, which
are used to survey the MP work in Sec-
tion 3.

1.1 Definitions of Terms

We will give definitions of terms and
illustrate concepts using Figure 2. Robots
are the things that are moving, whether
points, polytopes, or manipulators. A
manipulator is a mechanical arm con-
sisting of links and joints. Polytopes are
polygons in two dimensions (2D) or poly-
hedra in three dimensions (3D). The
shapes of rigid robots or links of manipu-
lators are typically given as polytopes or
by formula using constructive solid
geometry. The world space refers to the
physical space in which robots and obsta-
cles exist. The configuration of an object
of a given shape is a set of independent
parameters that characterizes the
position of every point in the object. Six
numbers are needed to specify the
configuration of a rigid body in three
dimensions (three for position, three for
orientation specification). Given the
shape of each link of a manipulator, the
configuration of the manipulator can be
specified by the angles at its joints
(Figure 2a). The number of parameters
specifying the configuration of an object
is called the degrees of freedom (dof) of
the object. The set of all configurations
are called the configuration space
(Cspace). The free space refers to parts of
the world space not occupied by obstacles
or parts of the Cspace for which the robot
does not collide with any obstacle. We
use the term feasible to mean collision
free. The path of an object is a curve in

Gross-Motion Planning . 221

the configuration space. The manipulator
motion in Figure 2b corresponds to the
path in Figure 2c. The curve is repre-
sented either by a mathematical
expression or by a sequence of points
along the curve. The trajectory is the
path along with an assignment of
time—the time assigned to a point along
the path denotes the time instant at
which the object assumes the configura-
tion associated with that point. Motion
planning is a general term that refers to
either path planning er trajectory plan-
ning.

For complexity analysis, m and n
denote the complexities of robots and
obstacles, respectively. For polygonal
(polyhedral) objects, m and n denote the
number of edges (faces and edges) unless
stated otherwise. The number of degrees
of freedom of a robot is denoted by d;
Q() denotes a lower bound. The terms
describing the hardness of problems are
briefly explained. If there is a
polynomial-time algorithm to solve a
problem, the problem is said to be in P. A
problem is in NP (nondeterministic poly-
nomial) if there is a polynomial-time al-
gorithm to verify a solution to the prob-
lem (thus P c NP). This means that a
problem in NP can be solved in polyno-
mial time if we have an infinite number
of computers to verify in parallel all pos-
sible branches of the search tree of possi-
ble ;solutions to the problem. In other
words, an NP problem requires a very
long computation time to solve if the
problem size is large. A problem is NP-
hard if it is at least as difficult as any NP
problem. NP-hardness of a problem is
proved by transforming the problem to
one of the known NP-hard problems. A
problem is NP-complete if it is in NP and
NP-hard, and there are several known
NP-complete problems. The question of
whether or not P = NP is still open. Since
it is not known if there is an NP problem
that has an exponential lower bound, one
cannot conclude that an NP-hard prob-
lem has an exponential lower bound. A
problem is in PSPACE if it requires a
(memory) space polynomial in the prob-
lem size. Similar definitions apply to

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222 . Y. K. Hwang and N. Ahuja

y

6

X

{a) The configuration parameters of a 2-link
manipulator are the joint angles, 8; and 6, .
Other choices are possible. The number of
degrees of freedom is 2.

(b) A collision-free motion of a 2-link
manipulator between the stant and
the goal configurations among
polygonal obstacles

(c) The configuration space of the manipulator
The shaded regions correspond to the con-
figurations in which the manipulator collides
with obstacles. The motion in (b) corresponds
10 the sequence of configurations connecting
Sand G

Figure 2. Configuration of a robot.

PSPACE-hardness and PSPACE-
completeness. A more detailed discussion
about the hardness can be found in
Cormen et al. [1990].

Complexity of a problem is analyzed by
giving an upper bound or a lower bound
on the number of elementary computa-
tions or the size of memory space required
to solve a problem. An upper bound is
obtained by showing an algorithm for the
problem having a complexity bounded
above by some function of the input size,
say O(u(n)). A lower bound is obtained
by showing a family of example problems
whose only solutions are bounded below
by some function of the size of the exam-
ple, say O(I(n)). If a problem has match-
ing upper and lower bounds, i.e., u(n) =
{(n), then it can be said that the problem
has complexity u(n).

1.2 Complexity of Motion Planning

To study the complexity of motion plan-
ning, the generalized mover’s problem is
defined as follows. Given a robot with d

degrees of freedom in an environment
with n obstacles, find a collision-free path
connecting the current (start) configura-
tion of the robot to a desired (goal) con-
figuration. The size of the input is d and
n. The complexity of description of the
robot, m, is either fixed or incorporated
in the complexity of the environment. A
historical account of the generalized
mover’s problem given in Canny [1988] is
summarized here; see Canny [1988] for
details. ’

The generalized mover’s problem can
be solved as follows. The set of robot
configurations where the robot does not
intersect any obstacles is called the free
configuration space. Since the shapes of
most robots and obstacles can be
expressed with semialgebraic sets
(unions and intersections of algebraic,
e.g., polynomial inequalities), the bound-
aries of the free configuration space can
also be represented with semi-algebraic
sets. It may seem that when rotation is
included, use of transcendental functions
(sine and cosine) is necessary. There is,

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quaternion Algebra
Q@ = (s, v), s = scalar, v = 3veclor.
Q* = (s, —v)

Ql+ Q2 = (sl+sz, ul+u2)
QQ =(ss-vv,
172 12 e

s v +svtv Xv)
Vo2 21 1 2

Representation of a Point
p = (0, v)

Transformation
translation of point p by ¢t
(0, v+1¢)
rotation of point p about vector n by an angle 6
Q p Q*, where Q = (cos(8/2), n sin(0/2))

Figure 3. Quaternion representation of a rotation.
The coordinates of a rotated point is a polynomial
function of the quaternion coordinates.

however, a representation of rotation,
e.g., quaternions, that enables us to relate
a rotated position of a point to its origi-
nal position with an algebraic expression
(Figure 3). The free configuration space
can then be broken into simpler pieces or
cells, and the cell adjacency relations are
computed. Finding a collision-free path
between the start and goal configura-
tions of the robot is equivalent to finding
the cells containing the start and goal
configurations and then finding a con-
nected sequence of cells representing the
free configuration space. This way of sol-
ving the generalized mover’s problem
reduces the problem to that of deciding
the satisfiability of formulae in the first-
order theory of reals. A formula in this
theory is built from boolean combinations
of polynomial inequalities, and both exis-
tential and universal quantifiers are
allowed. A sample formula looks like
IxVy(y > x) and (—y® < x). Tarski
[1951] showed that sets defined by such
a formula also have a defining formula
free of quantifiers, proving that the the-
ory of reals is decidable.

The first upper bound on the complex-
ity of the generalized mover’s problem is
reported in Schwartz and Sharir [1981].
Using the decomposition method of
Collins [1975] to compute cells of the free
configuration space, they developed an
algorithm that has a double exponential

Gross-Motion Planning . 223
time complexity of O(n%"""). This double
exponential complexity is improved in
Canny [1987] and Canny [1988] to a sin-
gle exponential time. Rather than com-
puting the cells representing the free
Cspace, one-dimensional boundary
curves of the free Cspace are constructed
by projecting the free Cspace in higher
dimensions to two dimensions. A
collision-free path connecting two robot
configurations is found from this network
of boundary curves.

The first lower-bound result on the
complexity of MP appears in Reif [1979].
The generalized mover’s problem in a 3D
space is shown to be PSPACE-hard with
an example of a many-jointed object con-
strained to move within a complex sys-
tem of narrow channels. Reif [1979] also
presents a polynomial-space algorithm,
proving that the generalized mover’s
problem is PSPACE-complete. In
Hopcroft et al. [1984a], the reachability
problem for planar linkages (determining
whether the linkage can reach a point) is
shown to be PSPACE-hard. The proof
consists of showing that there are link-
ages that are capable of simulating
linear-bounded automaton (LBA) com-
putations and that the size of the
description of a linkage that simulates a
given LBA on input length n is linear in
n and the size of the description of LBA.
The PSPACE-hardness follows from the
fact that the acceptance problem for LBAs
is PSPACE-complete (see Hopcroft and
Ullman [1979] for LBA and PSPACE).

The planning of coordinated transla-
tional motions of iso-oriented rectangles
inside a rectangular boundary (see Figure
4a) is shown to be PSPACE-hard in
Hopcroft et al. [1984b] by reducing the
PSPACE-hard symbol transposition
problem to the motion planning of the
rectangles described above. The symbol
transposition problem is the problem of
transforming a given finite string of sym-
bols into another string by a sequence of
moves changing the position of a symbol,
subject to a set of adjacent rules which
constrain the symbols that can stand next
to each other. The five darker rectangles
at the top in Figure 4a, called dominoes,

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—-

224 . Y. K. Hwang and N. Ahuja

A

{a) Feasible motions of the five dotted rectangles, called dominoes, in
the almost full box sil the symbol ition problem.

The hatched region is the only emply space.

(b) The dominoes have ditferent patterns on their sides

T]«, - T T T
SPINE J TR l SPINE ;
CHANNEL2 — }——1~*[i
E |
. . R
- . i
—t CHANNEL| —~ —— i
R B i
‘,
S — .
SPACER DOMING SPACER DOMINO SPACER
{c) Domi are further into rectangles

Figure 4. Planning coordinated motions of multiple rectangles is PSPACE-hard. Reprinted from
International Journal of Robotics Research, vol. 3, no. 4, pp. 76-88, Hopcroft, J., Schwartz, J. T., and
Sharir, M, “On the complexity of motion planning for multiple independent objects: PSPACE-hardness of
the ‘warehouseman’s problem’,” by permission of the MIT Press, Cambridge, Mass., Copyright, © 1984

MIT Press.

represent a string of symbols. Each
domino has a pattern of extrusions and
indentations on its vertical sides so that
only dominoes with matching patterns
can be next to each other (see Figure 4b).
This encodes the adjacency rules in the
symbol transposition problem. The domi-
noes are further decomposed into rectan-
gles, completing the reduction of the
transposition problem to the motion
planning of the rectangles (see Figure
4c). This problem is later shown to be in
PSPACE in Hopcroft and Wilfong [1986],
thus proving its PSPACE completeness.
This is shown by analyzing the connected
set of the free Cspace. Note the configu-
ration space has dimension 2n, where n
is the number of rectangles, since each

ACM Computing Surveys, Vol. 24, No. 3, September 1992

*

rectangle has 2 degrees of freedom in
this problem. The connected set forms a
polytope in the 2n-dimensional space and
consists of faces of various dimensions.
They show that if there is a collision-free
motion of rectangles between two config-
urations in the connected set, then there
is also a collision-free motion along the
one-dimensional faces, i.e., edges, of
the polytope representing the connected
set. Motion planning is reduced from a
search of a high-dimensional space to a
graph-searching problem, and such mo-
tions can be described in polynomial
space.

There are many other complexity anal-
yses on various versions of MP, including
the shortest-path problem for a point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robot among polygons [Asano et al. 1985],
among polyhedral obstacles [Canny and
Reif 1987], MP of a line segment in three
dimensions [Ke and O’Rourke 1987], and
MP among moving obstacles [Reif
and Sharir 1985]. These are described in
appropriate subsections of Section 3.

Tannenbaum and Yomdin [1987] have
shown that the maximal number of the
connected components of the semi-
algebraic set RY\ U{f, = 0}, where i =
1,...,m and {f;, = 0} are of degree n, is
polynomial in m and n and exponential
in the number of degrees of freedom d.
This bound is derived from results of
algebraic geometry, namely, the Harnack
Inequality and the Bezout Theorem,
which give upper bounds on the number
of intersection points of polynomial
curves of degree n. Their result shows
that it is likely to take an exponential
time in d to compute a description of the
entire configuration space. This does not
imply that MP has an exponential-time
lower bound, since we do not have to
compute all parts of the configuration
space to plan a motion, and there is yet
no family of motion-planning problems
whose configuration spaces have expo-
nentially many connected components. In
summary, the current status of the
known complexity bounds on the general-
ized mover’s problem is that it is
PSPACE-hard, but has an upper bound
which is exponential in the number of
degrees of freedom.

1.3 Classification of Motion-Planning
Problems

We first explain the distinction between
path planning and trajectory planning.
Path planning typically refers to the
design of only geometric (kinematic)
specifications of the positions and orien-
tations of robots, whereas trajectory
planning includes the design of the linear
and angular velocities as well. Therefore,
path planning is a subset of trajectory
planning, wherein the dynamics of robots
is unimportant or neglected. A case where
trajectory planning must be used is the

Gross-Motion Planning . 225
design of walking motion for a biped since
the dynamics of balance cannot be
neglected. Path planning is also used as
the first step in the design of trajectories.
When designing a complex sequence of
motions, it is often easier to devise the
path first and then assign the velocity
along the path. We now introduce several
variations of the motion-planning
problem and establish a framework for
classification.

Motion planning can be static or
dynamic, depending om the mode in
which the obstacle information is avail-
able. In a static problem, all the informa-
tion about obstacles is known a priori,
and the motion of the robot is designed
from the given information. In dynamic
planning, only partial information is
available about the obstacles, e.g., the
visible parts of the obstacles. To achieve
a given goal, the robot plans a path based
on the available information. As the robot
follows the path, it discovers more obsta-
cle information. This is used to update
the internal representation of the robot’s
environment, and the robot replans a
path from the updated representation.
The process. of updating the representa-
tion and planning paths is continued un-
til the robot accomplishes its goal. Most
papers in MP have dealt with the static
case.

When there is more than one robot it is
called, a multimovers problem. If
objects can change shape then the
motion-planning problem is con-
formable. Otherwise it is noncon-
formable. An important subclass of
conformable problems concerns motion
planning of linked bodies since most
robots and manipulators are made of
jointed limbs. When the environment or
the configurations of obstacles change it
is a time-varying problem. Otherwise it
is a time-invariant problem. If robots
can move a subset of objects, it is the
movable-object problem.

Motion planning is either con-
strained or unconstrained, according
to whether there are inherent restrictions
on the motion of robots, i.e., restrictions
arising due to reasons other than colli-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

226 . Y. K. Hwang and N. Ahuja
sions with obstacles. These include
bounds on a robot’s velocity and accel-
eration and constraints on the curvature
of robot’s paths. Trajectory planning of
any physical system is constrained since
the actuators (motors) have finite power.
Another example is the task of carrying a
cup of coffee, which has a severe restric-
tion on the movement of the cup so as not
to spill the coffee.

1.4 Classification of Motion-Planning
Algorithms

There are two aspects to the classifica-
tion of MP algorithms: the completeness
(exact or heuristic) and the scope (global
or local). Exact algorithms either find a
solution or prove that there is no solu-
tion. Exact algorithms are usually com-
putationally expensive. In contrast,
heuristic algorithms are aimed at gener-
ating a solution in a short time. They
may fail to find a solution for difficult
problems, or they may find a poor solu-
tion. Heuristic algorithms are important
in engineering applications, while exact
algorithms determine complexities of
problems and algorithms. There are two
other types of completeness: resolution
completeness and probablistic complete-
ness (we will consider these as exact also).
The resolution completeness is related to
discretization. When continuous quanti-
ties such as obstacle dimensions or con-
figuration parameters are discretized, the
associated algorithm is inherently
approximate. However, its accuracy can
be arbitrarily improved by increasing the
resolution of discretization. If an algo-
rithm is exact in the limit as the dis-
cretization approaches a continuum it is
called resolution complete. An algorithm
is probabilistically complete if its proba-
bility of finding a solution (if one exists)
can be made to approach 1. This charac-
teristic is typical of algorithms using a
random search such as simulated
annealing. These algorithms need a long
computation time to make the probability
close to 1.

Global algorithms take into account all
the information in the environment, and

ACM Computing Surveys, Vol. 24, No. 3, September 1992

they plan a motion from the start to the
goal configuration. Local algorithms are
designed to avoid obstacles in the vicinity
of the robot and thus use information
about nearby obstacles only. They are
used when the start and goal configura-
tions are close together. Local methods
are used as a component in a global plan-
ner or as a safety feature to avoid unex-
pected obstacles not present in the model
of the environment but detected by sen-
sors during motion execution.

-

2. BASIC ISSUES AND STEPS IN MOTION
PLANNING

This section describes the basic issues
and steps that any MP formulation must
involve. These issues include configura-
tion space, object representation,
approaches to motion planning, search
methods, and local optimization of
motion. Motion planning is done in the
following steps. First, the configuration
parameters of the robot need to be
determined. The concept of the Cspace is
fundamental to motion planning, since it
is the space of all possible motions of a
robot. A detailed explanation of the
Cspace and méthods of computing the set
of feasible configurations are given. Sec-
ond, the robot and objects have to be
represented. Several available represen-
tation schemes are explained and com-
pargd. Third, an MP approach suitable to
the MP problem at hand needs to be
selected. There are four different
approaches developed for MP, and differ-
ent problems require different
approaches. Fourth, a search method
must be selected to find a solution path.
The choice is determined by the required
optimality of the solution and available
computing resources. Several search
methods are reviewed. Finally, the solu-
tion path is locally optimized to yield a
shorter and smoother path. Most MP
algorithms find a path that contains
sharp corners, which cause jerky motions
of the robot. Unless the robot is moving
at a very slow speed, these corners must
be smoothed out. The following subsec-
tions discuss these five steps in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

r
\ robot

goal

start

L.

(a) world space

Gross-Motion Planning 227

{b) configuration space
A path between the start and goal is shown.
Note the robot can pass between the two
obstacles only in certain orientations
{shown as holes in contiguration obstacles).

Figure 5. A triangular robot among polygonal obstacles. The configuration parameters are the position of
robot vertex r and the rotation about this point. Configuration obstacles are shown in (b).

2.1 World-Space vs. Configuration Space

The world space refers to the physical
space robots and obstacles exist in. A
configuration of an object or a robot is a
set of independent parameters com-
pletely specifying the position of every
point of the object or robot. The space of
all possible configurations, the config-
uration space (Cspace), of an object
represents all possible motions of the
object and plays a fundamental role
in motion planning. It was first used in
motion planning in the influential paper
by Lozano-Pérez and Wesley [1979]. In
essence, all motion-planning problems
are equivalent once they are formulated
in the configuration space; they reduce to
the problem of finding a connected
sequence of points between the start and
the goal configurations in the Cspace.
The dimension of the Cspace is the num-
ber of the parameters representing a con-
figuration, also called degrees of freedom.

For a point robot, the Cspace is identi-
cal to the world space and has the same
number of dimensions. The triangle in
Figure 5a needs 3 parameters to specify
its configuration, 2 for the position of an
arbitrarily chosen reference point of the
triangle, and 1 for the orientation of

the triangle about the reference point.
The corresponding Cspace has dimension
3. Likewise, a rigid object in 3D world
space requires 6 parameters for configu-
ration specification: 3 for the position
of the reference point and 3 for the
orientation.

Configurations that result in collisions
between the robot and obstacles are
called the configuration obstacles. A point
inside a configuration obstacle corre-
sponds to a situation where the robot
overlaps with one or more obstacles (a
physically impossible state) and a point
on the boundary of a configuration obsta-
cle to a situation where the robot is just
touching (in contact with) one or more
obstacles. (Methods of computing config-
uration obstacles are discussed below.)
Figure 5b shows the configuration obsta-
cles corresponding to the world space in
Figure 5a along with the start and the
goal configurations of the robot.

What makes MP hard is the dimen-
sionality of the Cspace, i.e., the space of
all possible motions of the robot. For a
single rigid robot in 3D world space, the
Cspace is 6-dimensional, and represent-
ing it with a grid requires 10'? points for
a resolution of 100 points per dimension.
Use of a grid is unrealistic for MP involv-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228 . Y. K. Hwang and N. Ahuja
ing multirobots. To complicate the
matter, configuration obstacles do not
usually have compact representations, as
seen in Figure 2c and 5b. MP is thus a
challenging research problem.

Computation of configuration obstacles

There are seven basic ways to compute
configuration obstacles: point evaluation,
Minkowski set difference, boundary
equation, needle, sweep volume, tem-
plate, and a Jacobian-based method. All
of these can be used for any type of robot.
Point evaluation is the simplest but most
inefficient of them. It places the robot in
a configuration and determines whether
the robot intersects any obstacles. If the
robot does, the configuration belongs to a
configuration obstacle.

Minkowski set difference of two sets A
and B are the set of points Mdiff(A, B)
={a — bla € A, b € B}. For arigid object
without rotation, the configuration obsta-
cles are the union of Minkowski set dif-
ferences between areas occupied by
obstacles and the robot. In Figure 6, the
reference point of the robot cannot be
placed in the shaded region, which is
Mdiff(obstacle, robot). If the robot and
obstacle are convex polytopes, then the
Minkowski set difference of them is
the convex hull of the Minkowski set dif-
ference of their vertices. This method is
most used for polytopes.

In the boundary equation method, one
derives the constraints on the configura-
tion variables that bring the robot in con-
tact with obstacles. Such equations of
contact constraints define the boundaries
of configuration obstacles. For a polyhe-
dral representation, the equations are
derived from the vertex/face and edge/
edge contacts between the robot and an
obstacle (see Figure 7). These equations
can simply be evaluated to determine
whether a point is in the configuration
obstacles or not. Representing configura-
tion obstacles as a union of nonoverlap-
ping semi-algebraic cells is very difficult
(especially for dof > 3).

In the needle method, all but one of the
configuration parameters are fixed, and

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Figure 6. The shaded region ig the Minkowski set
difference. The reference point of the robot in this
orientation cannot be placed in this region.

2]
2 r(x,y)
1
1 2 3
x+cos(8)=3

Figure 7. A boundary equation of a configuration
obstacle. *

the values of the variable parameter that
bring the robot in contact with all the
obstalles are computed, usually using
the boundary equations. From these val-
ues, intervals (or needles) that are in
configuration obstacles can be computed.
This method is commonly used to gener-
ate a two-dimensional slice of the Cspace
by computing the needles for each value
of one of the fixed parameters (Figure 8),
but not for any higher-dimensional slice
because of the large number of needles
needed.

The sweep volume method computes
the volume in the world space swept by a
robot as the robot configuration is varied
over a set in the Cspace. If the sweep
volume does not intersect any obstacle,
the set in the Cspace is outside of config-
uration obstacles. This is an effective way

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) a 2-link manipulator

Gross-Motion Planning . 229

n

° * : }. QA
(b) configuration obstacles

Figure 8. Needle method. For each value of the first joint angle, feasible ranges of the second joint angle
are computed. Reprinted from IEEE Journal of Robotics and Automation, vol. RA-8, no. 3, pp. 224-238,
Lozano-Pérez, T., “A simple motion planning algorithm for general robot manipulators,” by permission of

IEEE, Piscataway, N.J., Copyright, © 1987 IEEE.

/™S

(a) a 2-link manipulator

9,

(b} configuration obstacles

Figure 9. Template method. For a 2-link manipulator, the conﬁg;.lration obstacle corresponding to an
infinite wall is similar to an ellipse. The configuration obstacles for two walls are the union of two

templates (of different sizes and locations).

to compute free parts of the Cspace, but
the sweep volume is hard to compute
if the set has a high dimension.

The template method computes the
configuration obstacles due to features of
world obstacles. These features are typi-
cally points and lines, and the corre-
sponding configuration obstacles are
called templates. The shape and position
of a template can be parameterized by
the position of the obstacle feature. For
example, for a 2-link robot and one of the
line obstacles in Figure 9a the configura-
tion obstacle due to the line is similar to
an ellipse (Figure 9b). The templates for
each set of values of the parameters are
computed in a grid form and then stored
in the memory. The world obstacles are
represented as a union of features for

which the templates are computed. The
whol® configuration obstacles are then
computed by “stamping” the template for
each feature on the grid representing the
whole Cspace. This method was devel-
oped in Branicky and Newman [1990]
and works well for dof < 4. For MP with
a higher dof, it suffers from a huge mem-
ory requirement due to the use of grid.
Finally, the Jacobian-based method is
very elegant in computing a “block” of
free or obstacle-occupied Cspace. The
Jacobian J of a robot is a matrix that
relates the displacement, dx, of a point
on the robot to the change in the robot
configuration, dq. In equation form, this
is dx = J(g)*dq. Note J is a function of
q. For a robot in a configuration ¢, the
maximum of |J(q)| over all the points on

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230 . Y. K. Hwang and N. Ahuja
the robot, called the bound B(q) on J(gq),
is computed. If the minimum distance
between the robot in ¢ and all the obsta-
cles is D, then it follows that the sphere
centered at ¢ with radius D/B(q) is
contained in the free Cspace. Likewise, if
we define a negative distance D~
between two overlapping objects as the
minimum distance by which one of the
objects has to translate to separate
the two objects, we can compute a sphere
of radius D~ /B(q) that is contained in a
configuration obstacle. Instead of B(g),
one can use the maximum of B(q) over
all g, which is called the uniform bound,
UB on the Jacobian. This is a constant
and needs to be computed once. But it is
much larger than B(q) for most g, and
the sizes of computed spheres are much
smaller. This method, developed in Paden
et al. [1989], is the simplest way to com-
pute “chunks” of free or occupied Cspace,
but the chunks are very small for a long
object or for a manipulator in an extended
configuration. By fixing some of the con-
figuration variables, spheres of lower
dimensions can be computed. Also,
different choices of distance measure in
the Cspace result in different kinds of
spheres. For example, [, distance, i.e.,
I{p, q) = max|p, — q,|, results in a
cuboid. Cuboids have a nice property that
they can fill the Cspace without cracks,
which Euclidean spheres cannot do.

There are many variations of the above
methods to compute configuration obsta-
cles more efficiently, and when combined
with a search strategy, they result in an
MP algorithm. These variations are dis-
cussed with the algorithms.

A detailed complexity analysis of gen-
erating configuration obstacles is pre-
sented in Sharir [1987] for the case of
translating only, that is nonrotating,
robots moving in two and three dimen-
sions. The objects are assumed to be
polytopes. If curved objects are allowed,
the algebraic degrees of the curves must
be considered in the complexity analysis
since the number of intersection points
between curves depends on the degrees.
This unnecessarily complicates the com-
plexity analysis of MP, and thus objects

ACM Computing Surveys, Vol. 24, No. 3, September 1992

are represented by curves of degree 1,
i.e.,, planes. In 2D, the configuration
obstacles have O((mn)?) edges where m
and n are the numbers of edges of the
robot and obstacles, respectively. The
configuration obstacles can be generated
in O((mn)?log(mn)) time for arbitrary
polygons and in O(mn log(mn)) time for
convex polygons. In 3D, configuration
obstacles have O((mn)?) faces where m
and n are the number of faces of the
robot and obstacles, respectively. It is
conjectured that for a translating convex
robot the configuration obstacles can be
generated in O((mn)%(mn)) time, where
a(k) is the extremely slowly growing in-
verse Ackermann’s function which is less
than 5 for all practical values of k.

2.2 Object Sensing and Representation

A robot has to have a model of objects in
its environment before it can plan a
collision-free motion. In an unknown
environment or a dynamic environment,
the robot has to sense objects at an ap-
propriate time interval. Typically used
are visual sensors, e.g., stereo cameras,
or range sensors based on sonar, infrared,
or laser light. Both types of sensors yield
a depth map of the environment. These
data are often converted to a polyhedral
representation to save memory space and
to speed up subsequent computations. In
a well-known and well-controlled envi-
ronnfent such as in a robotic assembly
workcell, object data are available from
the part design in the form of CAD data.
These data are created using solid mod-
elers, which represent objects as unions
and intersections of basic solid primitives
(cuboids, spheres, cylinders, and cones)
or by specifying the boundaries of objects
(called B-rep). In this case, sensors are
needed only to verify the position and
orientation of objects.

Once the information about shapes and
configurations of objects is acquired, it
can be represented in a number of ways.
Commonly used representations are grid,
cell tree, polyhedra, constructive solid
geometry (CSG), and boundary represen-
tation (B-rep). These can be used to rep-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(19,17)‘

(4.5)

(a) original objects

- i

(c) cell tree (quadtree)

rectangle - circle ‘

(e} constructive solid geometry (CSG)
The bottom object is represented
as a set subtraction {rectangle -
circle}

Gross-Motion Planning . 231

111
11T
171

:

11T
NS

(b) grid

IABEEN]
T

TT1TTTTIT

T

=
2

4.
o

{d) polygonal approximation

object A {
line{(4,5).(8.5)}.
circluar_arc{center(11,5),r(3).angle(180,0)}
line{(14.5).(16.5)},
line{(16,5),(16,13)}
line{(16,13).(4,13)},
line{(4,13).(4,5)}

object B {
line((19,17),(23,17)},
line((23,17),(23.,22)},
line((23.22).(19,17)}

(f) boundary representation (B-rep}
-

Figure 10. Object representations.

resent objects in the world space or in
the configuration space. The objects
in Figure 10a are shown in these repre-
sentations in Figures 10b—f.

A grid is an array of (usually rectilin-
ear) identical cells, and the cells are
marked as 1 (dark) if it is occupied by an
obstacle, or else marked as 0 (white)
(Figure 10b). One might think this is an
inefficient way to represent an object,
but its simplicity has many computa-
tional advantages, especially on a mas-
sively parallel computer. For example,
the volume of an irregularly shaped object
is best computed by this representation.
(Volume computation is needed to com-
pute the center of mass to assess stabil-
ity, which is an important consideration
in some MP problems).

The cell tree representation is devel-
oped to overcome the disadvantage of grid
when representing a large object. This
representation divides the space into a
small number of big cells. Cells com-
pletely inside or outside of objects are
marked as such, and the cells partially
occupied by the objects are further
divided. This process is repeated until
the size of the cells reaches a resolution
limit. Figure 10c shows an example called
the quadtree in 2D (called octree in 3D).
The number of cells in this representa-
tion is proportional to the surface area of
an object. Its main disadvantage com-
pared to the grid is the overhead of com-
puting adjacency between cell.

Polyhedral representation is one of the
most used ones, since many objects can

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232 Y. K. Hwang and N. Ahuja
be closely approximated with unions of
polyvhedra (Figure 10d). There exist many
efficient algorithms for computing the
intersection of and distance between two
polyhedra. Computations of intersection
and distance are the two most important
computations in motion planning.

CSG and B-rep are mostly used in solid
modeler. The CSG represents objects as
unions, intersections, and set differences
of primitive shapes (Figure 10e), and the
B-rep explicitly lists boundary features of
objects (Figure 10f). One of their advan-
tages is that they can represent curved
objects with a small number of parame-
ters specifying the curves. A polyhedral
representation needs many faces to accu-
rately approximate a curved surface.
Commercial solid modelers presently
offer sophisticated geometric computa-
tion routines such as intersection,
volume, and center of mass. If one is
designing a motion planner for assembly
planner, the CAD modeler used for part
designing must be used for the motion
planner as well.

An object representation scheme
should be selected such that it is readily
computable from the sensed or available
data. To expedite MP, one might consider
converting one representation to that in
which intersection and distance compu-
tation can be done efficiently.

2.3 Approaches to Motion Planning

Numerous methods have been developed
for MP; some are applicable to a wide
variety of MP problems, whereas others
have a limited applicability. These meth-
ods are variations of a few general
approaches: skeleton, cell decomposition,
potential field, and mathematical pro-
gramming. Most classes of MP problems
can be solved using these approaches.
These approaches are not necessarily
mutually exclusive, and a combination of
them is often used in developing a motion
planner.

2.3.1 Skeleton

In the skeleton approach, the free Cspace,
ie., the set of feasible motions, is

ACM Computing Surveys, Vol. 24, No. 3, September 1992

retracted, reduced to, or mapped onto a
network of one-dimensional lines. This
approach is also called the retraction,
roadmap, or highway approach. The
search for a solution is limited to the
network, and MP becomes a graph-
searching problem. In this approach, MP
is done in three steps. First, the robot is
moved from its starting configuration to
a point on the skeleton, using a canonical
method. Second, the robot is moved from
the goal configuration to a point on the
skeleton likewise. Then the two points on
the skeleton are connected using lines
in the skeleton. The skeleton must repre-
sent all topologically distinct feasible
paths in Cspace. Otherwise, the MP algo-
rithm is not complete, i.e., may miss a
solution.

The well-known skeletons are the visi-
bility graph and the Voronoi diagram,
commonly used ones for 2D, the silhou-
ette and the subgoal network. The visibil-
ity graph is the collection of lines in the
free space that connects a feature of an
object to that of another. Figure 11 shows
the visibility graph of polygons in the
plane, where vertices are used as the
feature. The shortest path for a point
robot between point S and G (the bold
lines) can be found from the visibility
graph if the point S and G are included
as features. There are O(n?) edges in the
visibility graph, and it can be con-
structed in O(n?) time and space in 2D
[Asano et al. 1985], where n is the num-
ber of features.

If the robot is required to stay away
from obstacles, the nearest-site
Voronoi diagram can be used (referred
as Voronoi diagram from now on). It is
defined as the set of points that are
equidistant from two or more object fea-
tures. A comprehensive survey of the
Voronoi diagram is presented in Auren-
hammer [1991]. Figure 12 shows the
Voronoi diagram for polygons when the
polygons themselves are taken as fea-
tures (the square boundary is counted as
one obstacle). If edges of the polygons are
taken as features, a different Voronoi
diagram results. The Voronoi diagram
partitions the space into regions, where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 11. The visibility graph is formed by lines
connecting visible vertices. A solution path is shown
in bold lines.

S

Figure 12. The Voronoi diagram is the set of points
equidistant from two or more objects.

each region contains one feature. For
each point in a region, this feature is the
closest feature to the point than any other
feature. A path from S and G can be
found by first moving the robot on the
diagram, along the diagram, and then to
the goal G (the bold curves). The Voronoi
diagram is attractive in two respects:
there are only O(n) edges in the Voronoi
diagram, and it can be efficiently con-
structed in ((n log n) time, where n is
the number of features [Preparata and
Shamos 1985]. See Ahuja and Schachter
[1983], Kirkpatrick [1979], Lee and
Drysdale [1981], Preparata and Shamos
[1985], Shamos and Hoey [1975], and Yap
[1985] for computing the Voronoi dia-
gram. The Voronoi diagram contains
curves when edges of polygons are used
as features. A different Voronoi diagram

Gross-Motion Planning . 233
containing only straight lines is devel-
oped [Canny and Donald 1987]. It uses a
measure of distance that is not a true
metric instead of the usual Euclidean
distance to determine equidistant points.

For higher-dimensional spaces than
2D, both the visibility graph and the
Voronoi diagram have higher complexi-
ties, and it is not obvious what to select
for the features. For example, the Voronoi
diagram among polyhedra is a collection
of 2D faces, which is not a 1D skeleton.
The visibility graph ean be constructed
from the vertices of polyhedra, but the
shortest path then no longer lies in
the visibility graph. Therefore, the visi-
bility graph and the Voronoi diagram are
mostly used for 2D motion planning.

In Canny [1987, 1988], a general
method of constructing a skeleton in
arbitrary dimensions is presented. It pro-
jects an object in a higher-dimensional
space to a lower-dimensional space and
then traces out the boundary curves of
the projection, which is called silhouette.
The silhouette curves are recursively pro-
jected to a lower-dimensional space, until
they become one-dimensional lines.
Then the.curves are connected at places
where new silhouette curves appear or
disappear using linking curves (Figure
13). This method is developed to find a
path from a graph of one-dimensional
curves, which has a lower complexity
than the original space containing the
objects. It is mostly used in theoretical
algorithms analyzing complexity, rather
than developing practical algorithms. A
path found from the silhouette curves
makes the robot slide along obstacle
boundaries. A variation of this algorithm
is implemented in Canny and Lin [1990].

The subgoal network method does not
build an explicit representation of the
configuration obstacles. Instead, the list
of reachable configurations from the start
configuration is maintained. When the
goal configuration is reachable the MP is
solved. The reachability of one configura-
tion from another is decided by a rather
simple local-MP algorithm called local
operator, such as that moving the robot
in a straight line between the configura-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234 . Y. K. Hwang and N. Ahuja

S

(a) a path following a sithouette curve.

/—7linking curves
/
/_/

silhouette curves

.=/

(b) Silhouette curves for a block with a hole

-

Figure 13. Silhouette curve.

tions. In the beginning, this approach
finds a candidate sequence of intermedi-
ate configurations called subgoals and
uses the local operator to successively
move the robot through the subgoals in
the sequence. A heuristic is usually used
to find the sequence, but a sequence of
random configurations can be used. If
the robot cannot reach the goal configu-
ration, the reached subgoals are stored in
the list, and another candidate sequence
is found between the goal and any one of
the reached subgoals. The local operator
is used again to check the existence of a
feasible motion through the sequence,
and this process is repeated. Note that
the feasible motion between two reach-
able configurations need not be stored, as
it can be readily recovered by the local
operator. The main advantage of this al-
gorithm is the small memory require-
ment. The visibility graph is an example
of a subgoal network, where subgoals are
object features and where the local oper-
ator is go-straight. Figure 14 shows a
subgoal network generated using a local
operator that moves the robot diagonally.
When the robot collides, new subgoals
are generated by sampling a few points
on the path.

The choice of the local operator deter-
mines the completeness of this approach.
In one extreme, one can use the go-
straight algorithm, which often fails to
find a feasible motion between two con-
figurations which are far apart. Conse-
quently, the adjacent subgoals must be

ACM Computing Surveys, Vol. 24, No. 3, Septernber 1992

Figure 14. Subgoal network.

close by, which increases the number of
subgoals. On the other extreme, one can
use an exact global-motion planner as
the lecal operator, in which case only one
sequence of subgoals containing the start
and goal need to be tested. This local
operator approach is a systematic way to
decompose an MP problem into a number
of simpler MP problems. It was intro-
duced in Faverjon and Tournassoud
[1987] and completed in Chen and Hwang
[1992]. It is our experience that this
approach is most efficient when a poten-
tial-field method is used as the local
operator.

2.3.2 Cell Decomposition

In this approach, the free Cspace is
decomposed into a set of simple cells, and
the adjacency relationships among the
cells are computed. A collision-free path

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the start and the goal configura-
tion of the robot is found by first identify-
ing the two cells containing the start and
the goal and then connecting them with
a sequence of connected cells. Cells can
be object dependent or independent. In
an object-dependent decomposition,
boundaries of obstacles are used to gen-
erate the cell boundaries, and the union
of free cells exactly defines the free space.
The number of cells is small, but the
complexity of decomposition is high; and
the computations of containment, inter-
section, connectivity, and adjacency of the
cells are difficult. Note that adjacency
information is needed to find a sequence
of connected cells from the start to the
goal configuration. For example, it is
NP-hard to decompose into convex poly-
gons a polygon with polygonal holes [Keil
and Sack 1985]. Object-dependent
decompositions usually result in semi-
algebraic cells. An example of object-
dependent cell decomposition is shown in
Figure 15 with a solution sequence of
cells between S and G. In an object-
independent decomposition, the Cspace
is prepartitioned into cells of a simple
shape, and each cell is tested for whether
it is inside or outside of configuration
obstacles. Since the cell shape and loca-
tion are independent of the object shape
and location, the cell boundaries do not
tightly enclose the object. The represen-
tation error can be made small, however,
by increasing the number of cells. The
MP computations mentioned above are,
however, much easier if not trivial.
Examples of object-independent cell
decompositions are the grid and the
quadtree (Figures 10b and c).

2.3.3 Potential Field

A historical review of the potential-field
approach can be found in Koditschek
[1989]. The idea of using potential func-
tions for obstacle avoidance was used in
Khatib and Mampey [1978] and in Hogan
[1985] for force control. It was also devel-
oped independently in Miyazaki and
Arimoto [1984] and Pavlov and Voronin
[1984]. This approach constructs a scalar

Gross-Motion Planning . 235

(30

Figure 15. Object-dependentt cell decomposition.

function called the potential that has a
minimum, when the robot is at the goal
configuration, and a high value on obsta-
cles. Everywhere else, the function is
sloping down toward the goal configura-
tion, so that the robot can reach the goal
configuration from any other configura-
tion by following the negative gradient of
the potential. The high value of the
potential prevents the robot from running
into obstacles.

Figure 16 illustrates this approach.
First, an obstacle potential is constructed
that has a high value on the obstacles,
and it decreases monotonically as the
distance from obstacles increases (Figure
16a). Note the inverse of distance to
obstacles can be used for this purpose.
Addgd to the obstacle potential is a goal
potential that has a large negative value
at the goal and increases monotonically
as the distance from the goal increases
(Figure 16b). The negative of the inverse
of distance to the goal is a commonly
used goal potential. The sum of the two
potentials is computed (Figure 16¢), and
the path from the start to the goal config-
uration is found by putting a small
marble at the start and following its
movement.

An obstacle potential constructed in
this way resembles the -electrostatic
potential generated by obstacles made of
positively charged matter, hence the
name of this approach. The potential is
most often assigned to obstacles in the
world space. It is redundant to compute

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236 Y. K. Hwang and N. Ahuja

(a) The obstacle potential has a high
value inside obstacles.

(b) The goal potential has a unique
minimum at the goal

{c) A path to the goal can be tound

trom some places by moving

tn the direction of the negative gradient of the combined potential
A spurious locat minimum T, however, traps the robot if it starts from S

Figure 16. The potential-field approach. *

configuration obstacles and then assign a
potential to them. If the robot is not
a point, the total potential on the robot is
computed by adding the potential values
on a set of points sampled from the
surface of the robot.

This approach is simple, but the poten-
tial function usually has several local
minima at configurations other than the
goal. (point T in Figure 16¢). These spu-
rious local minima often trap the robot.
One other disadvantage is that the
expression for the potential becomes very
cumbersome when there are many con-
cave objects. Unless the robot is a point
and unless obstacles are nonoverlapping
convex objects, the potential field
approach alone cannot be used as a global
algorithm. This is expected since no
detailed shape analysis is done unlike
other approaches. The best way to use

ACM Computing Surveys, Vol. 24, No. 3, September 1992

the potential-field approach is to use it as
a submodule for global-motion planners
that decompose the original MP problem
into many local problems solvable by the
potential-field approach. Although such
algorithms may not be exact, they are
attractive due to their low computational
costs.

2.3.4 Mathematical Programming

This approach represents the require-
ment of obstacle avoidance with a set of
inequalities on the configuration parame-
ters. Motion planning is formulated then
as a mathematical optimization problem
that finds a curve between the start and
goal configurations minimizing a certain
scalar quantity. Since such an optimiza-
tion is nonlinear and has many inequal-
ity constraints, a numerical method is
used to find the optimal solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Search Methods

Given a way of describing the free space,
and thus the capability of identifying fea-
sible configurations, MP reduces to find-
ing a connected sequence of feasible
configurations between the start and goal
from the representation. There are sev-
eral search methods developed in artifi-
cial intelligence such as depth-first,
breadth-first, best-first, A*, and bidirec-
tional searches [Barr and Feigenbaum
1981]. Random-search techniques such as
simulated annealing are also used for
MP [Barraquand and Latombe 1990].
Dijkstra’s shortest-path algorithm for
graphs is also useful for MP [Dijkstra
1959]. We will only give brief overviews
of these here.

Search methods are best explained
using a grid. Consider a grid in Figure
17a where infeasible configurations are
marked dark, and the start and goal con-
figurations of the robot are marked with
S and G, respectively. The robot is
allowed to move either horizontally or
vertically only. At each configuration, the
robot has at most four possible moves.
When the robot moves from configura-
tion g, to g, g, is called a parent of g,
and g, the child of g, (obviously, ¢, and
q. must be adjacent). During the search,
each configuration is allowed to have only
one parent; otherwise, the robot may keep
moving in a cycle. To retrieve a solution
path, each reached configuration must
remember its parent configuration.
Solution paths are denoted by bold lines
in Figure 17a-e.

The depth-first search moves the robot
from S to configurations in the order
shown in Figure 17a. The depth-first
search always generates a child of the
most recently reached configuration. Note
that the solution is not the shortest. In
contrast, the breadth-first search gener-
ates the children of the earliest reached
configuration first, resulting in Figure
17b. This method is also called brushfire,
since it resembles the way fire progresses
in a dry grassland. The brushfire method
can find the shortest path, but it exam-
ines a large part of the space. It is obvious
that both of these are not very efficient.

Gross-Motion Planning . 237
Without an easily computable criterion
that indicates a better direction to move,
this is all one can do. Such is the case
when the robot has to select the next cell
to move to among irregular overlapping
cells representing the free space.

If the distance from a configuration
to the goal is computed, one can generate
the children of the current configuration
and move to the child nearest to the goal.
This is the best-first search, sometimes
called hill climbing, and works well in
many cases (Figure 1%c). If there is a
blind alley between configuration obsta-
cles (often occurs in practical problems),
the best-first search can also take a long
time to reach the goal.

The A* search is used when a solution
with a minimum cost (typically the short-
est path) is desired. For A* to be used,
there must be an underestimate of the
cost from the current configuration to
the goal (called cost-to-go). A straight-
line distance gives such an underesti-
mate (obstacles only increase the path
length). The total cost, which is the sum
of the cost from the start configuration to
the current configuration (called cost-so-
far) and the cost-to-go, gives a lower
bound on the attual cost. A* search gen-
erates the children of the reached config-
urations whose total cost is the smallest.
When a solution is found, it does not
generate the children of any reached con-
figurations whose total cost is greater
than the total cost of the solution. The
better the cost-to-go approximates the ac-
tual cost, the more A* can prune out
partially generated paths, making it more
efficient. Figure 17d shows the process of
A* search.

The bidirectional search generates the
children of both the start and the goal
configurations and can be used with any
one of the above search methods. Figure
17e shows the bidirectional search com-
bined with the depth first. The robot
switches the direction when it cannot get
any closer to the other side. It is particu-
larly efficient when the goal is in a
narrow channel between obstacles,
making it hard to reach from the start
configuration.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238 . Y. K. Hwang and N. Ahuja

1411319

17 |18 {1

31130 |21
Sy o9g(o3)24

8123

(a) Depth first searh. The robot favors the
motion to the east, north, west, and
then south, in that order. Note at cell 28,
the robot has no cells to go, and the search
resumes from the highest numbered cell
with an empty adjacent cell.

14415

1 6|51

w[o[s |7 |G|

(c) Best first search (hill climb). The robot
goes to the empty cell closest to G.

Gls) |

B
16

(e) Bi-directional search. Whenever the
robot cannot get any closer to the other
side, it switches the direction of search.

72
66

59|52 ,

53] 465157 [50][45 [40

47 |41 35

42 (36 Bid 22]14| 7 [dile1]27]32
37{29F 15|82 1219} 25
30|23 |16|-9| 3 |STT |5]11]18
3831|2417 10| 4°| 6 [13|20] 26

(b) Breadth first search (brush fire).
The robot goes from the loWest
numbered cell to an adjacent cell.
The dotted cells are visited cells
at an intermediate stage of search.

15

BT 3 & 6

(d) A* search. Th® robot goes to the cell
for which the sum of the path length
from S (bold lines) and the estimate
of the path length to G (the straight line
distance is used here) is the smallest.

Figure 17. Search strategies.

All of the above search methods even-
tually explore all parts of the search
space. If this is not possible, a random-
search technique can be used, e.g., a

ACM Computing Surveys, Vol. 24, No. 3, September 1992

highly redundant manipulator with many
degrees of freedom. Random search can
be used in a variety of ways. Suppose we
have a local-motion planner which blindly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

moves the robot in the direction toward
the goal (and the robot gets stuck after
sometime). We randomly pick a point m,
in the Cspace and try to move the robot
from the start to m,, and from m, to the
goal using the local-motion planner.
If the robot cannot reach m,, we decrease
the probability of point selection in a
neighborhood of m,. Then, we pick
another point m,; according to the modi-
fied probability. If the local planner
moves the robot from the start to m,, but
fails to move to the goal, we put m, in
the reachable set. When another point
m, is selected, the local planner tries to
move the robot from any reachable point
to m,, and then to the goal. This ap-
proach is probabilistically complete, but
may take a long time to find a solution.
See Barraquand and Latombe [1990] for
an example of this method.

When searching for the shortest path
between two nodes in a graph with
weighted edges, Dijkstra’s algorithm of
O(n?®) is the most efficient. Beginning
from the goal node, it finds the nodes
connected to the goal, puts them in a
queue, and assigns each of them the cost-
to-goal, which is the weight of the edge
connecting it to the goal. The expanded
goal node is marked as the parent of the
nodes in the queue. Among the nodes in
the queue, it selects the node with the
smallest cost-to-goal, deletes it from
the queue, finds nodes connected to it,
and computes the cost-to-goal for each
node by adding the weight of the connect-
ing edge to the cost-to-goal of the parent
node. If any of the children nodes has a
previously computed cost-to-goal greater
than the newly computed one, its cost is
changed to the new one, and the costs of
all its descendants are updated. This pro-
cess is repeated until all the nodes are
assigned a cost. The minimum-cost
sequence of edges between the start and
the goal is then retrieved by follow-
ing the parents beginning from the start
node.

The efficiency of a search method
depends on the particular MP problem at
hand. Of course, several search strate-
gies described above could be combined.

Gross-Motion Planning . 239
The following guidelines can be used to
develop a customized search method.

Selection of Search Methods

(1) If there is a criterion for selecting a
good moving direction, then use
best-first rather than depth-first or
breadth-first search.

(2) If the problem is easy in the sense
that the free space is wide and allows
many motion solutions, and any solu-
tion is adequate instead of an optimal
solution, then a depth-first or best-
first search will suffice.

(3) If the shortest path is desired, use A*
search or Dijkstra’s algorithm.

(4) If a massively parallel computer is
used, breadth-first search can be
effective.

(5) Use bidirectional search whenever
possible. To connect two configura-
tions, always move from the cluttered
side, since it is easier for the robot to
move from a cluttered space to an
open space, rather than to achieve a
particular configuration in a cluttered
space.

The MP is difficult since it is compu-
tationally intensive to generate a
spatial representation of all collision-
free configurations. If many MP prob-
lems are to be solved with different
start and goal configurations within
*the same environment, it is useful to
compute once in the beginning a
more-or-less complete spatial repre-
sentation and search in this
representation paths connecting
many pairs of start and goal
configurations.

(7) If just one MP problem is to be solved
in an environment, do not generate
a complete representation of the
Cspace. Interleave the representation
computation and the search. That is,
try to find a solution from a partial
representation of the Cspaces. If there
is no solution, incrementally refine
the representation and search for a
solution again. In many situations,
a solution will be found before the

(6)

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240 . Y. K. Hwang and N. Ahuja
complete representation is computed.
We call this paradigm ICORS, which
stands for Interleaved Computations
Of Spatial Representation and Search
of a solution.

If the environment is marginally
changing, use an updating scheme to
avoid complete recomputation of the
representation.

(8)

2.5 Local Optimization of Motion

Once a collision-free path is found, it can
be further optimized by a numerical
method. Two commonly used optimality
criteria are the length of the path and
safety clearance between the robot
and obstacles. The resulting performance
index to be minimized can be expressed
as

J = ngoaI

Qstart

(1+w*D"'(q)) dq,

where D(q) is the distance between the
robot and obstacles; w is the relative
weighting factor, and the integral is over
the path connecting q,,,, and gq,,,-
Note the minimization of D~ !(q) pre-
vents the robot from colliding with obsta-
cles. Several numerical methods can be
used to find a path with the minimum J
with the path found by an MP algorithm
as the initial guess [Bryson and Ho 1975].
It is our experience that a simple gradi-
ent method performs satisfactorily. One
can also include dynamics of robot actua-
tors (motors) to optimize quantities such
as the travel time, energy expended dur-
ing the motion, etc. The resulting path is
smooth and thus easier to execute on a
real robot, but it is optimal only in the
vicinity of the initial guess. One can use
a straight-line path between the start
and goal involving collisions as the initial
guess and get a collision-free path with
numerical optimization. But this hap-
pens only in simple cases where the
obstacles are convex and disjoint, and it
is not recommended.

An efficient-distance algorithm for
polytopes is developed and wused for
numerical optimization in Gilbert and

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Johnson [1985]. With polygonal robot
and obstacles, and robot dynamics in-
cluded in ¢/, the numerical algorithm took
300-600 iterations to converge. See
Gilbert et al. [1988] and Gilbert and Foo
[1990] for algorithms for computing the
distance between polytopes or curved
objects. Another procedure for computing
distance between polyhedra is reported
in Lin and Canny [1991], which is about
three times faster than Gilbert’s algo-
rithm to our estimation. In Hwang and
Ahuja [1989] an obstacle-potential func-
tion is used in place of D !(g) in opti-
mization. Their potential function is
simpler to compute than distance, and
using J that includes just the path length
and safety clearance their algorithm con-
verges to an optimum in 20-30 itera-
tions. For an example of an optimized
manipulator motion see Figure 36 (later).

3. SURVEY OF RECENT WORK

A brief history of motion planning
between the 1940’s and early 1980’s is
found in Schwartz and Yap [1987], along
with a review of their work. The June,
1987, issue of the IEEE dJournal of
Robotics and Automation also gives a
selection of eight papers on motion plan-
ning from various disciplines such as
mathematics, computer science, and elec-
trical / mechanical engineering. The book
Robot Motion Planning [Latombe 1991],
inten8ed as a graduate-level textbook,
defines various MP problems and
approaches. It gives detailed explana-
tions of landmark papers along with a
comprehensive list of references up to
1990. This section surveys many papers
published between 1979 and 1989, and
some papers published after 1989. It also
discusses future research directions on
various MP problems.

Algorithms are surveyed according to
the type of environments: stationary,
time varying, movable obstacles, and
environments with constraints. Figure 18
shows our taxonomy. Because there are
many more papers on MP in stationary
environments than other environments,
these are further classified by the types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type of environment stationary

Gross-Motion Planning . 241

motion planning

time-varying constrained movable-object-

/\

type of robot rigid robot

skeleton
MP approach .
cell decomposition

point

manipulator multiple robots

potential field

Figure 18. Taxonomy of motion planning.

of robots (rigid or linked robots, single or
multiple robots) and surveyed in four
subsections. First, the work on MP of a
single rigid robot is presented. Section
3.1.2 surveys the work on MP of a point
robot. Although a point robot is a special
case of rigid robots, a large number of
results have been reported for this prob-
lem because (1) the problem space is
lower dimensional and (2) the results are
useful for navigation planning. Section
3.1.3 presents the work on MP of a
manipulator. Motion planning of multi-
ple robots is surveyed in Section 3.1.4.
Since there is a relatively small number
of papers dealing with time-varying envi-
ronments, environments with con-
straints, and movable-obstacle cases, the
survey for these categories is presented
without further classification according
to the robot type. Algorithms in each sec-
tion are grouped according to the
approaches used. Each algorithm is
explained briefly, and its efficiency,
applicability, and amenability to imple-
mentation are discussed. The pros and
cons of each algorithm can be found in
the comparison tables in Section 3.5. The
tables highlight features of the algo-
rithms such as degrees of freedom of
robots, shapes of robots and obstacles,

degrees of exactness, and actual speeds
of execution.

Comparing the actual running times of
algorithms is difficult due to the fact that
different computers are used to solve dif-
ferent examples. If an example problem
is included, we give the computation time
along with the speed of the computer in
MIPS (millions of instructions per sec-
ond). If the MIPS are not available, we
interpret the result as the running time
on a typical computer available in the
publi§hed year.

3.1 Stationary Environments

A stationary environment is the simplest
type of environment to plan motion, and
algorithms for this problem are often used
as ingredients of MP algorithms for other
environments. Much of MP research has
been concerned with stationary environ-
ments, and this work is surveyed in the
following four subsections.

3.1.1 Classical Mover’s Problem

The classical mover’s problem refers to
the problem of moving a rigid robot
among stationary obstacles of fixed
shapes. Figure 5 shows a typical classical
mover’s problem. It is the most studied

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242 . Y. K. Hwang and N. Ahuja
version of the motion-planning problem.
This problem has important applications
in vehicle navigation on land, on sea,
underwater, in air, and in outer space.
For the task of moving an object with a
manipulator, the existence of a collision-
free motion for the object to be moved is
a necessary condition for a feasible
manipulator motion.

Skeleton Approach

The idea of the configuration space is
introduced in Lozano-Pérez and Wesley
[1979]. To plan motions for a translating
polygonal robot among polygonal obsta-
cles, configuration obstacles are com-
puted using Minkowski set difference.
The resulting configuration obstacles are
polygons, and the visibility graph is com-
puted using polygon vertices as features.
The shortest path is found from the
visibility graph.

In Kedem and Sharir [1985, 1988], an
exact and efficient algorithm is presented
for a polygonal robot among polygonal
obstacles. It has O(mnAz(mn)log mn)
worst-case time complexity (Ag(r) is
again the maximum length of an (r, 6)
Davenport-Schinzel sequence). This algo-
rithm computes a skeleton, called an edge
graph, consisting of curved edges of con-
figuration obstacles, and feasible motion
is found from the skeleton. The edge
graph is built in two steps. First, for a
fixed orientation 6 of the robot,
Minkowski set difference is used to com-
pute the configuration obstacles, say
CO(#), which are polygons. When 8 is
slightly varied, the topology of CO(8)
does not change unless 6 is one of the
finitely many critical orientations, ..
Therefore, we partition the robot orienta-
tion dimension into a finite number of
intervals using 6, and compute CO(#)
once for each interval. The 6, occur when
the robot vertices touch three obstacle
edges, one obstacle vertex and an edge,
etc. As 6 is varied, the vertices of CO(8)
trace out curved edges of the 3D configu-
ration obstacles. These curved edges ei-
ther branch or merge only when 4 is one
of the 6, (see Figure 19). Two curved

ACM Computing Surveys, Vol. 24, No. 3, September 1992

edges are connected if they meet at one
of the 6, or if they are connected by an
edge of polygons of CO(8) for some 6.
Second, the traced curved edges are
stored in the nodes of the edge graph,
and an edge is created between two nodes
if the curved edges are connected. A
canonical procedure is then used to move
the robot to the edge graph from the
start and goal configurations, and
the rest of the path is found from the
edge graph. It is implemented on a real
robot and takes a few mjnutes to find a
solution.

A similar algorithm is developed for a
polygonal robot among polygonal obsta-
cles in 2D in Avnaim et al. [1988]. Since
the robot and obstacles can be repre-
sented as unions of line segments, the
boundary equations for 3D configuration
obstacles are derived from the intersec-
tion conditions between two line seg-
ments. The boundary equations are
computed in O(m?®n? log{mn)) time. Two
different path-planning algorithms are
presented. One algorithm finds in
O(m3n®) time a path along the bound-
aries of the configuration obstacles. The
robot makes single point, edge, or surface
contacts when following such a path. The
robot goes from the start location to an
obstacle surface, travels on a number of
obstacle surfaces making occasional
jumps among surfaces, and goes to the
goal location (similar to the motion
plann&d in Kedem and Sharir [1985]).
The other algorithm computes a path
away from obstacles using a decomposi-
tion of the free Cspace. The decompo-
sition is done in O(m®nfa(mn)log(mn)),
and finding a path from the decomposi-
tion takes O(m®nfa(mn)) time. It is
faster to compute motion when the robot
is in contact with obstacles because the
robot follows the boundaries of obstacles,
thus avoiding the need for an explicit
representation of the free space.

Cell Decomposition Approach

Cell Decomposition in world space.
The first algorithm polynomial in the
number of obstacles for the classical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Edges of the configuration obstacles
in Figure 3.1(b). Critical orientations
are where the edges meet.

Gross-Motion Planning . 243

(b) A part of the edge graph.

Figure 19. The edge graph of configuration obstacles.

mover’s problem in 2D is reported in
Schwartz and Sharir [1983a). All objects
are assumed to be polygons. The basic
idea of this approach is to partition the
free space into regions, each having qual-
itatively different sets of feasible orienta-
tions. When the reference point of a robot
1s at a certain location, the set of feasible
orientations changes drastically. In
Figure 20a, for example, the feasible
orientation of the white rectangle
changes drastically depending on
whether the reference point, P, is above
or below the line. Such a line is called a
critical curve, and is used to partition the
‘Tee space into regions called noncritical
regions. (A point belongs to either critical
curves or a noncritical region.) A criti-
cal curve is defined as the curve that the
reference point of the robot traces while
he robot maintains a critical contact
with obstacles. Critical contacts are
defined in many ways. For example, a
vertex or an edge of the robot touches a
vertex or an edge of an obstacle, or the
robot touches two obstacles simultane-
qusly. It is shown that for a polygonal

object moving among polygonal obstacles
in the plane there are eight types of criti-
cal curves (Figure 20). If the reference
point of the robot lies in a noncritical
region, the feasible orientations of the
robot can be expressed as a finite union
of open sets of angles associated with the
noncritical region. Each open set is
bounded by the angles at which the robot
i1s making contacts with some obstacles.
The open sets are represented by the
pair of edges/vertices in contact. The
pairs of edges denoting the open sets of
the feasible orientations stay the same as
long as the reference point of the robot
stays in the same noncritical region.
This implies that the robot can move
from a point to another in the same non-
critical region if the orientations of the
robot at the two points are in the same
open set. The robot can move from one
noncritical region to another if at a point
on the boundary of the two regions there
exists an orientation of the robot feasible
in both regions. Two regions are said to
be connected if such a point is found. The
connectivity of the regions is then repre-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244 . Y. K. Hwang and N. Ahuja

P
P ﬂ
(a) Type !

P is translating with a VE contact while
staying maximally away from the obstacle.

P

(c) Type Il
P is translating with two vertex contact
with the same obstacle edge.

<

(e) Type V

P is moving with a VE and an EV contact.

i P=
(9) Type VII
P is moving with two EV contacts.

(b) Type il
P is rotating with a VV or EV contact.

(d) Type IV
P is moving with two vertex contact
with two different obstacle edges.

P

(f) Type VI
P is moving with an edge contact with
two different obstacle vertices.

p

(h) Type VIl
F;is translating with an EE contact.

Figure 20. Eight types of critical curves. The robot is the white polygon, and obstacles the black. P is the
reference point of the robot, and @ is the robot vertex making a contact. A VE(EV) contact denotes a
contact between robot vertex (edge) and an obstacle edge (vertex). VV(EE) denotes a vertex-vertex

(edge-edge) contact.

sented in a graph called the connectivity
graph, and the MP problem is trans-
formed to one of finding a sequence of
connected noncritical regions in the con-
nectivity graph. The time complexity of
this 2D algorithm is O(n%). A general
framework for the MP algorithm with an
arbitrary number of degrees of freedom
is given in Schwartz and Sharir [1981].
The time complexity of the algorithm is
O(n®""®), where n denotes the total

ACM Computing Surveys, Vol. 24, No. 3, September 1992

number of obstacle edges, and d is the
number of degrees of freedom. In three
dimensions (d = 6), this becomes
O(n%%%), This algorithm serves as the
existence proof of a polynomial-time algo-
rithm in the number of obstacles.
Brooks [1983] represents 2D free space
as a union of possibly overlapping gener-
alized cones. A generalized cone has an
axis of a certain length and a boundary
on each side of the axis (Figure 21). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gross-Motion Planning . 245

I

|

! -———-
R s Rt A T T it

1

)

(a) free space decomposition

(b) A solution found for a rectangular robot

Figure 21. Cell decomposition using generalized cones. Reprinted from IEEE Transactions on Systems,
Man, and Cybernetics, vol. SMC-13, March/April, pp. 190-97, Brooks, R. A., “Solving the findpath
problem by good representation of free space,” by permission of IEEE, Piscataway, N.J., Copyright, © 1983

IEEE.

algorithm translates a polygonal moving
body along the axes or spines of the gen-
eralized cones and rotates it at the inter-
sections of the generalized cones. This
algorithm is fast and yields paths that
avoid obstacles generously. Kuan et al.
[1985] improve the quality of the paths
by representing the 2D free space as a
union of generalized cones and convex
polygons [Kuan et al. 1985]. There are
two potential problems with this algo-
rithm: the paths found may not be short
if the free space is wide, and the algo-
rithm may not find a solution when the
robot has to translate and rotate simulta-
neously to avoid obstacles.

A similar but more elaborate algorithm
1s presented in Nguyen [1984]. The 2D
free space is described as a network of
linked cones. Feasible positions and ori-
entations of the robot within each cone
are computed. Feasible path segments
are derived by local algorithms that use
adjacency information about the cones.
Four local algorithms are used, namely,
raversing a free convex region, sliding
along an edge, circumventing a corner,
and going through a star-shaped region.

A* search is used to find global paths
from local segments. The three algo-
rithms above can be used when the free
space is wide and when generous avoid-
ance of obstaches is desired.

A heuristic algorithm based on a
quadtree is presented in Noborio et al.
[1989]. A candidate path is searched from
the quadtree representation of the free
space, and the corner points on the paths
are labeled as intermediate goals (Figure
22a). The minimum width of a robot is
used in the search process to eliminate
paths that are too narrow. The candidate
path would be a solution if the robot is a
point. For a polygonal robot, the candi-
date path must be modified to avoid pos-
sible collisions. The robot is moved
along the candidate path, and at each
instant, the closest distance to obstacles
and the direction to the intermediate goal
is computed. This information is used to
compute the robot’s moving direction that
avoids obstacles and moves the robot
closer to the intermediate goal. The algo-
rithm will fail if the robot has a compli-
cated shape, but it seems to be efficient
for mobile robots with simple shapes such

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

246 . Y. K. Hwang and N. Ahuja

]| G

+ -——.
7 f’gﬁ\G
S:)
F= 1
i1
=v [
BREEE

(a) A candidate path is first found.
assuming the robot is a point

(b} A solution path.
Compare with Figure 4.1.3(b)

Figure 22. Motion planning using a quadtree. Reprinted from Proc. of IEEE Int. Conf. on Robotics and
Automation, pp. 484-489, Noboria, H., Naniwa, T., and Arimoto, S., “A feasible motion planning algorithm
for a mobile robot on a quadtree representation,” by permission of IEEE, Piscataway, N.J., Copyright, ©

1989 IEEE.

as rectangles or circles. The algorithm
takes a few minutes to solve the problem
in Figure 22b.

Cell decomposition in configuration
space. The octree is used to represent
3D configuration obstacles for a polygo-
nal robot among polygonal obstacles in a
2D world [Brooks and Lozano-Pérez
1983]. The 3D configuration space is di-
vided into 8 cuboids, and each cuboid is
labeled either full, mixed, or empty
depending on whether the cuboid is com-
pletely, partially, or not occupied by the
configuration obstacles. A search is done
on the cuboids to find a connected
sequence of empty cuboids between the
start and goal configurations. When no
such sequence is found, the cuboids that
are most likely to yield a sequence of
empty subcuboids are divided. The pro-
cess of searching and dividing (an ICORS
scheme) continues until a solution is
found or until the size of the divided
cuboids reaches a preset limit. This algo-
rithm is exact up to the resolution of the
cuboid size. The configuration obstacles
can also be computed in a 2%tree using
the algorithm in Paden et al. [1989]. This
algorithm can also be used for MP of

ACM Computing Surveys, Vol. 24, No. 3, September 1992

manipulators and is covered in Section
3.1.3.

The generalization of the configuration
space approach to the three-dimensional
world is carried out in Donald [1984].
Objects are assumed to be polyhedral.
The correspondipg Cspace has six dimen-
sions. A six-dimensional lattice of points
is laid over this space, where each point
represents a small neighborhood in the
Cspace. Equations representing bound-
aries of configuration obstacles are then
deriveéd from the contact conditions
between the vertices/edges/faces of the
robot and obstacles. These equations are
evaluated when determining whether a
point is inside or outside the configura-
tion obstacles. The algorithm searches
for a connected sequence of lattice points
outside the configuration obstacles.
Because the search space is very large, it
uses several heuristics to speed up the
search. This algorithm is complete at a
given resolution of the lattice and will
probably run in a few minutes on current
supercomputers.

In Guibas et al. [1988], an
O(A(n)log® n) algorithm is presented for
the generalized MP with two degrees of
freedom, where n is the number of colli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sion constraints, s the maximum alge-
braic degree of these constraints, and
A (n) the (almost linear) maximum length
of an (n, s) Davenport-Schinzel sequence.
This algorithm is based on the O(A(n))
upper bound they established for the
complexity of a single connected compo-
nent of the free configuration space,
which is computed as follows. A set of
curves ' representing collision con-
straints partitions the Cspace into cells
C, and we are interested in finding a
single connected cell ¢* that contains the
start configuration s of the robot. A solu-
tion exists if the goal is in the same cell.
To compute the cell, I' is split into two
subsets I';, I', of equal size. I'; and T,
result in a different set of cells, C;, and
C,. The cells, ¢f and c}, that contain s
are selected from C, and C,, respec-
tively. Finally, the cell ¢* of C containing
s is computed by intersecting ¢} and cj.
For MP of a rectangle in a polygonal
environment, there is an algorithm of
O((a/b)*¢ ! + Dnlog? n), where a > b
are the dimensions of the rectangle, and
€ denotes the tightness of the free space
[Alt et al. 1990].

A sweep volume method is used to effi-
ciently approximate configuration obsta-
cles for a polygonal robot among polygons
[Zhu and Latombe 1990]. This algorithm
partitions the robot orientation into a set
of intervals. For each interval, it com-
putes two types of rectangular cells:
bounding cells that contain the configu-
ration obstacles and bounded cells that
are contained in the configuration obsta-
cles. The set difference between the two
types of cells are further decomposed into
smaller bounding and bounded cells until
a satisfactory resolution is achieved. A
path is found by connecting the empty
cells, i.e., those in the complement of the
set of bounding cells. This algorithm gen-
erates 5-10 times fewer cells than the
octree method [Brooks and Lozano-Pérez
1983] and runs in less than 10 minutes
on a Macintosh II computer.

Configuration obstacles are computed
with Minkowski set difference using a
graphics hardware in Lengyel et al.
[1990]. This algorithm uses a standard

Gross-Motion Planning . 247

graphics hardware to rasterize configura-
tion obstacles into a series of bitmap
slices and then uses the brush fire search
to find a shortest path in this rasterized
space. It takes about 25 seconds to com-
pute obstacles in a 3D configuration space
(raster size of 8 million points) and about
50 seconds to plan a path. This algorithm
is near real time, but works well for dof <
4 due to a huge memory space require-
ment.

Potential-Field Approach®

The potential-field is used not only to
avoid obstacles locally but also to design
a globally optimal path in the sense of
path length for the classical mover’s
problem [Hwang and Ahuja 1989, 1992).
In this 2D and 3D heuristic algorithm, a
computationally efficient potential func-
tion is defined in terms of the boundary
equations of polyhedral obstacles. The
topological structure of the free space is
captured by the valleys of minimum
potential (MPV), which consist of local
minimum and saddle points of the poten-
tial. It is similar to the Voronoi diagram.
The shortest path with the minimum
chance of collision is selected from MPV,
and narrow regions of free space along
the initial path causing collisions are
identified. Motion-planning problems are
classified as having three different levels
of difficulty in this algorithm. For the
problems with the lowest level of diffi-
culty, the free space between obstacles is
quite wide for the robot, and there are no
narrow regions. An optimal path is
obtained by minimizing a weighted sum
of the potential on the robot, change in
robot’s orientation, and travel distance
as the robot moves along the path. The
second level of difficulty is characterized
by the existence of narrow regions. Feasi-
ble configurations of the robot in these
regions are found by locally minimizing
the potential on the robot. Each narrow
region leads to two subproblems: one of
moving the robot from the previous nar-
row region (or the source location), so it
assumes a feasible configuration in the
current narrow region, and another of

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

248 .

Y. K. Hwang and N. Ahuja

(b) The arc has to sidetrack twice 1o get the necessary orientation changes to reach the goal.

Figure 23. Potential-field-based motion planning.

moving the robot from the current nar-
row region, so it assumes a feasible con-
figuration in the next narrow region (or
the destination location). The robot moves
from one feasible configuration in a nar-
row region to that in an adjacent region
by following the initial path while mini-
mizing the potential on it. Figure 23a
shows the motion of moving a grand piano
into a room, where a narrow region is at
the doorway. For the most difficult class
of problems considered, a narrow region
has multiple feasible configurations, none
of which can be connected to the feasible
configurations on both sides. This leads
to an additional third problem, that of
connecting two feasible configurations in
the same region, each of which is con-
nected to only one side. Since the robot
cannot easily move from one configura-
tion to another in a narrow region, this
problem is solved by moving the robot
into an open space to get a necessary
orientation change and moving back into
the narrow region. Figure 23b shows an

ACM Computing Surveys, Vol. 24, No. 3, September 1992

arc-shaped robot making two excursions
from the T junction to get the necessary
orientation changes. Their algorithm
finds near-optimal paths (in terms of path
length) for a variety of 2D and 3D prob-
lems. The computation times are less
than 5 minutes for 2D problems and 30
minutks for 3D problems with 5-10
obstacles on a 4-MIPS SUN computer.
There are several notable features of this
potential-field approach. It leads to
smooth object motion; coarse topological
planning is separated from cost mini-
mization for detailed planning using a
coarse-to-fine computation; it can be
extended to solve problems in higher
dimensions with a marginal increase in
complexity; and computation of potential
field is highly amenable to parallel and
analog computing.

In Chuang and Ahuja [1991a], a
closed-form expression of the electro-
static potential of a line segment is de-
rived, assuming it is electrically charged.
It is more smooth than those developed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

junction

junction

(a) Three corridors and their junctions

Gross-Motion Planning . 249

d
~—~

bt /
L =@ 023

max

(b) The longest line segment
that can turn in a junction.

Figure 24. Moving a line segment among iso-oriented rectangles. Figure (b) reprinted frg)m Proc. of IEEE
Int. Conf. on Robotics and Automation, pp. 1413-1418, Maddila, S. R., “Decomposition algorithm for
moving a ladder among rectangular obstacles,” by permission of IEEE, Piscataway, N.J., Copyright, ©

1986 IEEE.

by others and is used to plan paths for
polygonal robots among polygons. In this
algorithm, a global planner identifies
narrow bottlenecks in the free space by
computing minimum-distance links
between obstacles. A collision-free path
in each of these regions is computed using
the potential field. These paths are con-
nected to yield a solution. This algorithm
generates a very smooth motion for the
robot, since it uses the differentiable
Newtonian potential function to avoid
obstacles. This algorithm takes a few
minutes on a 4-MIPS SUN computer to
solve 2D problems with 5-10 obstacles.
A global-path-planning algorithm
applied to both rigid robots and manipu-
lators is presented in Warren [1989]. This
algorithm generates configuration obsta-
cles first and then assigns potential func-
tions to the configuration obstacles. The
potential function has a truncated coni-
cal shape; it has a maximum value at the
center, decreases linearly as the distance
from the center increases, and is zero
beyond a preset distance from the config-
uration obstacles. The center of conical
potential is located at the approximate
center of each configuration obstacle. The
algorithm initially plans a straight-line
path from the start to the goal in the
configuration space. Then this initial
path is modified in the direction of mini-
mizing potential. Since the potential has
a conical shape, it will converge to a

curve contained in the free configuration
space. This algorithm is significant in
that it combines the idea of configuration
space and potential functions. The over-
head of computing connected components
of configuration obstacles and their cen-
ters limit this algorithm to cases with
dof < 3.

Motion Planning of Line Segment

The MP of a line segment, called a lad-
der, is simpler than MP of a polytope.
The MP of a line segment has limited
applicability in the real world, but it
serves as a good reference to gauge the
complexities of more general versions of
the clas8ical mover’s problem.

Moving a ladder among iso-oriented
rectangular obstacles is considered in
Maddila [1986]. We mean by iso-oriented
that sides of rectangles are parallel to
the coordinate axes (Figure 24a). The
problem is decomposed into several local-
motion-planning problems. The free space
is divided into corridors and junctions.
Corridors are the “hallways” between
rectangular obstacles, and junctions are
the areas where corridors meet. The
movement of the ladder is either horizon-
tal or vertical, and rotations are per-
formed at L-shaped junctions. Because of
the iso-oriented nature of the rectangular
obstacles, the maximum length of the
ladder that can move through an L-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250 . Y. K. Hwang and N. Ahuja
shaped channel is easily calculated
(Figure 24b). A weighted graph called a
motion graph is constructed from the
solutions of the local subproblems. The
weights represent the longest ladder that
can be moved between the nodes of the
motion graph. The algorithm finds a path
in O(n log n) time and is also capable of
finding the longest length of the ladder
movable between two positions in the free
space. This algorithm is useful in envi-
ronments such as factory floors, where
most obstacles are rectangular and iso-
oriented.

The complexity of moving a ladder in
three dimensions is studied in Ke and
O’Rourke [1987, 1988]. An Q(n*) lower
bound is established by constructing an
example with a complex arrangement of
polygons in space that force a ladder to
make Q(n*) distinct moves, where n is
the total number of obstacle vertices
(Figure 25). They show an O(n®log n)-
time algorithm for moving a ladder using
the cell decomposition approach of
Schwarts and Sharir [1981].

Future Research Directions

Algorithms for the classical mover’s prob-
lem have applications such as in assem-
bly planning and navigation in cluttered
environments. These algorithms are
repeatedly used by task planners to check
the feasibility of object transfer and
placement. There is yet no 3D algorithm
that matches the human MP capability.
A brute-force way of computation using
supercomputers or massively parallel
computers is a possibility, but it is very
expensive and still takes minutes. More
efficient algorithms for the classical
mover’s problem in 3D are hence needed.
The complexity analyses show that
exact-motion planners for the 3D classi-
cal mover’s problem will take a high-
degree polynomial time. Since object
models are not exact in most cases, future
research should concentrate on heuristic
algorithms that run in a few seconds at
the expense of failing to find a solution to
very hard, pathological, puzzle-like prob-
lems (humans, too, perform poorly in such

ACM Computing Surveys, Vol. 24, No. 3, September 1992

cases). Knowledge-based methods seem
promising since many objects manipu-
lated by robots are manmade and highly
regular.

3.1.2 Point or Circular Robots

The shape of a point or a circular robot is
independent of its orientation. It is use-
ful to develop efficient algorithms for this
problem since a robot can be treated as a
point or a circle in many navigational
situations. Many fast algorithms have
been developed using representations
such as visibility graph, quadtree (octree),
or grids. The shortest-path problem for a
point among polygons in 2D can be solved
in O(n?) time with the visibility graph
algorithm [Asano et al. 1985]. It is shown
that the shortest-path problem among
polyhedral obstacles in 3D is NP-hard
[Canny and Reif 1987], and only
exponential-time algorithms are known
[Canny 1987], [Reif and Storer 1988],
[Sharir and Schorr 1986]. Thus, an exact
polynomial-time algorithm for 3D is
unlikely, although there is an approxi-
mate polynomial-time algorithm
Papadimitriou [1985].

There are twe interesting special cases
for a point robot. In the weighted-region
problem, the world space consists of
regions with different traveling costs, and
the minimum-cost path between two
points is not a straight line even if there
are o obstacles (Figure 26). MP in a
partially known environment assumes
that the robot knows only those parts of
the world that it has seen. For example,
information about the space behind an
obstacle is unknown wuntil the robot
acquires that data. Motions are planned
based on partial information. The robot
can construct a more complete represen-
tation of the world space as it explores
the world. Algorithms for these two prob-
lems are presented at the end of this
section.

Skeleton Approach

The visibility graph and the Voronoi dia-
gram are prime candidates for a skeleton

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N
N

4 c /
/]

eeacasmaas
e o o s o ae

(a) a line segment is moving through equally (b) Holes in Plane Z.

spaces planes Z, A, B and C, which are

Plane A is drawn to establish scale.

between hole-less Top and Bottom planes.
The length of the line segment is the same
as the distance between plane Top and C.

Ay

o a o] o l]
[] o o o o
-] <] o o ﬂ
U -] o <] o
o ¢} a o n
n <] o o o
o o o o a o

an

(c) Holes in Plane A
HO OO OO0
L 0 0
DO OO0 0O
OO oo
OO0 Oa
D0 00000
O OO0 0O

{d) Holes in Plane B

-
[§ ame | owwe § s § s o | omae f o § o e | e ¥ crts Y cvus) s F vt ¥ s § s § s § e |
S O O O S o DR O CO R e
= e e e e Y e Y 1T
[L e e e e N R Y P YO
OO OO IO IO OO CoO IO N

v
o O O D O OO CaC IR R DO OO e

oo O O COF D CICD OO CI oo cICI R D o
o D R D O IS O O D CoCR O DN R Eo
OO OO D I OO CD COICACI OO
OO D C O D CI I LD CICD L CD O O D D
OO OO OO O RO oot oo o

o O IO R D oo oa D

e 1 T e e T e N e | e e T e Y e Y

O D N O DO CICD OO Co OO e
[e tvs s | s § v | e ¥ s § o J cvats § o § s s I s ¥ s ¥ e ¥ cumere § e ¥ cputony
[=J==jel =l ol = Y o | e Lo N e B e f oo T Y e B e | e}
O OO O NI O R I O CoI e Ca D
O O O CR O OO CO NI CaCI OO

(o e L e § e o §f cms § e §f ctm | amn Y s § v ¥ v B Sus 3 ce ¥ e ¥ o ¥ e ¥ csmion s |

(e) Holes in Plane C.
Plane A is shown to establish scale.

Figure 25. A set of obstacle planes that forces a line segment to make Q(n*) moves to go from one hole to
another. Reprinted from Discrete and Computational Geometry, vol. 3, pp. 197-217, Ke, Y. and O’Rourke,
J., “Lower bounds on moving a ladder in two and three dimensions,” by permission of Springer-Verlag New
York, Inc., Copyright, © 1988 Springer-Verlag New York, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252 . Y. K. Hwang and N. Ahuja

S \low cost region

Figure 26. The minimum-cost path in a weighted
region obeys the Snell’s Law of refraction at the
boundary.

for finding a path among polygons in 2D.
To be used for MP of a point robot, the
feature set of the visibility graph has to
include the start and goal points in addi-
tion to obstacle features. For the Voronoi
diagram, a canonical procedure that
moves the robot from the start and the
goal points onto edges of the Voronoi dia-
gram is needed. A straight line move-
ment in one of the coordinate axes of the
Cspace usually suffices. There are not
many MP algorithms for point robots
using the Voronoi diagram, since the
algorithms generating the Voronoi dia-
gram can be directly used for MP. (An
O(n log n) algorithm to move a disc
among polygons using the Voronoi dia-
gram is reported in O’Dunlaing and Yap
[1982].) In contrast, the visibility graph
is used in a variety of ways to solve many
different MP problems.

The visibility graph takes O(n®) time
to construct with the following trivial
method, where n is the number of ver-
tices. There are O(n?) possible line
segments between every pair of polygon
vertices, and testing of each line segment
for intersection with the polygons takes
O(n) time. This time is improved to
O(n? log n) [Lee 1978], to O(n?) [Asano
et al. 1985; Sharir and Schorr 1984; Welzl
1985], and then to O(nk + nlog n) time
where k is the number of disjoint simple
polygons [Reif and Storer 1985).

The wvisible-polygon idea is used to
compute the visibility graph in Asano et
al. [1985]. Given a query point ¢ and a
set of edges intersecting only at their
endpoints, the visible polygon is the set
of points p on the edges such that the
line segment pqg does not intersect any

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Figure 27. The visibility polygon (shaded region)
from point q.

other edge. The visibility polygon is com-
puted by setting the origin of a polar
coordinate system at the query point, or-
dering the endpoints of edges according
to the polar angles, and finding the clos-
est edge to the query point for each polar
angle of the endpoints (Figure 27). This
O(n) visible-polygon algorithm is
repeated for each of the n vertices, com-
puting the visibility graph in O(n?) time.
The O(n?) of Dijkstra’s algorithm is used
to find the shortest path in the visibility
graph, giving the overall complexity of
0(n?).

Rather than generating the whole visi-
bility graph in the beginning, it is incre-
mentally generated while searching for a
solution path ysing A* search (ICORS)
[Montgomery et al. 1987]. This algorithm
makes use of pruning rules and a hierar-
chical set of visibility tests to minimize
the size of the visibility graph, and thus
speeds up the A* search. For example,
the 8cclusion information among obsta-
cles is used to generate only those paths
to the visible vertices from the robot’s
current position. Although it has O(n?)
worst-case time complexity, it runs much
faster in average cases. Parallel imple-
mentation can be used to compute the
costs of reaching vertices and to do the
search.

de Rezende et al. [1985] consider the
problem of finding a shortest path in
the Manhattan or L, distance. The
obstacles are disjoint rectangles with
sides parallel to the coordinate axes. Mo-
tions of the robot can be restricted to
either horizontal or vertical, since we are
using the L; metric. The essence of the
algorithm is the fact that the shortest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path between two points in this space is
monotone in either vertical or horizontal
direction. Assume without loss of gener-
ality that the start point has smaller x
and y coordinates than those of the goal
point. Move the robot in +y direction,
whenever possible, and in +x direction
only if +y motion is blocked by a rectan-
gle. If the robot passes under the goal
point during this motion, an optimal so-
lution is monotone in y direction (in x
direction if it passes above). Note that
the robot does not get stuck since the
rectangles are disjoint. Once the direc-
tion of monotone motion is determined
(let us assume it is +x), a type of scan
line algorithm is used to find the shortest
path. The scan line is moved from the
start point in +x direction and stopped
at an x coordinate of a rectangle vertex,
and the L, distance from the start to the
vertex is computed. This vertex is stored
in a list containing vertices that may lie
on the shortest path. The scan line is
moved to a next vertex of a rectangle in
+x direction, adding vertices to the list.
A rule is used to delete vertices in the list
that can no longer lie on the shortest
path. This algorithm runs in O(n log n)
and is useful for planning bus routes in
cities or finding paths for electrical con-
nections on circuit boards.

If the rectangles are weighted, i.e., the
robot is allowed to go through them at
extra costs, an O(n log? n)-time and
O(n log n)-space (or O(nlog®/? n) time
and space) algorithm is available [Lee
et al. 1990]. The L, shortest path among
polygons is studied in Clarkson et al.
[1987]. 1t is of O(nlog?n) and plans
paths by constructing a weighted visibil-
ity graph whose vertices are the start,
goal, vertices of the polygons, and some
additional points called Steiner points. It
also shows an O(n? log® n) algorithm for
the L, shortest path among rectilinear
obstacles in 3D.

There is a family of algorithms for the
shortest paths on the surface of a single
polyhedron. The algorithm in Hwang
et al. [1989] computes a representation
of a convex polyhedron in O(n®log n)
time, which is used to find the shortest

Gross-Motion Planning . 253

path on the polyhedron between any pair
of points on the edges of the polyhedron
in O(k + log n) (k is the number of edges
the shortest path crosses). This version
of the problem is called the all-pair
shortest-path problem. For the single-
source problem (one of the points is fixed)
for a single convex polyhedron, an O(n?
log n) algorithm is presented in Sharir
and Schorr [1984]. The time is later im-
proved to O(n?log n) in Mount [1985].
For a nonconvex polyhedron, an O(n®)
algorithm is developed in Q’Rourke et al.
[1984] and improved to O(n? log n) using
the technique called continuous Dijkstra
(Dijkstra algorithm applied to a finite
number of continuous regions) in Mitchell
et al. [1987, 1990], again to O(n?) in
Chen and Han [1990]. We also note that
there are O(n)-time algorithms for the
minimum-link path problem inside a
polygon [Suri 1986; Ke 1989] and an
O(Ea(n)log? n)-time algorithm for the
same problem among polygons (E is the
size of the visibility graph, and a() de-
notes the extremely slowly growing in-
verse of Ackermann’s function). Mini-
mum-link paths are found by first com-
puting the visible polygon (Figure 27)
from the start point and then by recur-
sively computing the visible polygons
from the vertices of the computed visible
polygons, until the goal point is visible.
Some parallel algorithms for solving
Visibiligy and shortest-path problems for
simple " polygons exist. Atallah et al.
[1989] show an algorithm to compute vis-
ible portions of the plane from a point in
a collection of line segments in O(log n)
time with O(n) processors. The number
of processors for this problem is improved
in Atallah and Chen [1989] to O(n /log n)
for the case when the line segments form
a simple polygon. The shortest path
between two points in a simple polygon
can be determined in O(log n) time with
O(n) processors [ElGindy and Goodrich
1988], and the shortest-path tree from a
vertex to all other vertices can be com-
puted in O(log? n) time using O(n) pro-
cessors. Goodrich et al. [1990] present an
algorithm of O(log n) time with O(n)
(O(n/log n) with preprocessing) proces-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254 . Y. K. Hwang and N. Ahuja

00010/
100000

Figure 28. Rectangular cell decomposition and the
coding of the cells. A cell has two strings that
represent the horizontal /vertical position of the
cell. The shaded region is a prime convex area.

sors for the shortest path in a simple
polygon and an algorithm of O(log n)
time with O(nlogn + k/log n) proces-
sors for the construction of the visibility
graph for a simple polygon (k£ is the
number of edges in the graph).

Cell Decomposition Approach

Overlapping iso-oriented rectangles are
used as cells in decomposing the world
space filled with polygons in Singh and
Wagh [1987]. Polygons are first approxi-
mated with the smallest iso-oriented
rectangles, and the rectangle edges are
used to partition the free space into rect-
angles. Each free rectangle is coded with
a pair of binary strings which has a 1 at
the bit positions representing the hori-
zontal and vertical locations of the rect-
angle (Figure 28). Unions of these free
rectangles that form larger rectangles are
computed, and only maximal unions are
used for path planning. A maximal rect-
angular union is called a prime convex
area because it has the binary strings
that correspond to the prime implicant of
the strings of the rectangles forming the
union. Two overlapping prime convex
areas are considered connected. The con-
nectivity graph (with O(n?) nodes and
O(n*) edges in the worst case) of the
prime convex areas is constructed to carry
out the search for near-minimum-length
paths. This algorithm finds near-optimal
solutions in less than a minute for prob-
lems containing 30 rectangular obstacles.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

The free space among polygons is
decomposed by using the lines containing
edges of the polygons in Rueb and Wong
[1987]. The resulting polygonal cells in
the free space are joined to form overlap-
ping maximal convex regions, and over-
laps among these regions are found. The
roadmap of the free space is formed with
the overlaps as nodes and common con-
vex regions joining the overlaps as edges.
The roadmap is similar to the Voronoi
diagram and constructed in O(n?) time
in the worst case and in approximately
linear time for common problems.
Dijkstra’s algorithm is used to find the
shortest path in the roadmap. This algo-
rithm takes about 200 seconds to solve
the problem in Figure 29. This seems to
be reasonably fast and can be used for a
robot moving in a warehouse or
a building.

A probabilistic approach is taken in
Jun and Shin [1988] to plan a path for a
point robot. The 3D space is represented
with a 3D grid of points, and each point
is marked as either free or occupied by
obstacles. The probability of each point
becoming a dead end is iteratively com-
puted based on the obstacle shapes and
locations. A probability of 1 is initially
assigned to points occupied by obstacles,
and 0 to those in the free space. The
probability for each point is then modi-
fied in parallel by examining the proba-
bilitieg of the adjacent points, increasing
the probabilities of the points in blind
alleys and narrow regions. The best-first
search is then used to find the shortest
path instead of the expensive A*’ They
report a speedup by a factor of 10 com-
pared to using A* search. This algorithm
is fast enough to be online if the environ-
ment does not change often and if only
the start and goal positions of the robot
change. If the obstacle information is in a
grid form, this method can be used
directly. If obstacles have a more com-
pact representation, a smaller number of
bigger cells should be used in the free-
space decomposition.

An algorithm for a mobile robot mov-
ing on curved surfaces is developed in
Gaw and Meystel [1986]. The surface is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

——y

————

@

J.

Figure 29. Motion planning with object-dependent
cell decomposition. Motions of circular robots are
shown in dashed lines. Reprinted from IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol.
PAMI-9, no. 2, pp. 263-273, Rueb, K. D. and Wong,
A. K. C., “Structuring free space as a hypergraph
for roving robot path planning and navigation,” by
permission of IEEE, Piscataway, N.J., Copyright, ©
1987 IEEE.

represented by a set of iso-elevation lines
(isolines), each of which consists of a set
of points. The gradient vectors (of
heights) are then computed at each point,
and A* search is used to plan a path
using a cost function that depends on the
vehicle model and the elevation gradient
vector. Obstacles are avoided by assign-
ing an infinite cost to the points inside
obstacles. It took five minutes for a
three-obstacle problem with 100 vertices
representing the isolines. This algorithm
is very practical for mobile robots on
uneven terrains.

A quadtree-based algorithm for a point
robot is presented in Kambhampati and
Davis [1986]. An optimal path in the
sense of minimum length and maximum
clearance is found from the quadtree
using A* search. Search on a quadtree is
much faster than that on a grid due to a
smaller number of cells. To further speed
up the search, the number of cells in the
quadtree is reduced by using a multireso-
lution representation. A cell which con-

Gross-Motion Planning . 255
tains only a few small obstacles is
denoted as a gray cell. When a gray cell
is selected as a part of an optimal path, it
is refined into black (obstacle occupied)
and white (free) cells. This multiresolu-
tion approach speeds up the search pro-
cess by 2-10 times. It takes 10-20
seconds to solve problems involving about
10 obstacles. This algorithm is very effi-
cient when both the path length and the
clearance are important and when
the number of obstacles is large.

Potential-Field Approach

Thorpe has used a potential function
based on distance to design an optimal
path for a circular robot in 2D [Thorpe
1984]. A grid of points is laid over the
world space, and each point on the grid is
assigned a cost inversely proportional to
the minimum of the distances to all
obstacles. Then the A* search is used to
compute the path on the grid having the
minimum length and cost. The points on
this path are then allowed to move to
further decrease the cost of the path.
Krogh and Thorpe [1986] later include a
dynamic steering cgntrol in their formu-
lation. Dynamic steering of the robot is
done by minimizing a potential function
which is the sum of a goal potential and
an obstacle potential. The goal potential
is formulated so that the robot is
attracted to the next corner (turning
point) along the path. The obstacle
potential is defined as the inverse of the
minimum time necessary to avoid obsta-
cles, which can be computed from the
maximum acceleration of the robot,
the current velocity, and the distance to
the approaching obstacle. A similar ob-
stacle potential is used in Faverjon and
Tournassoud [1987]. This algorithm is
useful for a mobile robot that can control
its acceleration in x and y direction inde-
pendently. The grid search in this algo-
rithm becomes expensive (especially for
A*) if a solution with high spatial resolu-
tion is required. A parallel implementa-
tion, however, can greatly speed up this
grid-based algorithm.

Koditschek [1987] has constructed a

" ACM Computing Surveys, Vol. 24, No. 3. September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256 . Y. K. Hwang and N. Ahuja
potential function for point robot naviga-
tion among disk obstacles, and Rimon
and Koditschek [1988] have extended it
to n-dimensional Euclidean space (E")
for a point robot moving among disjoint
E" spheres. The potential function, called
a navigation function by the authors, is 1
at the obstacle boundaries, a unique
globally minimum value of 0 at the goal
position, and has no local minima in the
free space. Thus, no matter where the
initial position is, the robot can follow
the negative gradient of the potential to
reach the goal position. The navigation
function has the form (y(y* + B)) %,
where vy is the distance to the goal and B8
is the product of the distances to all the
spheres, with £ sufficiently large. It is 1
at the boundary of one of the spheres
since B is 0. It is O at the goal since vy is
0. A sufficiently large value of 2 makes
the downhill slope of the potential toward
the goal steep enough to remove all local
minima. Notice that the disjointness of
the obstacles is a critical assumption.

This navigation function has been
extended to the disjoint star world in
Rimon and Koditschek [1989]. A star is a
set which has a point in its interior such
that the set contains the line segment
connecting the point and any point of the
set. The algorithm deforms star shapes
to spheres and uses the navigation func-
tion defined above. These algorithms are
very attractive since they not only guar-
antee solutions, but also give the forces
to control the robot in the form of the
gradient of the navigation function. It is
unlikely, however, that the approach
could be generalized to nonpoint robots,
since such robots result in configuration
obstacles that are very concave and not
disjoint.

A real-time strategy for a point robot
to avoid elliptical obstacles in 2D is
developed in Kheradpir and Thorp [1987].
Elliptical obstacles are used as state-
(position and velocity) dependent con-
straints on the control variables. These
constraints are used with the hard actua-
tor limits in the optimal decision strategy
to follow desired trajectories while avoid-
ing obstacles. This algorithm is a local

ACM Computing Surveys, Vol. 24, No. 3, September 1992

planner since the desired trajectories to
follow must be given. The main contribu-
tion of this paper is the real-time imple-
mentation. Its extension to manipulators
will be very valuable for local avoidance
of obstacles. Such local avoidance is nec-
essary even with a global-path planner
because of errors in obstacle models and
uncertainties in sensors and actuators.
Two commonly used object representa-
tions in computer vision, the medial axis
transform (MAT) and the generalized
cylinder representation*can also be used
for MP of a point robot. The MAT of a
region is the Voronoi diagram where each
point on the diagram is labeled with
the distance to the region boundary.
(So the region can be reconstructed by
taking the union of all circles centered at
each point with the radius equal to the
distance labeling the point.) The general-
ized cylinder representation of an object
consists of a (possibly curved) axis and a
radius labeling each point on the axis.
The object volume is then defined by the
union of disks centered at the points on
the axis and perpendicular to the axis.
An approach to efficient derivation of the
MAT and the generalized cylinder repre-
sentations of a two-dimensional region is
reported in Chuang and Ahuja [1991b].
Instead of using the shortest distance to
the region border, a potential-field model
is used for computational efficiency. The
regian border is assumed to be charged,
and the valleys (saddle points and min-
ima) of the resulting potential field are
used to obtain preliminary estimates of
the axes for the two representations. The
potential valleys are found by following
the negative gradient of the potential,
thus avoiding two-dimensional search.
The simple Newtonian potential is shown
to be inadequate for deriving accurate
representations. A higher-order potential
is defined which decays faster with dis-
tance than as inverse of distance. It is
shown that as the potential order
becomes arbitrarily large, the axes
approach those computed using the
shortest distance to the border. An algo-
rithm is presented to efficiently compute
the MAT skeleton. This algorithm is then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modified to obtain the generalized cylin-
der axis of a polygonal region. These
algorithms for polygonal regions are used
to perform a multiresolution coarse-to-
fine computation of the MAT and gener-
alized cylinder axes of arbitrarily shaped
regions. This algorithm can be used to
compute the MAT of the free space and
plan the motion of a point robot in 2D.

Weighted-Region Problem

The weighted-region problem has impor-
tant applications in terrain navigation
and the least-risk watchman route prob-
lem (a watchman route is such that each
point in some set is visible from at least
one point along the route). There are two
approaches to solve this problem.
Approximate algorithms discretize the
space with a grid of points and assign a
weight (cost) to each point. A shortest-
path algorithm such as Dijkstra’s algo-
rithm is then used to find a sequence of
points minimizing the total cost [Jones
1980; Kiersey and Mitchell 1984; Quek et
al. 1985]. An exact approach is to use
Snell's Law (the law of refraction in
optics) as a local-optimality condition in
planning globally optimal paths. It is well
known that the path of a light ray travel-
ing in different mediums obeys Snell’s
Law and results in the minimum-time
path. An exact algorithm that runs in
O(n’L) time and O(n®) space is pre-
sented in Mitchell and Papadimitriou
[1987]. (L denotes the precision of prob-
lem specification.) This algorithm uses
the continuous Dijkstra introduced in
Mitchell et al. [1987] and Snell’s Law to
plan paths. More efficient algorithms for
various special cases are presented in
Gewali et al. [1988].

In Richbourg et al. [1987], the plane is
represented by a ternary map, i.e., the
regions are labeled as either impossible
to traverse, high cost, or low cost. The
algorithm first treats high-cost regions
as if they have the low cost and finds the
shortest path. The actual cost of travel-
ing on this path in the original ternary
map is computed. This gives an upper
bound of the costs for possible solutions

Gross-Motion Planning . 257
and also bounds the parts of the plane to
be examined. Only those points whose
distances to the start and the goal sum
up to less than the upper bound need to
be considered (these points form an
ellipse; see Figure 30a). Wedges are used
to represent the ranges of light rays that
go through the same sequence of the
boundary segments. Instead of using A*
search on a static graph, the wedges are
dynamically generated during the A*
search process (ICORS). Figure 30b
shows a minimum-cost path. Time com-
plexity is not given and is likely to be
high in the worst case. The authors point
out that a brush fire search using a grid
is likely to run faster if many high-cost
polygonal regions are concentrated in a
small region.

Partially Known Environment

The work on path planning in partially
known environments has been restricted
to point robot navigation in 2D [Chatila
1982; Chatila and Laumond 1985; Chat-
tergy 1985; Koch et al. 1985; Oommen et
al. 1987]. All these algorithms use world
maps that are updated as the robot ex-
plores the enviromment. Heuristic strate-
gies are used to plan paths from the
partial information of the world using
the world map. The robots often avoid
unknown terrains by assigning a large
cost to such areas.

Rao €t al. [1988] have studied the prob-
lem of visiting a sequence of points in a
partially known 2D polygonal world. Only
those obstacles visible to the robot are
known to the robot. Two algorithms,
LNAV and GNAYV, are developed based
on the visibility graph. LNAV is used
to move the robot between two vertices,
say the current and the goal vertex. From
the current vertex, the robot scans the
world and obtains visible vertices. It then
goes to one of the visible vertices that
is not yet visited and closest to the goal.
If at some point all visible vertices are
visited, it backtracks until there is an
unvisited vertex. This is repeated until
the goal is reached. GNAV visits the
sequence of vertices by repeated applica-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258 . Y. K. Hwang and N. Ahuja

(a) The shortest path found ignoring high cost regions. The actual cost
of this path gives an upper bound, and search for the minmum-cost
path can be limited to the inside of an ellipe shown above. (A path that
goes outside of this ellipse has a higher cost than the upper bound.)

{b) A minimugn cost path

Figure 30. Weighted-region problem. Reprinted from Proc. of IEEE Int. Conf. on Robotics and Automa-
tion, pp. 1631-1636, Richbourg, R. F., Rowe, N. C., Zyda, M. J., and McGhee, R. C., “Solving global
two-dimensional routing problem using Snell’'s Law and A* search,” by permission of IEEE, Piscataway,

N.J., Copyright, © 1987 IEEE.

tion of LNAV with a restricted form of
learning. The global-vertex graph is
updated as the robot moves, and the path
is planned in the global-vertex graph.
The time complexity of LNAV is O(n?),
which is typical of the visibility-based
algorithms. GNAV is O((n + m)?) where
m is the number of vertices to be visited.

Lumelsky [1987] describes algorithms
in which the robot (bug) knows the goal
location and can only feel obstacles. An
interesting feature of this algorithms is
that it does not use any explicit represen-
tation of the free space. All the informa-
tion about obstacles comes from direct
contact between the bug and obstacles.
The bug goes directly toward the goal in
a straight line MI. When it encounters
an obstacle, it follows the obstacle bound-
ary while maintaining contact with the
obstacle. When it meets the line Ml
on the other side of the obstacle, it leaves
the obstacle and heads for the goal again.
Lumelsky [1987] proves the convergence
of such a bug algorithm. The path found
is not optimal in general. The bug algo-
rithm has also been extended to the
motion planning of manipulators (Section
3.3). In Lumelsky and Skewis [1988], the
bug is equipped with finite-range vision
to improve the efficiency of the paths. It

ACM Computing Surveys, Vol. 24, No. 3, September 1992

plans the shortest path within its visual
range while using the bug algorithm
described above. It is proven that having
vision always results in shorter paths
than no vision, but longer-range vision
does not necessarily result in shorter
paths than shorter-range vision. Because
of the inefficjency of the solutions
obtained by the bug algorithms, they are
applicable to cases where obstacle infor-
mation is available only through touch
Sensors.

Futurg Research Directions

Path planners for a point robot in 2D
have time complexities of O(nlog n) to
find a feasible path and O(n?) to find the
shortest path. The 3D shortest-path
problem is not discrete, i.e., the solution
cannot be obtained in a finite number of
steps, and exact polynomial algorithms
are unlikely. See Sharir and Schorr
[1984] for a double-exponential proce-
dure for determining the sequence of
obstacle edges that the shortest path
passes through. The power of computers,
however, has reached a stage where the
point navigation in 3D can be done in
near real-time by brute force using a
brush fire search in a three-dimensional

grid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Motion planning of a point robot in
static environments is well understood,
and we suggest the following areas for
future research. The first area is the kin-
odynamic planning, where dynamic con-
straints such as bounded acceleration are
considered (see Section 3.3). Second, path
planning of multiple robots with conflict-
ing/common objectives has applications
in planning of battlefield strategies and
construction of large structures with
multiple robots. This requires research
in representing task requirements in
terms of robot motions, formulating opti-
mality criteria for various tasks, and effi-
cient search methods for a very high-di-
mensional space (the Cspace dimension
of multiple robots is the sum of the dof of
all the robots). Third, more work is
needed for sensor-based path planning in
uncertain and partially known environ-
ments. This research will address the
issue of uncertainty handling, sensing
planning, and efficient representations
for information updating. Some work in
these areas can be found in Donald and
Jennings [1991].

3.1.3 Manipulators

A manipulator is a robotic arm consisting
of links joined together. Joints are either
rotary or prismatic (translational), and
actuators, e.g., motors, are used to change
Joint angles or link lengths. The configu-
ration parameters are the joint angles
and link lengths controlled by prismatic
Joints, and the dof is equal to the number
of independently controlled actuators. In
this section, the word “robot” refers to
manipulator, and joint angles refer to
configuration parameters. Links and joint
angles are indexed from the base of the
manipulator. For example, link 0 is con-
nected to an object in the world space,
e.g., the floor, and the ith joint angle
controls the movement of the ith link.
The type of manipulator is specified by a
string of “R” and “P,” where the ith char-
acter represents the type of ith joint.
Figure 31 shows an Adept robot, whose
joints are rotary except for the third joint
(RRPRRR), and a PUMA robot with a

Gross-Motion Planning . 259
hand which has all rotary joints (RRR-
RRR).

Kinematics of a manipulator refers to
the computation of the position and ori-
entation of a part of the manipulator
(usually the tip) from the configuration.
It involves sines and cosines if the
manipulator has a rotary joint. Inverse
kinematics is the computation of the con-
figuration from the position and orienta-
tion of the tip. Note that this problem
often needs to be solved for manipula-
tion. For example, to pick up an object,
we need to find a configuration of the
manipulator that will place its gripper
where the object is. For 3D world space,
it is described as a set of 6 simultaneous
nonlinear equations in dof variables. The
inverse kinematics often has multiple so-
lutions even for a simple 2-link planar
manipulator. If dof > 6, an infinite num-
ber of solutions exist, and such manipu-
lators are called redundant. There is no
closed-form solution for most manipula-
tors. The dynamics refers to the relation-
ship between the position / velocity of the
manipulator and the force/torques
applied by the actuators.

The Jacobian J refers to the relation-
ship between ‘differential changes of the
manipulator tip configuration dx and dif-
ferential changes of the configuration of
manipulator dq. In equation form, dx =
J(g)dg. J is a 6 X dof matrix whose
elements are functions of g. If we want
to comptite dg from dx, the inverse of J
is computed. o/ is singular, however, for
a certain set of g, and the inverse does
not exist. Such a set is said to consist of
singular configurations of the manipula-
tor. The physical interpretation is that
there is no dg that will move the tip in
dx direction. For example, the singular
configurations of a two-link robot in
Figure 32 are those for which the two
links are parallel, since no differential
changes in the configuration will move
the tip in the radial direction. Special
care is needed when solving an inverse
kinematics problem using the Jacobian.

Because most manipulators have non-
linear kinematics, the design of globally
and dynamically optimal motions among

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260 .

Y. K. Hwang and N. Ahuja

{a) An Adept manipulator

Figure 31.

Figure 32. Singular configurations of a 2-link
manipulator. The tip cannot move in the radial
direction.

obstacles is difficult, and most global
planners consider kinematics only. In
algorithms that include dynamics, it is
usually assumed that an initial path
is given and that dynamic optimization is
done locally in the vicinity of the path
[Bobrow et al. 1985; Shin and McKay
1984]. This section will concentrate on
kinematic global planners. Even for this
case, a motion planner for manipulators
having six degrees of freedom that runs
at practical speeds has not been reported.
Commercially available robots such as
PUMA, Adept, and Gantry come with
only a position controller, which basically
make the robots follow specified trajecto-
ries. Only one graphics package for robot

ACM Computing Surveys, Vol. 24, No. 3, September 1992

(b) A PUMA manipulator

Commercial manipulators.

simulation includes the path planner of
Lozano-Pérez [1987]. With these defini-
tions we now survey MP algorithms for
manipulators.

Skeleton Approach

The MP of a planar d-link system con-
fined in an obstacle-free circular region is
studied in Hopcroft et al. [1985]. The
bounding circle is the only obstacle.
The algorithm first moves the linkage to
a certain normal form and then puts
each link into place, correcting its orien-
tation if necessary using only simple
motions. A simple motion involves mono-
tone changes in at most four joint angles.
It is defined so that the manipulator can
move to any reachable point using only
these motions, and it still retains the
polynomial-time complexity of the MP al-
gorithm. In a normal form, all the joints
up to joint i lie on a radius of the bound-
ing circle, and the rest of the joints touch
the circle. Correcting orientation of a link
involves destroying and restoring the po-
sitions of previous links, which takes
O(d?) time. Orientation correction is
done once for each link in the worst case,
resulting in an O(d?) overall complexity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This algorithm is a form of subgoal net-
work, with the normal form and simple
motion being the subgoal and local oper-
ator, respectively.

Faverjon and Tournasoud [1987] report
a global-path planner for manipulators
with many degrees of freedom. A subgoal
network method is first developed in this
paper. The global planner divides the
Cspace into cells and assigns to the cells
the probabilities that the local algorithm
would succeed in them. All regions have
the same probability initially and are
then modified subsequently as the local
algorithm is applied. The A* search is
used to find a sequence of regions with
the highest probability of success. A local
operator is then applied to the sequence
of cells. If the local operator finds (fails to
find) a feasible motion in a cell, the prob-
ability of the cell is increased (decreased).
The process of sequence generation and
search for a feasible motion along the
sequence is repeated. The local operator
is based on a potential field called the
velocity damper, i.e., constraints on the
velocity with which the obstacles may be
approached. This has an advantage over
other potential fields in that it allows the
robot to approach obstacles very closely.
Other potential fields consider only the
position of the robot and repel the robot
away from the obstacles even if there is
enough braking distance between them.
The local planner moves the manipulator
toward the goal by including a goal
potential |g — qgoall2 in the minimiza-
tion criterion while enforcing velocity
damper constraints and uniformity of ve-
locity for each joint. This offline algo-
rithm is developed for a manipulator with
a high number of degrees of freedom (10
links and 8 dof), for which exact algo-
rithms have a very high complexity.

A randomized search technique is
developed for the generalized mover’s
problem and is used for MP of high-dof
manipulators [Barraquand and Latombe
1990]. This algorithm incrementally
builds a graph connecting the local min-
ima of a potential function defined in the
Cspace and concurrently searches this
graph until the goal is attained. A local

Gross-Motion Planning . 261

minimum is connected to another one by
executing a random motion to escape the
potential well of the first one, followed by
a gradient descent to reach the second
one. This algorithm is probabilistically
complete and is useful for a manipulator
with high dof. The computation times for
stick figure robots in polygonal/
polyhedral environments are 2, 3, 15
minutes for d = 8, 10, 31, respectively.
This algorithm is a combination of the
potential-field and subgoal network
approaches. .

In Chen and Hwang [1992], a very effi-
cient and resolution-complete motion
planner is presented using a subgoal net-
work method (Section 2.3.1). The effi-
ciency and completeness of this algorithm
are made possible by three things: defin-
ing subgoals in a hierarchical and mul-
tiresolution manner, bidirectional search,
and the use of ICORS paradigm. A sub-
goal in this algorithm is defined by a
rectangular cell of various dimensions s
in the Cspace, where 0 <s < dof. The
cell of dimension dof is the whole Cspace,
whereas a zero-dimensional cell is a point
in the Cspace. A cell of dimension s is a
set of configurations where the first dof
— s joint angles<are specified, and the
rest are unspecified. A set of cells of
dimension s is obtained from an s + 1-
dimensional cell by copying the values
of the specified joint angles and by speci-
fying the values of the (dof — s)th joint
angle as follows. Place the first dof — s
— 1 links in the configuration specified
for the (s + 1)-dimensional cell. Move the
(dof — s)th link by varying the (dof —
s)th joint angle, and pick the values of
the joint angle that put the link maxi-
mally away from the obstacles. For each
of such values, an s-dimensional cell is
created. This process is called cell refine-
ment, and the resulting cells represent
sets of configuration for which the first
d — s links are in safe locations. Note
that a point cannot be refined. A cell is
considered reached if the robot can reach
any point in the cell. Two cells are con-
sidered adjacent if the L, distance
between them is less than a preset
threshold (the same definition holds

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262 . Y. K. Hwang and N. Ahuja
between a point and a cell). Imbedding
the bidirectional search in the subgoal
network method, this algorithm keeps
two lists of reached points: the s-reached
list containing the points reached from
the start (initially only the start) and
the g-reached list containing points
reached from the goal (initially only the
goal). Initially, there is only one subgoal,
the whole Cspace C,. The shortest se-
quence of subgoals between any point in
s-reached list and g-reached list is found
using Dijkstra’s algorithm (initially
start-Cy-goal is the only sequence). A
local operator is used to check the
existence of a feasible path along the
chosen sequence by trying to move the
robot from both ends of the sequence.
The distance between the robot and ob-
stacles is computed at the points at both
ends of the sequence, and the robot is
moved from the point with the smaller
distance to the other. If there is no path,
the last subgoal reached from each end is
refined into several subgoals each having
one less dimension. The refined subgoals
are removed from the subgoal network,
and the newly generated subgoals are
entered in the subgoal network. The ad-
jacency of subgoals is then updated in
the subgoal network. The shortest se-
quence of subgoals between any s-re-
ached points and g-reached points is
computed again and subsequently
checked by the local operator. This pro-
cess is iterated until a path is found or
until there is no sequence to examine.
The local operator is based on the poten-
tial field and moves the robot toward the
subgoal while maximizing the distance
between the robot and obstacles. Figure
33a shows the subgoal network gener-
ated in the Cspace for the problem in
Figure 2. Because the ICORS paradigm
is used, this algorithm solves easy prob-
lem fast and harder problems with a
gradual increase of computation time. It
has an average computation time of 10
minutes on a 17-MIPS computer for 6-dof
manipulators in polyhedral environ-
ments. This algorithm requires about
10,000 distance computations to solve the
example in Figure 33b.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Lumelsky also applied the bug algo-
rithm to manipulators of various types.
In all of these algorithms, the robot is
equipped only with touch sensors, and
global information about all obstacles is
not available a priori. Path planning for
a Cartesian manipulator in 3D is
described in Lumelsky [1986], in which
the completeness of the algorithm is
proved. The tip of the manipulator moves
in the plane connecting the start and the
goal positions and parallel to the last
link. In Lumelsky [1987], the kinematics
of 5 useful types of planar 2-link manipu-
lators are analyzed. They are RR, PP,
two RP, and PR types. The RP type has
two kinds, depending on whether the
sliding link is in the radial or angular
direction. Obstacles in work space are
transformed into configuration obstacles,
and the bug algorithms are used in the
Cspace. Although the topology of the joint
space is more complicated than the
Euclidean space, the bug algorithms are
still shown to converge. Path planning of
2-link manipulators in 3D is described in
Lumelsky and Sun [1987]. An implemen-
tation of the algorithm is reported in
Cheung and Lumelsky [1988] in which
infrared sensorg are used on the PUMA
562 arm to detect contact. Using only the
second and third degrees of freedom of
PUMA (thus making the robot planar),
the algorithm plans paths in real time
with two Motorola 68020 microproces-
sors. The above algorithms have the same
advantages and drawback as described
earlier for other bug algorithms.
Although these algorithms do not need
all obstacle information a priori, the ex-
tension of the bug algorithm to 3D mani-
folds seems to necessitate the storage of
obstacle information. This is because in
2D there are only two choices for the bug
when it encounters an obstacle, turning
right or left. In 3D, however, there are an
infinite number of choices, and the stor-
age of examined and unexamined choices
is needed.

Cell Decomposition Approach

Brooks [1983] developed a 3D global
planner for a PUMA robot arm. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gross-Motion Planning . 263

bl

7z
prals
o

i
.
i

- ww @

a b

< §d"c t o by

e

vz
[y T S
. ..

(a) The search process of SANDROS motion planner for the problem in Flgure 2.1
triangle : collision point, vertical bar: one-dimensional subgoal, square: point subgoal

{b) A solution found for a 5-do! Adept manipulator.

o

Figure 33. SANDROS motion planner.
*

obstacles are vertical polygonal prisms.
This simplifies the computation of inter-
section between the robot and obstacles,
since with the first joint angle fixed, the
movements of the second and third links
are confined inside a vertical disk. Con-
servative approximation of configuration
obstacles is derived using the geometry
at the contact between the PUMA arm
and the prisms. The configuration obsta-
cles are represented by rectangles, and a
path is found from the spines of the free-
ways between configuration obstacles.
For an example with 6 obstacles, it takes
less than one minute on a Lisp machine.
This algorithm is useful in a table top
environment.

Lozano-Pérez [1987] describes the first
resolution-complete planner for general
manipulators that has been imple-
mented. Configuration obstacles are com-
puted using the needle method, and the
free Cspace is decomposed into regions. A
graph specifying the connectivity of the
regions is constructed, and A* is used to
find the shortest path. The configuration
obstacles are computed by considering
one link at a time. The first link is con-
sidered, and feasible ranges of the first
joint angle, 6,, are computed. Next, the
second link is taken into account. For
each discretized value in feasible ranges
of 6,, feasible ranges of 6, are computed
(Figure 34a). This process is repeated for

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264 .

Y. K. Hwang and N. Ahuja

kernel of R1 configuration obstacle

(b) Regions and kernels

(c) A solution path

Figure 34. A general motion planner for a manipulator. Reprinted from IEEE Journal of Robotics and
Automation, vol. RA-3, no. 3, pp. 224-238, Lozano-Pérez, T., “A simple motion planning algorithm for
general manipulators,” by permission of IEEE, Piscataway, N.J., Copyright, © 1987 IEEE.

all the remaining links. For polyhedral
obstacles and manipulator links, it takes
O(r?¢~'(mn)?) time to build the configu-
ration obstacles, where each 6, is quan-
tized into r values, d the number of
degrees of freedom, m and n the num-
bers of face and edges of the manipulator
links and obstacles, respectively. The free
Cspace is then divided into maximal
regions such that each region contains a
kernel. A kernel is defined as the part of
the region that can be reached from any
points of the region by moving in a
straight line parallel to one of the axes in
the Cspace (Figure 34b). A collision-free
path between two points within a region
is found by first going to the kernel, mov-
ing along the kernel, then going to the
goal. The connectivity among the regions
is represented in the region graph.
Finally, A* is used to find a solution.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

This algorithm is general, i.e., applicable
to any type of manipulators. There are
two weak points of this algorithm. First,
the péths found by this algorithm are not
necessarily optimal since the kernels are
used to move within regions. Second, the
exhaustive nature of the algorithm makes
it very slow. Consider, for example, an
obstacle set and a manipulator each con-
sisting of a set of polyhedra having a
total of 30 faces and edges, i.e., mn = 10°.
Assume that r = 100, i.e., the angular
resolution is 3.6 degrees. If it takes 10
integer operations to compute a contact
condition, then the total number of inte-
ger operations required is 10! for a 3-dof
manipulator, i.e., 10® seconds or 17 min-
utes on a 100-MIPS computer. To reduce
the computation time to a practical range,
a coarse resolution of angles could be
used at the expense of losing accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level | level 2

|

pa—— —

level 3

Gross-Motion Planning . 265

level 4 level 5

Figure 35. A hierarchical model of objects. Reprinted from Proc. of IEEE Int. Conf. on Robotics and
Automation, pp. 330-340, Faverjon, B., “Hierarchical object models for efficient anti-collision algorithm,”

by permission of IEEE, Piscataway, N.J., Copyright, © 1989 IEEE.

Another option is to implement it on a
parallel architecture to speed up the
computation of the configuration space
obstacles. Such an algorithm using the
Connection Machine (a massively paral-
lel SIMD machine consisting of 26 =
65536 1-bit processors) is presented in
Lozano-Pérez and O’Donnell [1991].
Herman [1986] developed a fast
algorithm for a manipulator in 3D. The
manipulator and its swept volume while
following paths are approximated by
primitive shapes such as spheres or
cylinders, and the search for a collision-
free path is done on the octree represen-
tation of the free space. Three search
techniques, hypothesize and test, hill
climbing, and A*, are used to generate
the solution. First, an octant closest to
the goal location is selected among the
neighboring octants of the start location.
Then the algorithm hypothesizes that a
collision-free path is given by the straight
line connecting the center of the selected
octant and the center of the octant con-
taining the start location. It approxi-
mates with a generalized cylinders (called
cyl-spheres) the swept volume of the robot
while following the straight-line path. If
the swept volume intersects any of the
octants occupied by the obstacles, the
selected octant is abandoned, and the
next best neighboring octant of the start
location is selected. If the swept volume
does not intersect any of the octants oc-
cupied by the obstacles, the robot moves
to the selected neighboring octants. This
process continues until the robot reaches

[

the goal location. Such a hill-climbing
approach may lead the robot to a dead
end. A* search is used to get the robot
out of such situations. This algorithm
works fast but should be used in rela-
tively uncluttered environments due to
its heuristic nature.

Faverjon [1986, 1989] uses hierarchi-
cal models of obstacles (Figure 35) and
the swept volume of manipulator links to
design a global path. The swept volume
corresponding to the first joint angle is
the volume the manipulator sweeps
out when the first joint angle is fixed and
when the rest of the joint angles are
varied. The swept volume corresponding
to the second joint angle is the volume
the manipulator sweeps out when the
first and second joint angles are fixed
and when the rest of the joint angles are
varied. The hierarchical models of objects
and swept volumes of links are used to
compute the configuration obstacles effi-
ciently. For example, if the swept volume
corresponding to the first joint angle does
not intersect any obstacles, then the
manipulator does not intersect the obsta-
cles for all values of the joint angles
2,3,...,d as long as the first joint angle
is fixed at the value used to generate the
swept volume. The configuration space is
then represented using an octree (in the
example, the robot has 3 degrees of free-
dom), and A* search is used to find paths.
This algorithm works well in situations
that do not require a high-resolution
octree to find a solution, i.e., the free
space is not very narrow.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) A 2-link robot moving between
two circular obstacles.

(b) The motion in (a) is found from the guadtree,
and improved by a local optimization.

Figure 36. Manipulator motion planner using cell tree. Reprinted from Proc. of IEEE Int. Conf. on
Robotics and Automation, pp. 1732~1737, Paden, B., Mees, A, and Fisher, M., “Path planning using a
Jacobian-based freespace generation algorithm,” by permission of IEEE, Piscataway, N.J., Copyright, ©

1989 IEEE.

The Jacobian-based method of comput-
ing configuration obstacles is developed
and used for MP of manipulators in
Paden et al. [1989]. The Cspace represen-
tation is generated using the uniform
bound on the Jacobian with I, distance
in the Cspace and a 2%tree. First, it
tests whether the whole Cspace is free by
computing the distance to obstacles with
the manipulator in the configuration
representing the center point of the
Cspace. If it is not, the configuration
space is divided into 2¢ cubes, and each
cube is tested and labeled as either free,
not free, or not sure. Not-sure cubes are
continually divided and tested up to a
preset resolution limit. A feasible path
can be searched in the resulting 2%tree
(the authors use brush fire). For the 2-
link problem in Figure 36, this algorithm
takes 35 seconds on a 1.5-MIPS SUN
computer to build the quadtree and un-
der 1 second to search for a path. The
main contribution of this paper is that it
gives a simple way to compute a d-
dimensional volume (not just a point or
line) of collision-free parts of the Cspace.
There are two weaknesses of this algo-
rithm. First, the uniform bound on the
Jacobian is so loose that cubes of big
sizes are usually labeled as not sure. Sec-
ond, it takes a long time to compute the

ACM Computing Surveys, Vol. 24, No. 3, September 1992

neighbor relations among the cubes in a
29-tree, especially for d = 5 or 6. Some
improvements can be made to this algo-
rithm such as using a nonuniform bound
on the Jacobian B(g) or dividing the
Cspace into cubes of different sizes.
Kondo [1991] uses multiple-heuristic
search strategies on a rectangular grid
representing the Cspace. A set of param-
eterized heuristic functions is defined so
that when A* search is performed to move
the robot from the start to the goal, the
robot has a preferential moving direction
that ig dependent on the parameters. The
parameters are dynamically changed
during the search based on how much
progress the robot has made toward the
goal. A bidirectional search is also used.
This algorithm is fast because it mini-
mizes the number of collision detection
computations by limiting the search in
promising parts of the Cspace. This algo-
rithm solves 6-dof examples with a poly-
hedral robot in 3D with an average of
7000 collision detections and takes about
10 minutes on a 17-MIPS SUN com-
puter. We note that this algorithm is
very fast if the solution does not require
a large backtracking motion. One draw-
back of this algorithm is that its resolu-
tion is limited by the size of available
computer memory. This algorithm is res-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

olution complete if the search is con-
tinued until all points on the grid are
examined.

We note here some algorithms for com-
puting the boundary equations of config-
uration obstacles, which can be used for
object-dependent cell decomposition. The
boundary equations of configuration
obstacles for a planar manipulator amidst
polygons are derived in Ge and McCarthy
[1989]. The derivation of equations is
based on the Clifford algebra [McCarthy
et al. 1989]. This algorithm takes 1 sec-
ond on a 10-MIPS Silicon Graphics com-
puter to generate configuration obstacles
for a 2-link robot moving among 7 polyg-
onal obstacles. The boundary equations
of configuration obstacles for stick figure
manipulators in 3D polyhedral environ-
ments is presented in Hwang [1990]. It is
based on the intersection condition
between a line segment of the manipula-
tor and a triangular face of a polyhedral
obstacle. Because the boundary equa-
tions are highly nonlinear, most motion
planners use object-independent cell
decomposition.

Potential-Field Approach

There is no significant difference between
the potential-field approaches for rigid
robots and manipulators. In this section,
we review local-motion planners devel-
oped for manipulators. They are
developed for 2D environments, but can
be generalized to 3D. Khatib [1985] uses
an artificial-potential-repulsion approach
to avoid imminent collisions among robot
arms and obstacles. This algorithm is
aimed at the local, short-term avoidance
of obstacles in real time for moving robot
arms rather than planning global paths.
A repulsion force is generated by a poten-
tial field around each obstacle. When any
link of the robot arm approaches an
obstacle, the repulsive force pushes the
link away from the obstacle. The poten-
tial used, P, is approximately inversely
proportional to the square of the mini-
mum distance, D, between the link and
the obstacle, and becomes zero beyond a
preset distance from the obstacle. The

Gross-Motion Planning . 267

force on the robot is calculated from the
equation F = —dP/dD*dD /dx where x
is the position vector of the robot. Appro-
priate torques at the joints of the robot to
follow the externally specified global path
are computed. The force from the artifi-
cial potential field is then taken into
account to modify torques at the joints.
This allows each link of the robot to fol-
low the initially planned path closely
while avoiding the obstacles. The role of
the artificial potential field is to “bend” a
given global trajectory areund obstacles.
Khatib’s algorithm is significant in that
the local-obstacle avoidance problem is
implemented at low (control) level for
real-time execution.

Newman and Hogan [1987] use an
energy interpretation of the potential
function for obstacle avoidance and
acquisition of moving targets by a manip-
ulator. The manipulator is driven solely
by the force that is computed as the neg-
ative gradient of the potential. Two types
of potentials are used: a goal potential
driving the robot toward the goal posi-
tion and braking potential stopping the
manipulator at the goal or at the obstacle
boundaries. If the goal position is moving,
the goal potential is updated cor-
respondingly. To have minimum-time
solutions, the slopes of potentials are set
to the maximum acceleration of the actu-
ators. This algorithm guarantees time
optimality for dynamically decoupled
manipulators operating in obstacle-free
regions. The algorithm is useful as a
local-motion planner to compute force for
each actuator. In Newman [1989], a simi-
lar algorithm is used to incorporate a
reflex-motion planner in the control loop.
The reflex-motion planner stays trans-
parent until the robot is on a collision
course.

Potential field is also used in Boissiere
and Harrigan [1988] for real-time obsta-
cle avoidance of a tele-operated Puma
robot. When the robot is on a collision
course while following the operator’s
command, a repulsive force is applied to
modify the commanded path. This allows
the human operator to concentrate on
executing tasks rather than avoiding

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

268 . Y. K. Hwang and N. Ahuja
obstacles and thus makes tele-operation
much more efficient.

Khosla and Volpe [1988] use a
superquadric potential function to
remove spurious local potential minima
at points other than the goal position.
Superquadrics are a generalization of
ellipsoid-shaped potential functions and
can represent a much larger class of ob-
jects. The level curves of superquadrics
approximate obstacles at close distances
and become spheres far from obstacles.
To the superquadric potential function is
added a goal attraction potential, and the
combined potential is used in path plan-
ning of planar manipulators. The poten-
tial for each link is computed at the point
where the link is closest to obstacles, and
a repulsive force is applied to the link at
this point. The end effector moves in the
direction minimizing the sum of the
obstacle potential and the goal attraction
potential. This algorithm again is
essentially a local planner.

Mathematical Programming Approach

A local-collision avoidance algorithm for
redundant (dof > 6) manipulators is
developed in Maciejewski and Klein
[1985]. The primary goal of the planner
is to make the end effector follow a speci-
fied trajectory x(¢); x(¢) is typically a
collision-free path for a point object, and
thus collision between obstacles and the
manipulator links are not considered
when designing the initial path. Given
x(t), the values of joint variables are
found using a generalized inverse from
the Jacobian equation x(¢) = J(6)6(¢).
Then the joint variables are modified to
move the point of the manipulator closest
to obstacles away from the obstacles
while the end effector is following x(¢). It
may seem odd to design the path for the
whole manipulator based on the path of
its end effector. If a manipulator is highly
redundant, however, its links can stay
closely on the path the end effector is
tracing (like a snake) and avoid colli-
sions. In case a manipulator is not
highly redundant, the motion cannot be
planned by modifying the path for the
manipulator tip.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Chen and Vidyasagar [1988] have
developed an optimal trajectory planner
for planar n-link manipulators. A grid
of points is laid in the Cspace, and the
points that result in collision are identi-
fied. Collision points occur in groups,
since the mapping of obstacles from the
world space to the Cspace is continuous.
The collision points are approximated by
ellipses. The equations of these ellipses
are then used as constraints in the
optimal-control formulation, which is
solved numerically. This algorithm de-
signs globally and dynamically optimal
solutions among obstacles. Its main
weakness is the large number of ellipti-
cal constraints needed to approximate
configuration obstacles for a cluttered
environment. The convergence rate of the
numerical optimization in a high-
dimensional Cspace (dof = 6) is also hard
to predict. This algorithm should be used
offline to dynamically optimize the
motion of a manipulator engaged in a
repetitive task, e.g., mechanical assem-
bly. Speeding up the manipulator motion
by a few seconds will result in a huge
saving in manufacturing costs. A similar
method is used to compute time-optimal
trajectories of a “manipulator that avoids
the collision between the manipulator tip
and obstacles [Eltimsahy and Yang 1988].
Collisions between manipulator links and
obstacles are not considered.

Shiller and Dubowsky’s algorithm
plans globally time-optimal trajectories
for a manipulator in the 2D work space
(link-obstacle collisions considered)
[Shiller and Dubowsky 1988]. A directed
graph is constructed using the points of a
uniform grid covering the work space.
Adjacent points are connected by edges.
The points that lie on the obstacles and
in unreachable free space are deleted
from the grid. Then, directed edges are
drawn beginning from the start grid point
toward the goal grid point. Edges making
sharp turns or loops are not allowed. K
shortest paths are selected from the
directed graph. Each selected path is
optimized using a numerical algorithm,
and the minimum-time path is selected
from the optimized paths. This approach
does not take into account the manipula-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 37. Two adjacent tip positions not reach-
able from each other.

tor kinematics fully. For example, there
are cases where the manipulator tip may
not be able to move from a point to an
adjacent point directly, but can reach the
adjacent point by changing to a different
configuration (Figure 37). This happens
because of the multiplicity of inverse
kinematics solutions. This algorithm
takes about 2 hours to solve a 3-link,
5-obstacle problem. The slow speed is
typical of numerical optimization algo-
rithms in a high-dimensional space.
(When dynamics of the robot is included
in the optimization, the number of
dimensions doubles, since the time
derivatives of configuration variables are
also independent variables. Again, this
algorithm has an application in offline
optimization of repeated motions.)

Future Research Directions

MP of manipulators is essential for object
manipulation, and a real-time algorithm
is needed. Otherwise, after a command is
given, robots have to sit idle while a
collision-free motion is computed, result-
ing in inefficiency. In our view, the algo-
rithm in Chen and Hwang [1992] is a
near-optimal planner among algorithms
implemented in serial computers, since it
computes the Cspace information to a
minimal amount needed to find a solu-
tion. It is also resolution complete and
has a small memory requirement. We
believe that a significant improvement
over this algorithm is likely only by tak-
ing radically different approaches
such as using parallel computers or
knowledge-based methods. Future
research in this direction is desirable.
There are other issues related to MP of

Gross-Motion Planning . 269
manipulators, most importantly grasping
and task constraints. When we plan
motions for a manipulator, we actually
plan motions for the ensemble of the ma-
nipulator and the object in its grasp.
Thus, grasp configurations affect motion
planning. On the other hand, MP is
needed to verify that a grasp configura-
tion is indeed reachable. This issue is
considered in Lozano-Pérez et al. [1987],
and more research is needed. Other con-
straints on manipulators arise for task-
related reasons. Manipulators are often
used to perform tasks involving interac-
tions among objects such as hammering
down a nail. This task has a constraint
on the velocity of the hammer when it
strikes the nail, among other constraints.
Incorporation of task constraints in MP
is a complex problem, involving kinema-
tics/ dynamics of manipulators and
objects, but nonetheless needed for robots
performing any realistic task.

Lastly, we propose to generalize the
point-to-point MP problem (moving
the robot from one configuration to
another) to the following problems: visit
points, trace curves, and cover surfaces
[Hwang et gl. 1992]. These generaliza-
tions are useful *for mobile robots, but
needed far more for manipulators. Mani-
pulators often perform operations other
than transferring objects such as inspec-
tion of sample points, deburring and
chamfgring of sharp metal edges, imag-
ing, painting, and cleaning. These opera-
tions require the tool in the manipulator
hand to move along a curve or over a
surface in a constrained manner. Exam-
ples of such constraints are the orienta-
tion of a deburring bit with respect to the
part being deburred, stiffness of the ma-
nipulator arm while deburring, and the
orientation and sweeping speed of a paint
gun. On top of these constraints are the
requirement of avoiding collisions
between the manipulator and objects in
the work space. These constraints usu-
ally do not completely specify the config-
uration of the manipulator, and algo-
rithms for selecting a good configuration
for every time instance are needed. To
plan motion for these operations, the fol-
lowing three problems are defined.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

270 . Y. K. Hwang and N. Ahuja
(1) Given a set of world points to be vis-
ited by a set associated with a part of
a manipulator (usually the tool in
hand), a set of constraints associated
with each of the points, and an index
find an ordering of the points and
manipulator motions to visit all the
points according to the ordering that
optimizes the index.

Given a set of curves to be traced by
a set associated with a part of a
manipulator (usually the tool in
hand), a set of constraints associated
with each of the curves, and an index,
find partitions of the curves, an or-
dering of the curve partitions, and
motions to trace all the curve parti-
tions according to the ordering that
optimizes the index.

Given a set of surfaces to be covered
by a set associated with a part of a
manipulator (usually the tool in
hand), a set of constraints associated
with each of the surfaces, and an
index, find partitions of the surfaces,
an ordering of the surface partitions,
and motions to cover all surface par-
titions according to the ordering that
optimizes the index.

N

(3)

We note that all these problems involve
variations of the traveling salesman
problem. These are well defined, chal-
lenging, and practical problems whose
solutions will have a major impact on
industry.

3.1.4 Multimover’s Problem

The multimovers problem deals with MP
of multiple robots. This problem arises in
an automated factory where mobile
robots bring parts from the warehouse to
assembly stations (Figure 1). Each mobile
robot must avoid other mobile robots as
well as stationary obstacles in the fac-
tory. The MP of manipulators working in
the same assembly station is also a mul-
timovers problem. Still another example
is the problem of rearranging furniture
in a room. Given the current arrangement
and a desired one, it is obvious that using
a motion planner for the classical mover’s

ACM Computing Surveys, Vol. 24, No. 3, September 1992

problem to move each piece of furniture
would not solve the problem.

MP of multiple rectangles is shown to
be PSPACE complete in Hopcroft et al.
[1984b] and Hopcroft and Wilfong [1986].
Although an exact and efficient algo-
rithm for the general multimover’s prob-
lem is unlikely, several algorithms are
available for some special cases. The
multimover’s problem can be considered
in two different contexts. First, if there is
a precedence ordering among robots,
the problem becomes a*series of single
mover’s problems in time-varying envi-
ronments. The MP is done in decreasing
order of precedence, and robots with
higher precedence are regarded as mov-
ing obstacles for the robots with lower
precedence. This is called a decentralized
approach. Second, if there is no prece-
dence, a centralized approach is used,
wherein a single planner designs the
paths for all the robots while optimizing
some objective function. The first case
amounts to a heuristic approximation of
the second, with less computation at the
expense of missing legal solutions in some
cases. The multimover’s problem is obvi-
ously much harder since the numbers of
degrees of freedom is the sum of the
numbers of degrees of freedom of each
robot. This problem has received only
moderate attention since an efficient
exact algorithm for a single mover’s prob-
lem ig yet to be developed. Algorithms for
this problem are developed for circular
robots and manipulators and are
surveyed in two subsections.

Circular Robots

MP of several circles among polygonal
obstacles in 2D is reported in Schwartz
and Sharir [1983b]. The cell decomposi-
tion method based on the critical curves
[Schwartz and Sharir 1983a) is used to
first solve the cases with two and three
circular robots. Only two types of critical
curves exist for two circular robots due to
the symmetry of circles. For the case of
three robots, critical curves for two robots
R, and R, are computed while fixing the
position of the remaining robot R,. Then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the set of the critical positions of R, that
cause discontinuity of the critical curves
for R, and R, is identified. The connec-
tivity graph of the regions separated by
the critical curves is constructed, and a
path is found from the graph. The com-
plexities are O(n®) and O(n!?) for two
and three robot cases, respectively. In
case of £ circular robots, the above algo-
rithm is applied in a recursive manner.
The paper demonstrates that exact algo-
rithms for multimover’s problems have
high-complexities even for simple robots.

In Sharir and Sifrony [1988], a general
technique of O(n?) is presented for MP of
two robots each with two dof using a cell
decomposition approach. Robots can be
circles or manipulators. The algorithm
decomposes the free Cspace of each robot
into a collection of disjoint cells. Let {c;}
and {cj} be the cells for the two robots,
respectively. The collision-free part of the
Cartesian product c¢; X ¢, is further
decomposed into O(1) 4D cells, and their
adjacency relations are determined. Then
the adjacency relations of the 4D cells
from all ¢; X c¢; are computed, resulting
in O(n*) cells. An O(n?) algorithm for
motion planning is possible by limiting
the computation to a single connected
component of the configuration space
containing the initial configurations of
both robots. This paper also shows effi-
cient ways to compute the free-configura-
tion spaces for two cylindrical robots and
two circular (or translating convex polyg-
onal) robots.

Fast-motion planning of identical
square robots in 2D is discussed in
Buckley [1989]. This algorithm is
designed for a specific application where
the robots are feeding parts to an assem-
bly table and where the robots them-
selves are the obstacles. A new method to
assign priorities to robots is introduced
to maximize the number of robots that
can move in a straight line from the start
to goal (called linear robots). This mini-
mizes the number of such robots (called
complex robots) for which expensive
search of collision-free zigzag paths is
necessary. Two rules of prioritization are
derived from the start and the goal con-

Gross-Motion Planning . 271
figurations of the robots. If the straight-
line path of robot A between its start
and goal position intersects the start
position of robot B, then robot B should
be moved first (is assigned a higher pri-
ority). If the straight-line path of robot A
intersects the goal position of robot B,
then robot A should be moved first. These
rules allow robot A to move in a straight
line. Using the priority relationships
between pairs of robots, a priority graph
is constructed. In this graph, a directed
edge is drawn from robos A to B if robot
A has a higher priority than robot B. If
there are no cycles in the graph, then all
the robots can move in straight lines in
the order of the priority. If there are
cycles in this directed graph, not all
robots can travel in straight lines (Figure
38). A complex robot has to be introduced
to break the cycles in the priority graph.
The trajectory planners for the linear and
complex robots have O(m?) and O(m*)
time complexities, respectively (m is the
number of robots). Both planners are
based on the configuration space
approach. The main advantage of this
algorithm is that it is fast, e.g., 10 sec-
onds to solve a nine-robot example of
which two turn but to be complex robots.
Buckley shows that even though the
multimovers problem has a high com-
plexity, an application-specific algorithm
that runs in a practical time can be de-
velopgd.

A decentralized approach is taken in
Yeung and Bekey [1987] to plan paths
for 2D circular robots. Each robot plans
its own path using a visibility-graph-
based algorithm. It attempts to reach its
goal following the straight line path. If it
hits an obstacle, it goes to the obstacle
vertex closest to its goal. When a conflict
occurs between robots, it is reported to a
central coordinator called blackboard,
and the blackboard issues priorities in
replanning based on the current state
and task.

Another decentralized algorithm is
developed for MP of 2D circular robots of
different sizes [Liu et al. 1989]. The ini-
tial path of each robot is planned sepa-
rately using a quadtree representation of

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

272 . Y. K. Hwang and N. Ahuja

\

I
[0]

OaaOna0

priority graph

Figure 38. Not all four robots can go to their goal positions in straight lines, and the priority graph
contains a cycle. Reprinted from Proc. of IEEE Int. Conf on Robotics and Automation, pp. 322-326,

Buckely, S. J.,
NJ. Cop}nght © 1989 IEEE.

obstacles. Intersections among the paths
are detected, and those nodes that are
neighbors of intersection nodes are con-
sidered as candidate free space where
the robot should move to resolve the con-
flict. A search is conducted to select one
among the candidate nodes. A Petri net
formulation is used to resolve conflicts by
globally modifying initial paths. It is
implemented for a two-robot system, and
more work is required for systems with
several robots.

Manipulators

Fortune et al. [1986] report an algorithm
for two planar manipulators in 2D using
the critical-curve method. Each manipu-
lator has one link that can rotate about
and translate through a common point,

e., it has a cylindrical geometry. They
use critical curves [Schwartz and Sharir
1983a] to partition the free Cspace into
cells, and they show that for a cylindrical
manipulator (a manipulator consisting of
a single link that can translate and rotate
through a point), there are O(n) number
of critical curves of small algebraic de-
grees. It is further shown that the curves
divide the configuration space of the first
robot into O(n?) regions and that each
of these regions is partitioned into O(n)
connected components by the critical
curves of the second robot. They present
exact algorlthms for two separate cases:
an O(n®log n) algorithm for the case
when manipulator tips touch and move
together and an O(n?) algorithm for the

ACM Computing Surveys, Vol. 24, No. 3, September 1992

“Fast motion planning for multiple moving robots,”

by permission of IEEE, Piscataway,
-

case of independent motion. These algo-
rithms can be used as submodules by a
motion planner for manipulators having
a cylindrical geometry.

A multimovers problem with 2-dof
robots are considered in Erdmann and
Lozano-Pérez [1986]. The robots can be
either translating polygons or 2-link pla-
nar manipulators. They are prioritized,
and when conflicts arise, the burden of
avoidance is imposed on the robots with
lower priorities. Thus, this algorithm
solves many single mover’s problem in a
time-varying environment. This algo-
rithm is useful for cases where the prior-
ity is evident, such as in assembly opera-
tions. Two separate cases are considered
whose configuration spaces are 3D. First,
polygonal robots are allowed only to
translate at constant speeds. The config-
uration obstacles are polyhedra in R? X
time space, and the search for solutions
is done in a visibility graph. Second,
robots are planar revolute links with two
dof. The configuration space is [0,27] X
[0,27] X time for each robot, and the
search for paths is done in the free
Cspace. These algorithms are applica-
tions of the Cspace to cases with dof = 3.
They are fast but need to be generalized
to be useful in practical situations.

A real-time path planner for multi-
robot systems among circular obstacles is
presented in Freund and Hoyer [1988].
This algorithm can be used for circular
robots or cylindrical manipulators with
predefined precedence relationships.
First, each robot travels in a straight line

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the Cspace. The configurations that
make a robot barely touch the other
robots are computed and used as the
bounds on the configuration of the robot.
These bounds are used to modify the con-
trol inputs in real time. This algorithm is
highly successful in relatively simple
environments. A real-time implementa-
tion is its strongest point (20 msec. on a
microprocessor system for a 3-robot
problem). An online algorithm is possible
because of the simple geometries of robots
and obstacles in 2D. It requires sub-
stantially more work to extend this ap-
proach to higher dof manipulators in 3D
world, since the configuration obstacles
are much more complex. On the other
hand, this algorithm is well developed for
mobile robots in 2D.

A real-time local-trajectory planner for
cylindrical manipulators is developed in
Chien et al. [1988]. The planner does not
generate the whole trajectory at once,
rather it does so incrementally. The
obstacles and the robots’ end effectors
are represented as spheres. Then, each
robot independently attempts to ap-
proach its goal in a straight line. Its next
position, velocity, and acceleration
(x,v, a) are computed based on the cur-
rent x,v,a. Next, the predicted position
of each robot is broadcast to all other
robots. Possible interferences are then
detected, and the trajectories are modi-
fied. This algorithm is not a global plan-
ner but is useful in resolving interference
at a local level. A global planner that
incorporates the geometry of all the links
of the robots need to be used with this
algorithm. The algorithm can be used for
manipulators with simple shapes, but it
will not easily extend to 3D manipula-
tors, say, with 6 degrees of freedom. This
algorithm is very similar to Freund and
Hoyer [1988] in its use of decentralized
approach; only the method of implement-
ing the general principle is different.

In O’Donnell and Lozano-Pérez [1989],
a trajectory-scheduling algorithm for two
manipulators asynchronously operating
in a common work space is developed.
The initial path of each manipulator is
computed in advance and is represented

Gross-Motion Planning . 273
as a sequence of configurations. Then a
rectangular grid called the task comple-
tion diagram (TC) is created. Each point
on the grid denotes how far each manipu-
lator has progressed toward its goal. The
southwest corner of TC represents the
state in which both manipulators are at
their start positions, and the point at the
northeast corner represents the state in
which both manipulators are in their goal
positions. As both manipulators proceed
with their tasks, the point denoting the
current state will moxe north and east in
TC. Some points on the grid will cor-
respond to a state in which the two
manipulators collide. These points are
identified using an algorithm that detects
intersection between polyhedra. Next, a
scheduling algorithm will try to find in
the grid a sequence of points from the
start state (southwest corner) to the goal
state (northeast corner). To prevent the
manipulators from going backwards,
the point denoting the current state is
allowed to move only to the north and to
the east while avoiding the points involv-
ing collisions. Since the points involving
collisions often form concave shapes,
deadlock situations can occur while try-
ing to move #o the north and east. South-
west closures of the sets of collision points
are used as forbidden zones to prevent
deadlock situations (note backtracking is
needed to resolve a deadlock). This algo-
rithm has complexity of O(n? log n)
where n is the grid size of each axis of
TC. This algorithm is fast and is useful
in a relatively sparse environment with a
small number of robots.

Future Research Directions

Although the multimovers problem has a
high complexity, many practical prob-
lems have multitudes of solutions, and
suboptimal solutions usually suffice. For
mobile robots in a factory floor, algo-
rithms in Yeung and Bekey [1987] and
Liu et al. [1989] are adequate. As men-
tioned in Section 3.1.2, MP of mobile
robots with conflicting/common objec-
tives needs more research. The MP of
cooperating manipulators has very

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

274 . Y. K. Hwang and N. Ahuja

important applications in a multimanip-
ulator assembly work cell, handling of a
large object with multiple manipulators,
to name a few. Algorithms must run effi-
ciently for 6-dof manipulators in 3D world
and also incorporate constraints arising
from task requirements. For example,
lifting a large box with two manipulators
requires exerting contact forces that form
a stable closure and balancing the weight
of the box. Formulating task require-
ments in terms of constraints on manipu-
lator configurations and torque /force of
actuators is an open area. As far as
resolving conflicts due to collisions among
6-dof manipulator links are concern, an
efficient heuristic algorithm seems possi-
ble (but does not exist yet).

3.2 Time-Varying Environment

When obstacles are moving in time, the
problem space is one dimension higher
than the Cspace of the corresponding sta-
tionary problem. A time-varying problem
reduces to a stationary problem if there
is no bound on the robot’s velocity (Gust
move the robot infinitely fast). We thus
assume that it is bounded. In most algo-
rithms, it is assumed that motions of
obstacles are known for all time. Other-
wise, robot motions have to be planned
from the predicted motions of obstacles,
and replanning is needed if the obstacle
motions deviate from the prediction (see
Kehtarnavaz and Li [1988] below). The
time to reach the goal can be specified or
used as a quantity to be minimized. As
far as the complexity is concerned, it is
shown to be NP-hard to plan a path for a
point robot in 2D (with a bounded veloc-
ity) among translating obstacles [Canny
and Reif 1987]. For a point robot in 3D it
is PSPACE-hard [Reif and Sharir 1985].

Reif and Sharir [1985] also present an
algorithm for the asteroid avoidance
problem, which is the MP problem for a
translating polytope robot with a bounded
speed among polytope obstacles translat-
ing in fixed directions and velocities. The
algorithm runs in O(n log n), O(n2**2)
and O((n + £)°D) = O(n°D) time for

ACM Computing Surveys, Vol. 24, No. 3, September 1992

1D, 2D, and 3D world space, respectively.
The n is the total number of vertices
(edges) of k polygons (polyhedra). MP is
done in the d + 1-dimensional Cspace X
time space, wherein the Minkowski set
difference is used to compute configura-
tion obstacles. The concept of the funda-
mental and normal movements are
introduced to plan paths. A fundamental
movement is a direct movement (move-
ment during which the robot touches
obstacles only at the beginning and end
of the movement) followed by a possible
contact movement (movement on the sur-
face of polyhedral obstacles beginning
and ending at edges). A normal move-
ment is a sequence of fundamental
movements, where the robot changes its
direction only on the obstacles and
touches each obstacle at most once. We
explain the algorithm for the 2D version
(others are similar). Let x,/0 and x,/T
be the start position/ time and the goal
position /time, and let V be the set of all
obstacle vertlces xy and x;. Let the time
interval I' be the set of time v € V can
be reached from x, using at most i fun-
damental movements. Initially, I 0 =
[0,T], and I = ¢ for all other v€ V.
Inductively for some i >0, let v* be
reachable from x, using at most ¢ funda-
mental movements. Then for each ve V,
if there is a fundamental movement from
v* to v, we compute I'*! by shifting the
time interval I'. by the time needed for
the fundamental movement. If T belongs
to the time interval I7"! (n = number of
obstacles), then the robot can reach the
goal point in the specified time T It is
proven that such a sequence of funda-
mental movements is sufficient to find a
solution if it exists. Fujimura and Samet
[1989] implemented this algorithm in 2D
by developing a method of computing
reachable vertices from a given vertex
using a direct movement.

MP of a point robot among translating
polygonal obstacles is considered in
Fujimura and Samet [1988]. The polyhe-
dral obstacles in the 3-dimensional
space-time is represented with an octree,
and A* search is used to find a shortest
path while enforcing maximum velocity,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) A candidate path.is found assuming
the obstacles are stationary. Obstacle
velocilies are indicated

Gross-Motion Planning . 275

G a

14

12

10,
8
6 Trajectory 1
4 robot's max speed = 4
2

L

0 1 2 3 4 5 6 7 8 9ume

(b) Arc-length x time space. The shaded regions

denote the times the obstacles gross points on
the candidate path. The bold kines are a solution
trajectory following the candidate path.
Trajectory 1 exceeds robot's maximum speed.

Figure 39. Path velocity decomposition of MP in a time-varying environment.

acceleration, and centrifugal-force con-
straints. Since the octree representation
can change significantly even for small
changes in the space-time obstacles, the
uncertainty in the velocities of obstacles
may result in different paths. This algo-
rithm finds a shorter path than the visi-
bility-graph-based algorithm in Erdmann
and Lozano-Pérez [1986] for the same
problem.

A heuristic algorithm is developed for
the NP-hard problem of moving a point
robot with a bounded velocity in the plane
[Kant and Zucker 1986, 1988]. It is a
two-level algorithm that decomposes the
problem into path planning and velocity
planning. A path is selected from the
visibility graph that is constructed
assuming the obstacles are stationary
(Figure 39a). The selected path is given
as a parametric curve whose parameter
is arc length s along the path. Since the
obstacles are moving, some points on this
path will be occupied by obstacles in some
time intervals. For each time instant, the
points in the path occupied by obstacles
are computed and represented as polygo-
nal obstacles in the s X time space
(Figure 39b). Another graph called the
directed-visibility graph is constructed
using the vertices of these polygons. (The
robot can travel only in +¢ direction in
this graph.) Some edges of the directed
visibility graph space will require the

robot to travel faster than its maximum
speed. After these edges are pruned out,
the best trajectory is selected from the
remaining edges using A* or Dijkstra’s
algorithm. This approach is simple and
effective if the obstacles have constant
velocities. If there are uncertainties in
the velocities of obstacles, this algorithm
may fail because the paths from the visi-
bility graph touch corners of obstacles.
The algorithm is therefore complemented
with a low-level avoidance module to
modify the trajectory in the vicinity of
obstacles. The derived trajectory is not
optimal due to the decomposition of the
preblem into two levels.

Path planning of a point robot among
moving circular obstacles in 2D is
described in Kehtarnavaz and Li {1988].
The positions of obstacles are not known
a priori and are predicted from the past
positions using an autoregressive model.
The forbidden regions are constructed at
each sampling time from the set of line
segments, each connecting the current
and the next predicted position of an
obstacle. The path for the robot at each
sampling time is selected from the visi-
bility graph. This algorithm solves a
static problem for each time increment
and resembles the logic humans use to
walk through busy city sidewalks. When
the obstacle motions are uncertain this
algorithm is the best one can do.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

276 . Y. K. Hwang and N. Ahuja

Future Research Directions

Since MP in time-varying environments
has a high complexity, application-
specific heuristic algorithms need be
developed. Two interesting areas of
research are integration of a motion
planner with sensing and incorporation
of uncertainty in obstacle information. In
real robot systems, it takes a finite
amount of time to acquire information
about motions of obstacles and to plan
motion. Estimates of obstacle motions
also tend to involve uncertainties. An
analysis of the effect of sensing delays on
the uncertainty of object models is
needed. An algorithm must consider
these factors to be robust and have a
practical value.

3.3 Motion Planning with Constraints

Motion planning with constraints gener-
ally has a very high complexity (usually
NP-hard or PSPACE-hard), and efforts to
develop implementable algorithms are
just beginning. Two commonly encoun-
tered types of constraints in motion plan-
ning are holonomic constraints and
bounds on robot velocity (or acceleration).
Holonomic constraints are constraints on
the derivatives of configuration variables
that cannot be integrated. For example, a
wheeled vehicle can move to any position
and orientation with a sequence of
maneuvering moves, but its motion
direction at any instant is constrained.
As a result, there is a constraint on the
curvature of paths for a wheeled vehicle.
We briefly summarize the work on MP
with these constraints.

The first result on motion with curva-
ture constraints is presented in Dubins
[1957]. It considers only obstacle-free
cases and shows that the minimum-
length paths consist of sequences of
straight lines and maximum-curvature
lines (curves). Fortune and Wilfong
[1988] have presented a method to check
the existence of a path with a curvature
constraint among polygonal obstacles, but
it does not generate the path. This algo-
rithm runs in 29(P°LYm.) time and space
where n is the number of vertices of

ACM Computing Surveys, Vol. 24, No. 3, September 1992

obstacle polygons and where m is the
number of bits used to specify the posi-
tions of the vertices. When the robot is
given a network of line segments to fol-
low such as on a factory floor,
polynomial-time algorithms finding the
shortest paths are available [Wilfong
1988a, 1989]. Jacobs and Canny [1989]
have developed a configuration-space-
based algorithm that computes paths
that are approximately the shortest in
polynomial time.

Some of the algorithims for MP in
time-varying environments consider
robots with velocity constraints [Reif and
Sharir 1985; Kant and Zucker 1988], and
the results are mentioned in Section 3.2.
The kinodynamic motion planning deals
with synthesizing robot motions subject
to both kinematic constraints (such as
avoiding obstacles) and dynamic con-
straints (such as bounds on the
acceleration and velocity) [Canny et al.
1990]. It is first considered in O’Dinlaing
[1987], where a point robot with a
bounded acceleration in 1D is studied.
O’Dianlaing shows that with a bound on
the acceleration of a point robot, a
minimum-acceleration trajectory from an
initial pair of pdsition and velocity to a
goal pair is bang-bang interpolant,
meaning that the magnitude of accelera-
tion is constant, but its sign is reversed
at most at one time; O(n?) and O(n log n)
algorithms are presented for the motion
planning of a point in 1D that evades two
pursuing point obstacles, where n is the
total number of times the obstacles
change accelerations. Problems involving
dynamics such as minimum-time and
minimum-energy trajectory problems are
extensively studied in the optimal-control
literature [Athens and Falbs 1966;
Bryson and Ho 1975].

A kinodynamic motion-planning prob-
lem for a point robot in 2D and 3D is
studied in Canny et al. [1988]. An
approximate time-optimal algorithm of
O(n% B34*D) complexity is developed
using a nonlinear grid in the position
velocity space (also called phase space).
For the time-optimal problem, optimal
solutions take on only one of three values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at each time instant: maximum accelera-
tion, zero acceleration, or maximum
deceleration. Thus, from a point in the
position velocity grid, the robot can move
to one of three different points in the
next time instant. These transitions are
represented by the edges of the grid. The
time-optimal solution between two points
in the phase space is found from the grid.
The parameter € denotes the goodness of
approximation or grid spacing. This algo-
rithm is extended to manipulators in
Donald and Xavier [1989], and an exact
algorithm is developed in Canny et al.
[1990] for a point robot in 2D. This non-
linear grid can be used to find motions
optimizing other measures, e.g., energy,
by allowing the robot to take on many
values of acceleration.

Future Research Directions

Constraints on robot motion arise from
different sources. The first type of con-
straints comes from task requirements,
which constrains the robot configuration
and forces exerted by the robot. Research
issues with these constraints are dis-
cussed in the future research section for
manipulators. The second type of con-
straints comes from the anatomy of the
robot. All physical robots have limita-
tions on their capabilities such as the
bounds on velocity and acceleration.
These constraints are well characterized,
but their nonlinearities prohibit elegant
mathematical solutions. In the worst
case, search methods can be used on a
grid representing motions satisfying all
kinds of nonlinear constraints, as done in
Canny et al. [1988]. Remember, search-
ing among all possibilities is the most
general method of solving problems, and
ever-increasing computer speeds enable
more problems to be solved this way. We
should start identifying problems with
mathematical constraints that can be
solved using a grid search. The third type
of constraints comes from sensory
requirements. Robots need to monitor the
motions and the states of objects
in the world in order to detect errors and
reduce uncertainties in the object model.

Gross-Motion Planning . 277

Inclusion of sensory requirements in
motion planning presents new con-
straints. This is an important area, and
some results are available [Tarabanis et
al. 1991].

3.4 Movable-Object Problem

In the movable-object problem, robots are
allowed to move some of the objects in
the environment while reaching the goal
position. Immovable objects are called
obstacles. The first cemplexity analysis
of this problem has appeared in Wilfong
[1988Db]. It is shown that the problem is
NP-hard when the final positions of the
objects are unspecified and PSPACE-hard
when specified. An O(n?log? n) algo-
rithm is also presented for the case of
one movable polygonal object. The algo-
rithm partitions possible positions of each
movable object into regions so that in
each region the environment has essen-
tially the same connectivity properties
for the robot. Although the movable-
object problem has a high theoretical
complexity, it is often easier to solve than
problems with stationary obstacles. This
is because the robot can clear the objects
in its way toward the goal. In light of this
fact, a fast heuristic algorithm is devel-
oped in Chen and Hwang [1991]. In this
algorithm, a global planner plans a plau-
sible sequence of robot positions leading
to the goal, and a local planner is used to
move the robot from a position to the
next in the sequence. The local planner
allows the robot to push obstacles
blocking its path. :

There are algorithms that consider how
to actually move objects with robots. The
Handey system in Lozano-Pérez et al.
[1987] and Lozano-Pérez et al. [1989]
carries out the command Move object To
destination with a manipulator. It con-
sists of a range finder system for sensing,
a model-based object locator, a manipula-
tor motion planner for collision avoid-
ance, and a grasping and regrasping
module. It is designed for the assembly of
planar-faced objects and has the ability
to operate on a wide class of objects in a
cluttered environment. The scale of this

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

278 . Y. K. Hwang and N. Ahuja
system shows the complexity of building
an actual robot system. A theoretical for-
mulation of manipulation planning is
presented in Alami et al. [1990]. In this
algorithm, robot configurations of grasp-
ing movable objects are explicitly repre-
sented. The manipulation graph consists
of STABLE and GRASP sets, which rep-
resent the set of stable configurations of
movable objects and the set of a robot’s
collision-free configurations grasping
movable objects. The manipulation graph
is incrementally built and searched for a
solution, which is a sequence of transit
(robot moving without grasping an object)
and transfer (robot moving while grasp-
ing an object) paths. To apply this algo-
rithm to real applications, efficient ways
of computing the sets STABLE and
GRASP and limiting the size of the
manipulation graph are needed.

The movable-object problem is actually
a simple task-planning problem. In
cluttered environments, a heuristic mov-
able-object algorithm is likely to be pre-
ferred than an exact algorithm for the
classical mover’s problem. Readers inter-
ested in planners at a higher level than
the movable-object problem should look
at the work in assembly planning [Huang
and Lee 1991; Hutchinson and Kak 1990;
Lee and Shin 1990; Strip and
Maciejewski 1990; Wilson 1992].

3.5 Comparison Tables

The algorithms surveyed above are com-
pared in Tables 1-7. Each algorithm is
denoted with the first two (or more) let-
ters of the first author’s name, followed
by the first letters of the remaining
authors and the year of publication. The
global /local indicates whether an algo-
rithm is a global or local planner, and
theo /simul /impl indicates the algorithm
is theoretical, simulated in computers, or
implemented on actual robots. For
gross-motion planning without uncer-
tainty, a simulation is sufficient to
demonstrate the efficiency and appli-
cability of an algorithm. We still have
indicated algorithms implemented on
physical robots for the interest of indus-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

try. The object models of robots and
obstacles are shown in robot shape and
obstacle shape columns. The world space
dimensions (2D or 3D) can be inferred
from the obstacle models. Exact/heuris-
tic measures the degree of exactness of
an algorithm. Rating 1 denotes the algo-
rithms that are exact, i.e., they either
find a solution or prove that there is no
solution. Rating 17 and 1p are given to
resolution-complete and probabilistically
complete algorithms, respectively. Rating
2 is given to the heuristic algorithms
that fail to find a solution for relatively
small sets of pathological puzzle-like
problems. Rating 3 is given to the heuris-
tic algorithms that often fail to find a
solution (these are usually very fast local
algorithms).

4. CONCLUSIONS

A motion planner is an essential compo-
nent of a robot that interacts with the
environment; without it a human opera-
tor has to constantly specify the motion
for the robot. A significant amount of
research has been done on the develop-
ment of efficient motion-planning algo-
rithms. The motien-planning problem has
been solved in a theoretical sense for
subsets of the general problem, but exist-
ing exact algorithms have very high time
complexities and often require discrete
representations of space. Much more
work needs to be done before practical
algorithms are developed for the general
motion-planning problem.

In stationary environments many effi-
cient algorithms exist. For the case of
point robots, algorithms based on the vis-
ibility graph or Voronoi diagram run in
O(nlog n) or O(n?) time. For the 3D
classical mover’s problem efficient exact
algorithms are yet to be developed. For
MP of manipulators, near-real-time,
resolution-complete algorithms exist
[Kondo 1991; Chen and Hwang 1992],
but need to be integrated with grasping
planners and task planners. Motion
planning for time-varying cases, multi-
movers problems, and constrained cases
have even higher complexities, and use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gross-Motion Planning 279

Table 1. Classical Mover’s Problem
{approach algorithm | dof of global/ theo/ robot obstacie exact/ computaliou
o robot local simul /impl shape shape beuristic speed
skeleton AIFKM$0 3 global theo rectangle polygon 1 -
AvBFss8 3 global simul polygon polygou 1 M
LiCa%0 d global simul polytope polytope 1r M
LoWe79 2 global simul polygon polygon 1 s
KeSh8s 3 global impl polygon polygon 1 m
cell Broo83 3 global simul polygon polygon 3 @
decomp. BrLo83 3 global simul polygon pelygon ir M
Dona84 6 global simul polyhedron polyhedron 1r b
GuSSss 2 global theo arbitrary arbitrary 1
KeORS87 5 global theo line polyhedron 1
KuZB85 3 global simul polygon polygon «3 m
LeRDGS0 3 global simul polygon polygon ir s
Maddsé 3 global simul line rectangle 1 m
NoNA89 3 global simul polygon polygon 2 m
Nguy84 3 global simul polygon polygon 2 m
ScSh81 a global theo polyhedron polyhedron 1 h
ScSh83a 3 globat theo polygon polygon 1 h
ZhLa%0 3 global sumul polygon polygon ir m
potential ChAh91 3 global simul polygon polygon 2 m
field GiJo85 3 focal simul polygon polygon e M
HwAh8g 6 global simul arbitrary polyhedron 2 M
Warr89 3 global simul polygon polygon 3 M
*1. abbreviations
theo/simul/impl category
theo: theoretical algorithm
simul: simulation on computers
impl: implemented on actual robots
exact /heuristic rating
1: exact, finds a solution if exists. ’
Ir: resolution complete. *
1p: probablistically complete.
2: heuristic, find solutions except for very hard problems.
3: heuristic, find solutions if free space is wide.
computation speeds
s: < 1 minute. m: 1 - 10 minutes. M: 10 - 80 minutes. h: > | hour.

of heuristics seems essential to obtain
practical algorithms. We would like to
conclude this survey by summarizing four
components useful for developing effi-
cient algorithms, which have been intro-
duced by many researchers during the
past seven years.

First, the complexity of the MP prob-
lem at hand needs to be examined and
compared with available computing
resources. There exist many complexity
results for various cases of MP. If the
complexity is very high, i.e., NP-hard or
PSPACE-hard, exact algorithms should
be sought for only when the input size of
the MP problem (robot’s degrees of free-
dom or number of obstacles) is small.

Reproduced with permission of the copyright owner. Further reproduction

]

Otherwise a heuristic algorithm should
be developed. Computing resources are
limited by the available technology or for
economic reasons. The accuracy and
quality of motion required in the robot
tasks should be used to determine the
allowable degrees of inexactness and
heuristics, which in turn determine the
minimum computing resource. For exam-
ple, to plan a shortest path for a subma-
rine, one must settle for a heuristic algo-
rithm since the 3D shortest-path prob-
lem is NP-hard.

Second, when selecting a spatial repre-
sentation, the form of available object
information in an actual implementation
needs to be considered. For example, in a

ACM Computing Surveys, Vol. 24, No. 3, September 1992

prohibited without permission.

280 . Y. K. Hwang and N. Ahuja

Table 2. Point or Circular Robot

global/ theo/

mechanical assembly, object information
is available in CAD models, which usu-
ally use constructive solid geometry. In
this case, motion planners that use CSG
models of objects are appropriate. If the
robot has a range sensor, computation of
distance may take as short a time as
sampling a signal. Motion planning can
be done directly using the depth map,
and the conversion of the depth map to a
polyhedral representation may not be
needed. Algorithms that are slow due to
distance computation may benefit from
such a range sensor. Although many

ACM Computing Surveys, Vol. 24, No. 3, September 1992

approach algorithm obstacle exact/ computation
localf_ﬂ:!}/i&:glﬁ_ shape heuristic speed
skeleton AsAGHSs global theo polygon 1 s
AtCh89 global theo polygon 1 s
AtCGssg global theo line segment 1 H
CIKV87 global theo rectangloid i -
dReL W85 global simul rectangle 1 m
ElGo88 global theo polygon 1 s
GoSGSo global theo polygon 1 s
LoWe79 global simul polygon 1 s
MoGMS87 global simul polygon 1 mn
OdYas2 global simul polygon 1 s
Papa8s global theo polyhedra Ir -
RalS88 global simul polygon 1 w
ReSc88 global theo polyhedra 1
ReSt85 global theo polygon 1 s J
ReSt88 global theo polyhedra 1 -
cell GaMe8s global simul polygon Ir m ‘f
decomp. JuShs8s global simul polyhedra Ir m |
KaDa8ge global stmul arbitrary, 2D ir s
KrTh86 global simul polygon Ir m
RuWo87 global simul polygon 2 s
SiWase global simul rectangle 2 s |
potential KhTh87 local impl ellipse 3 B :
field Kodi87 global simul sphere 1 s |
KrTh86 global simul polygon ir m J
RiKo89 global simul star 1 m j
Thor84 global simul polygon Ir m }
path on a ChHa%0 global theo concave polyhedron 1 ‘J
polyhedron HwCT89 global theo convex polyhedron 1
MiMP87 global theo concave polyhedron 1
Moun85 global theo convex polyhedron 1 -
ORSB84 global theo coucave polyhedron -] -
ShSc84 global theo convex polyhedron 1 -
weighted CIKV87 global theo polygon 1
region LeCY90 giobal simut rectangle 1 -
MiPa8g7 global theo polygon 1
L RIRZM87 global simul polygon 1 m
partially Lume87 global simui arbitgary, 2D 1 8
known LuSk8s global simul arbitrary, 2D 1 s
il}vironment_J RaldS88 glolfal simul p9lygol{¥ o i H |

algorithms are developed in computer
simulations, one should take into account
how the obstacle information will be
obtained in actual implementations.
Third, the minimum-work principle
should be used, meaning computations
should be done only if needed. This prin-
ciple can be used in three areas of MP:
hierarchical model of objects, multireso-
lution representation of the Cspace, and
use of heuristics. Intersection detection
and distance computation between
objects are the two most used routines in
MP (typically used tens of thousands

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gross-Motion Planning . 281

Table 3. Manipulator

approach algorithm dof of global/ theo/ robot obstacle exact/ computation
robot local simul/impl shape shape heuristic speed

skeleton Bal.a90 arbitrary global simul polyhedron arbitrary 1p m
ChHw92 arbitrary global simul polyhedron polyhedron ir m
FaTo87 arbitrary global simul polyhedron polyhedron 1p M
HoJW85 arbitrary global theo line circle 1 -
Lume86 3 global simul line polyhedron 1 s
Lume87 2 global simul line arbitrary, 2D 1 s
LuSu87 2 global simul line arbitrary, 3D 1 s
cell Broo83 6 global impl polyhedron polyhedron 3 s
decomp. Fave89 arbitrary global impl polyhedron polyhedron 2 m
Herm86 arbitrary globat impl polyhedron arbitrary 3 \n
Kondg1 arbitrary global simul polyhedron polyhedron R ir m
Loza87 arbitrary global impl polyhedron polyhedron ir h
PaMF89 arbitrary global simul arbitrary , arbitrary 1r h
potential BaLa90 arbitrary global simul polyhedron arbitrary ip m
field BoHa88 3 local impl polygon polygon 3 s
Khat85 arbitrary local impl polyhedron polyhedron 3 s
KhVo88 arbitrary local simul polygon polygon 3 N
NeHo87 arbitrary local impl polygon polygon 3 s
mathematical ChViss arbitrary global simul polygon polygon 2 h
programming ElYa88 2 global simul polyhedron polyhedron 1 m
MaKI85 arbitrary global simul polyhedron polyhedron 2 m
ShDu88 arbitrary global simul polygon polygon 2 h

Table 4. Muitimover’s Problem

All are global algorithms.

approach algorithm dof of number of theo/ robot obstacle exact/ cowmputation
a robot robots simul /impl shape shape heuristic speed
predefined ErLo86 2 arbitrary simul polygon,manip Polygon 2 m
priority FrHo88 2 arbitrary impl point,manip polygon 3 on-line
no Buck89 2 arbitrary impl square none 2 s
predefined ChKLS88 2 arbitrary impl manipulator polyhedron 3 s
priority FoWY86 2 2 simul manipulator polyhedron 1 s or m
LiKNNAS89 2 2 simul circle arbitrary 2 m
ODLo89 arbitrary 2 simul manipulator polyhedron 2 o
ScSh83b 2 arbitrary theo Fircle polyhedron 1 h
ShSi88 2 2 theo circle,manip polygon 1
YeBe87 2 arbitrary simul circle polyhedron 2 5 af
Table 5. Time-Varying Environment
All are global algorithms.
The robot is all a point, see note below.
approach | algorithm | dof of thoe/ obstacle exact/ computation
robot simul/imp! shape heuristic speed
skeleton FuSa89 2 simul polygon 1r m
KaZu88 2 simul polygon 2 sorm
KeLi88 2 simul point 3 s
ReSh85 2,3 theo polytope 1 -
CaRe85 2.3 theo polytope 1 mor M
cell FuSa88 2 simul polygon Ir m
decomp.

Note: MP of a translating polytope robot among translating polytopes
is the same as moving a point among polytope configuration obstacles.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

282 . Y. K. Hwang and N. Ahuja

Table 6. Motion Planning with Constraints
constraint algorithm robot theo/ description
shape simul/impl
curvature Dubu57 point thoe Shows shortest paths consist of straight lines
and maximum-curvature lines.
FoWi88 point simul Checks the existence of a path satisfying
curvature constraints.
JaCa8$ point simal Computes approximately the shortest path
in polynomial time using the Cspace.
Wilfgg rectangle simul Given a sequence of line segments for a
wheeled vehicle to follow, computes
the shortest path in polynomial time.
kinodynamic ODun8g7 point thoe 1D problem with a bounded acceleration,
the robot avoids two point obstacles.
CaDRX88 point simul Computes the minimum-time p2th using a grid,
bounds on velocity and acceleration.
DoXa89 manipulator simul Computes the minimum-time path-using a grid,
bounds on velocity and acceleration.

Table 7. Movable-Object Problem

algorithm work space robot obstacle description
dimension shape shape
A1SLg0 3D manipulator arbitrary | Formalize manipulation task,
introduces STABLE and GRASP sets.
LoJMOGTLS7 3D manipulator polyhedra | An actual system executing
Move object O To destination D.
WilFg8 20D rectangle rectangle | Shows NP-hardness,
O(n log n) for one movable object.

of times). Hierarchical representations of
objects significantly speed up these com-
putations [Faverjon 1989]. For example,
if the two cuboids each containing an
object do not intersect, the objects do not
either (called the bounding-box method
in computer graphics). Detail models of
objects need to be considered only if
coarser models fail to give necessary
results. A representation of the Cspace
should be built in multiple resolutions
[Brooks and Lozano-Pérez 1983;
Kambhampati and Davis 1986]. A coarse
representation is easy to compute and
needs less time to be searched. A finer
resolution is needed only if a path cannot
be found using a coarser representation.
This is exactly the essence of the ICORS
paradigm. Whenever there is a set of
possible choices, develop good heuristics
to order them so that the choice with the
highest probability of yielding a solution
is examined first. These heuristics often
increase efficiency of algorithms.

Fourth, most gobots operate in specific
environments, and algorithms should be
specialized to adapt to these environ-
ments. Also, robots have special geome-
tries that can be exploited to develop fast
algorithms. It would be an accomplish-
ment %o develop a general efficient algo-
rithm, but such an algorithm will likely
have high complexity. Application-
specific algorithms will be more efficient
without sacrificing performance.

We also have a suggestion for those
who implement algorithms to demon-
strate efficiency and performance. It has
been difficult to compare performances of
motion planners since they solve differ-
ent examples on different computers.
There is yet no set of benchmark prob-
lems that represent realistic and non-
pathological motion-planning problems.
Unless the work is theoretical, we urge
motion-planning researchers to include
at least one example satisfying the fol-
lowing criteria for a fair comparison.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gross-Motion Planning . 283

ceiling not shown

walls cut out

{a) To move the L-shaped robot, it requires an intelligent maneuvering at the lower left corner and
through the hole. The space 1o the right of the robot at the start configuration represents a trap.®
To minimize the path length, the robot shoukd take a short cut (arrow) rather than going around
the lower right corner.

{b) The Adept robot has to bend its wrist to get the L-shaped object out of the wicket
It then has to bend its arm to avoid the middle tall biock. Finally, it hag to rotate its first link
all the way to the left (a significant backtracking) before reaching the goal configuration

Figure 40. Benchmark motion-planning problems.

First, the number of obstacles should be o ACKNOWLEDGMENTS

at least 5 to 10, and some ObStaCI?S should This work was performed at the University of
be concave. Second, the solution path S . . : :

hould b N e Illinois and Sandia National Laboratories and is
shou e nontrivial ,and utlh?e all de- supported by the U.S. Army under grant DAALO3-
grees of freedom available. Third, th‘;‘re 87-K-0006 and the U.S. Department of Energy
should be a narrow space at some point under contract DE-AC04-76DP00789.

along the solution path so that the prob-

lem cannot be solved with a coarse quan- REFERENCES

tization of joint variables. Fourth, there AHUJA, N. AND SCHACHTER B. 1983. Pattern
should be a trap in the space so that Models. Wiley, New York. '

some backtracking is required to find a Aramy, R., SIMEON’, T., AND LAUMOND, J. P. 1989.
solution. We present two benchmark A geometric approach to planni;lg manipula-
problems for the classical mover’s prob- tion tasks. The case of discrete placements and
lem and MP of manipulators (Figure 40), grasps. In Proceedings of the 5th International
meeting the criteria above. We have made ggirgp 1o)sLul(anTof gggssncsclzgfﬁgghe(’ri}[{;’:s’ Aug.
an effort so that these problems are 453-463. ’ 8 - PP
not pathological and likely to occur in ALT, H., FLEISCHER, R., KAUFMANN, M., MEHLHORN,
practical situations. K., NAHER, S., ScHIRRA, S., anp UHRrIG, C.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

284 . Y. K. Hwang and N. Ahuja

1990. Approximate motion planning and the
complexity of the boundary of the union of
simple geometric figures. In Proceedings of the
5th Annual ACM Symposium on Computa-
tional Geometry (Berkeley, Calif., June 6-8).
ACM, New York, pp. 281-289.

AsaNo, T., AsaNo, T., GuiBaAs, L., HERSHBERGER, J.,
AaND Imal, H. 1985. Visibility-polygon search
and Euclidean shortest path. In The 26th Sym-
posium on Foundations of Computer Science
(Portland, Oreg., Oct. 21-23) pp. 155-164.

ATaLLAH, M. J., AND CHEN, D. Z. 1989. Optimal
parallel algorithms for visibility of a simple
polygon from a point. In Proceedings of the 5th
Annual ACM Symposium on Computational
Geometry (Berkeley, Calif., June 6-8). ACM,
New York, pp. 114-123.

AtaLLaH, M. J., CoLE, R., aAND GooDRrICH, M. T.
1989. Cascading divide-and-conquer: A tech-
nique for designing parallel algorithms. SIAM
J. Comput. 18, 3 (June), 499-532.

ATHENS, M., AND FaLBs, P. L. 1966. Optimal
Control. McGraw-Hill, New York.

AURENHAMMER, F. 1991. Voronoi diagrams—A
survey of fundamental geometric data struc-
ture. ACM Comput. Surv. 23, 3 (Sept.),
345-405.

AvVNAIM, F., BOISSONNAT, J. D., AND FAVERJON, B.
1988. A practical exact motion planning algo-
rithm for polygonal objects amidst polygonal
obstacles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Philadelphia, Apr. 24-29). IEEE, New York,
pp. 1656-1661.

BARR, A., anD FEIGENBAUM, E. A. 1981. The
Handbook of Artificial Intelligence. William
Kaufmann, Los Altos, Calif.

BARRAQUAND, J., AND LATOMBE, J. C. 1990. A
Monte-Carlo algorithm for path planning with
many degrees of freedom. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Cincinnati, May 13-18). IEEE,
New York, pp. 1712-1717.

Bosrow, J. E., DuBOwsKY, S., aND GIBSON, J. S.
1985. Time-optimal control of robotic manipu-
lators along specified paths. Int. J. Robotics
Res. 4, 3 (Fall), 3-17.

Boissiere, P. T., AND HARRIGAN, R. W. 1988.
Telerobotic operation of conventional robot
manipulators. In Proceedings of the IEEE In-
ternational Conference on Robotics and Au-
tomation (Philadelphia, Apr. 24-29). IEEE,
New York, pp. 576-583.

BraNICKY, M., aND NEwMAN, W. 1990. Rapid
computation of configuration obstacles. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Cincinnati, May
13-18). pp. 304-310.

Brooks, R. A, 1983. Solving the Findpath prob-
lem by good representation of free space. IEEE
Trans. Syst., Man, and Cybernetics SMC-13, 3
(Mar. /Apr.), 190-197.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

BroOKS, R. A., AND LozanNo-PErez, T. 1983. A
subdivision algorithm in configuration space
for Findpath with rotation. In The Interna-
tional Joint Conference on Artificial Intelli-
gence (Karlsruhe, Germany, Aug. 8-12).
William Kaufmann, Inc., Los Altos, Calif., pp.
799-806.

Bryson, A. E,, Jr.,, aNnD Ho, Y. C.
Optimal Control.
Washington, D.C.

Buckiiy, S. J. 1989. Fast motion planning for
multiple moving robots. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Scottsdale, Ariz., May 14-19). pp.
322-326.

CanNy, J. F. 1988. The Complexity of Robot
Motion Planning. The MIT Press, Cambridge,
Mass.

CANNY, J. F. 1987. A new algebraic method for
robot motion planning and real geometry. In
Proceedings of the 28th Annual Symposium on
Foundations of Computer Science (Los Angeles,
Oct. 12-14). IEEE, Washington, D.C., pp.
39-48.

Canny, J. F., anp DonaLp, B. 1987. Simplified
Voronoi diagram. In Proceedings of the 3rd
Annual ACM Symposium on Computational
Geometry (Waterloo, Ontario, June 8-10). ACM
Press, New York, pp. 153-161.

Canny, J. F., anp Lin, M. C. 1900. An oppor-
tunistic global path planner. In Proceedings of
the IEEE International Conference on Robotics
and Automation (Cincinnati, May 13-18).
IEEE, New York, pp. 1554-1561.

CaNNY, J. F., aANDREJF, J. 1987. New lower bound
techniques for robot motion planning problems.
In Proceedings of the 28th Annual Symposium
on Foundations of Computer Science (Los
Angeles, Oct. 12-14). IEEE, New York, pp.
49-60.

CaNnNy, J. F., DoNALD, B., REIF, J., AND XAVIER, P.
1988. On the complexity of kinodynamic plan-
ning. In Proceedings of the 29th Annual Sym-
posium on Foundations of Computer Science
(White Plains, New York, Oct. 24-26). IEEE,
New York, pp. 306-315. .

Canny, J. F., REGE, A., aND REIF, J. 1990. An
exact algorithm for kinodynamic planning in
the plane. In Proceedings of the 6th Annual
ACM Symposium on Computational Geometry
(Berkeley, Calif., June 6-8). ACM, New York,
pp. 271-280.

CHaTILA, R. 1982. Path planning and environ-
ment learning in a mobile robot system. In
Proceedings of the European Conference on
Artificial Intelligence (Orsay, France, July
12-14). pp. 211-215.

CHATILA, R., AND LauMonD, J. P. 1985. Position
referencing and consistent world modeling for
mobile robots. In Proceedings of the IEEE
International Conference on Robotics and
Automation (St. Louis). IEEE, New York, pp.
138-145.

1975. Applied
Hemisphere Publishing,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHATTERGY, R. 1985. Some heuristics for the
navigation of a robot. Int. J. Robotics Res. 4, 1
(Spring), 59-66.

CHEN, J., AND HaN, Y. 1990. Shortest paths on a
polyhedron. In Proceedings of the 6th Annual
ACM Symposium on Computational Geometry
(Berkeley, Calif., June 6-8). ACM, New York,
pPp. 360-369.

CHEN, P. C., aND HwaNG, Y. K. 1992. SANDROS:
A motion planner with performance propor-
tional to task difficulty. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Nice, France, May 12-14). IEEE,
New York, pp. 2346-2353.

CHEN, P. C., AND Hwang, Y. K. 1991. Practical
path planning among movable obstacles. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (Sacramento,
Apr. 7-12). ACM, New York, pp. 444-449.

CHEN, Y. C., AND VIDYASAGAR, M. 1988. Optimal
trajectory planning for planner n-link revolute
manipulators in the presence of obstacles. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (Philadelphia,
Apr. 24-29). IEEE, New York, pp. 202-208.

CHEUNG, E., anD LUMELSKY, V. 1988. Motion
planning for robot arm manipulators with
proximity sensing. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Philadelphia, Apr. 24-29). IEEE,
New York, pp. 740-745.

CHEw, L. P. 1985. Planning the shortest path for
a disc in O(n?log n) time. In Proceedings of
the 1st Annual ACM Symposium on Computa-
tional Geometry (Baltimore, June 5-7). ACM,
New York, pp. 214-220.

CHIEN, Y. P, Koivo, A. J., anp LEE, B. H. 1988.
On-line generation of collision free trajectories
for multiple robots. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Philadelphia, Apr. 24-29). IEEE,
New York, pp. 209-211.

CHUANG, J., AND AHUJA, N. 1991a. Path planning
using the Newtonian potential. In Proceedings
of the IEEE International Conference on
Robotics and Automation (Sacramento, Apr.
7-12). IEEE, New York, pp. 558-563.

CHUANG, dJ., AND AHUJA, N. 1991b. Skeletoniza-
tion using a generalized potential field model.
In The 8th Israeli Symposium on Artificial
Intelligence and Computer Vision (Dec. 30-31).

CLaRKsON, K. L., KAPOOR, S., AND VaiDya, P. M.
1987. Rectilinear shortest paths through
polygonal obstacles in O(n(log n)?) time. In
Proceedings of the 3rd Annual ACM Sympo-
sium on Computational Geometry (Waterloo,
Ontario, June 8-10). ACM, New York, pp.
251-257.

CoLLINS, G. 1975. Quantifier elimination for real
closed fields by cylindrical algebraic decomposi-
tion. In The 2nd GI Conference on Automata

Gross-Motion Planning . 285

Theory and Formal Languages, vol. 33.
Springer-Verlag, New York, pp. 134-183.

CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L.
1990. Introduction to Algorithms. McGraw-
Hill, New York, pp. 916-963.

DE REZENDE, P. J., LEE, D. T.,, AND WU, Y. F. 1985.
Rectilinear shortest paths with rectangular
barriers. In Proceedings of the 1st Annual ACM
Symposium on Computational Geometry
(Baltimore, June 5-7). ACM, New York, pp.
204-213.

D1JKSTRA, E. W. 1959. A note on two problems in
connection with graphs. Numerische Mathe-
matik 1, 269-271. In English.

DonaLp, B. 1984. Mofion planning with six
degrees of freedom, Tech. Rep. AI-TR-791, Arti-
ficial Intelligence Lab., Massachusetts Inst. of
Technology, Cambridge, Mass.

DoNALD, B., AND JENNINGS, J. 1991. Sensor inter-
pretation and task-directed planning using per-
ceptual equivalence class. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Sacramento, Apr. 7-12). IEEE,
New York, pp. 190-197.

DoNALD, B., AND XAVIER, P. 1989. A provably good
approximation algorithm for optimal time tra-
jectory planning. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Scottsdale, Ariz., May 14-19).
IEEE, New York, pp. 958-963.

DrysDALE, R. L. 1979. Generalized Voronoi dia-
grams and geometric searching. Tech. Rep.
STAN-CS-79-705, Stanford Univ., Stanford,
Calif.

Dusins, L. E. *1957. On curves of minimal length
with a constraint on average curvature
and with prescribed initial and terminal posi-
tions and tangents. Amer. J. Math. 79,
497-516.

ELGINDY, H., AND GOoDRICH, M. T. 1988. A linear
s algorithm for computing the visibility polygon
from a point. J. Alg. 2, 186-197.

ErTiMsaHYy, A. H., AND YaNG, W. S. 1988. Near
Minimum-time control of robotic manipulator
with obstacles in the workspace. In Proceed-
ings of the IEEE International Conference on
Robotics and Automation (Philadelphia, Apr.
24-29). IEEE, New York, pp. 358-363.

ERDMANN, M., anD LozaNo-P£Rez, T. 1986. On
multiple moving objects. In Proceedings of the
IEEE International Conference on Robotics and
Automation (San Francisco, Apr. 7-10). IEEE,
New York, pp. 1419-1424.

FavErJON, B. 1989. Hierarchical object models
for efficient anti-collision algorithm. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Scottsdale, Ariz.,
May 14-19). IEEE, New York, pp. 333-340.

FAVERJON, B. 1986. Object level programming of
industrial robots. In The IEEE International
Conference on Robotics and Automation (San

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

286 . Y. K. Hwang and N. Ahuja
Francisco, Apr. 7-10). IEEE, New York, pp.
1406-1412.

FAVERJON, B., AND TOURNASSOUD, P. 1987. A local
approach for path planning of manipulators
with a high number of degrees of freedom. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (Raleigh, N.
Carol,, Mar. 31-Apr. 3). IEEE, New York, pp.
1152-1159.

FoRrRTUNE, S., AND WILFONG, G. 1988. Planning
constrained motion. In The Symposium on the
Theory of Computer Science (Chicago). pp.
445-459.

ForRTUNE, S., WILFONG, G., AND Yapr, C. 1986.
Coordinated motion of two robot arms. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (San Francisco,
Apr. 7-10). IEEE, New York, pp. 1215-1223.

FreunD, E., anD Hover, H. 1988. Real-time
pathfinding in multirobot systems including
obstacle avoidance. Int. J. Robotics Res. 7,1
(Feb.), 42-70.

FusMura, K., AND SAMET, H. 1989. Time mini-
mal paths among moving obstacles. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Scottsdale, Ariz.,
May 14-19). IEEE, New York, pp. 1110-1115.

FusiMURa, K., AND SAMET, H. 1988. Path plan-
ning among moving obstacles using spatial
indexing. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Philadelphia, Apr. 24-29). IEEE, New York,
pp. 1662-1667.

Gaw, D., AND MEYSTEL, A. 1986. Minimum-time
navigation of an unmanned mobile robot in a
2-1/2D world with obstacles. In Proceedings of
the IEEE International Conference on Robotics
and Automation (San Francisco, Apr. 7-10).
1IEEE, New York, pp. 1670-1677.

GE, Q., AND McCaRrTHY, J. M. 1989. Equations
for boundaries of joint obstacles for planar
robots. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Scottsdale, Ariz., May 14-19). IEEE, New
York, pp. 164-169.

GewaLl, L., MENG, A., MITCHELL, J. S. B., AND
Nraros, S. 1988. Path planning in 0/1/x=
weighted regions with applications. In Pro-
ceedings of the 4th Annual ACM Symposium on
Computational Geometry (Urbana, Ill., June
6-8). ACM, New York, pp. 266-278.

GILBERT, E. G., aND Foo, C. P. 1990. Computing
the distance between general convex objects in
three-dimensional space. IEEE Trans. Robotics
Auto. 6, 1 (Feb.), 53-61.

GILBERT, E. G, AND JOHNSON, D. W. 1985. Dis-
tance functions and their applications to robot
path planning in the presence of obstacles.
IEEE J. Robotics Auto. RA-1, 1, 21-30.

GiLBERT, E. G., JOHNSON, D. W., AND KEERTHI, S. S.
1988. A fast procedure for computing the dis-
tance between complex objects in three-

ACM Computing Surveys, Vol. 24, No. 3, September 1992

dimensional space. IEEE J. Robotics Auto. RA-
4, 2 (Apr.), 193-203.

GoOODRICH, M. T., SHAUCK, S. B., AND GUHA, S.
1990. Parallel method for visibility and short-
est path problems in a simple polygons. In
Proceedings of the 6th Annual ACM Sympo-
sium on Computational Geometry (Berkeley,
Calif., June 6-8). ACM, New York, pp. 73-82.

GuiBas, L. J., SHARIR, M., AND SIFRONY, S. 1988.
On the general motion planning problem with
two degrees of freedom. In Proceedings of the
4th Annual ACM Symposium on Computa-
tional Geometry (Urbana, 111, June 6-8). ACM,
New York, pp. 289-298.

HErRMAN, M. 1986. Fast, three-dimensional,
collision-free motion planting. In Proceedings
of the IEEE International Conference on
Robotics and Automation (San Francisco, Apr.
7-10). IEEE, New York, pp. 1056-1063.

HocaN, N. 1985. Impedance control: An
approach to manipulation: Part III—
Application. ASME .J. Dynamic Syst. Meas.
Control. 107 (Mar.), 17-24.

HOPCROFT, J., AND ULLMAN, J. D. 1979. Introduc-
tion to Automata Theory, Languages and Com-
putations. Addison-Wesley, Reading, Mass.

HopcRrOFT, J., AND WILFONG, G. T. 1986. Reduc-
ing multiple object motion planning to graph
searching. SIAM J. Comput. 15, 3 (Aug.),
768-785.

HoOPCROFT, J., JOSEPH D., AND WHITESIDE, S. 1985.
On the movement of robot arms in 2-
dimensional bounded regions. SIAM J. Com-
put. 14, 2 (May), 315-333.

Hopcrorr, J., JosepH, D., AND WHITESIDE, S.
1984a. Movement problems for 2-dimensional
linkages. SIAM J. Comput. 13, 3 (Aug.),
610-629.

HopcroFT, J., SCHWARTZ, J. T., AND SHARIR, M.
1984b. On the complexity of motion planning
for ;multiple independent objects; PSPACE-
hardness of the “Warehouseman’s Problem.”
Int. J. Robotics Res. 3, 4 (Winter), 76-88.

Huang, Y. F., anD LEg, C. S. G. 1991. A frame-
work of knowledge-based assembly planning.
In Proceedings of the IEEE International Con-
ference on Robotics and Automation
(Sacramento, Apr. 7-12). IEEE, New York, pp.
599-604.

HUTCHINSON, S. A, AND KAk, A. C. 1990. Spar: A
planner that satisfies operational and geomet-
ric goals in uncertain environments. Al Mag.
11, 1 (Spring), 31-61.

Hwang, Y. K. 1990. Boundary equations of con-
figuration obstacles for manipulators. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Cincinnati, May
13-18). IEEE, New York, pp. 298-303.

Hwang, Y. K., AND AHUJA, N. 1992. Potential
field approach to path planning. IEEE Trans.
Robotics Auto. 8, 1 (Feb.), 23-32.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hwang, Y. K., AND AHuJA, N. 1989. Robot path
planning using a potential field representation.
In The IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (San
Diego, June 4-8). IEEE, New York, pp.
569-575.

Hwang, Y. H., CHANG, R. C, anD Tu, H. Y. 1989.
Finding all shortest path edge sequences on a
convex polyhedron. In Lecture Notes in Com-
puter Science, Algorithms and Data Structures
Workshop, vol. 332, Springer-Verlag, New York.

Hwang, Y. K., CHEN, P. C., aND XAVIER, P. G.
1992. Test suites for motion planning. Inter-
nal Rep., Sandia National Laboratories,
Albuquerque, New Mex.

Jacoss, P., AND CANNY, J. 1989. Planning smooth
paths for mobile robots. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Scottsdale, Ariz., May 14-19).
IEEE, New York, pp. 2-7.

Jones, S. T. 1980. Solving problems involving
variable terrain. Part 1: A general algorithm.
Byte 5, 2.

JUN, S., aAND SHIN, K. G. 1988. A probabilistic
approach to collision-free robot path planning.
In Proceedings of the IEEE International Con-
ference on Robotics and Automation
(Philadelphia, Apr. 24-29). IEEE, New York,
pp. 220-227.

KAMBHAMPATI, S., AND Davis, L. S. 1986. Mul-
tiresolution path planning for mobile robots.
IEEE J. Robotics Auto. RA-2, 3 (June),
135-145.

KanT, K., AND ZUCkEr, S. W. 1988. Planning
collision-free trajectories in time-varying envi-
ronments: A two-level hierarchy. In Proceed-
ings of the IEEE International Conference on
Robotics and Automation (Philadelphia, Apr.
24-29). IEEE, New York, pp. 1644-1649.

KANT, K., AND ZUCKER, S. W. 1986. Toward effi-
cient trajectory planning: The path-velocity
decomposition. Int. J. Robotics Res. 5, 1
(Spring), 72-89.

Y. 1989. An efficient algorithm for link dis-

tance problems. In Proceedings of the 5th

Annual ACM Symposium on Computational

Geometry (Saarbruchen, West Germany, June

5-7). ACM, New York, pp. 69-78.

KE, Y., AND O'ROURKE, J. 1988. Lower bounds on
moving a ladder in two and three dimensions.
In Discrete and Computational Geometry, vol.
3. Springer-Verlag, New York, pp. 197-217.

KE, Y., AND O'ROURKE, J. 1987. Moving a ladder
in three dimensions: Upper and lower bounds.
In Proceedings of the 3rd Annual ACM Sympo-
sium on Computational Geometry (Waterloo,
Ontario, June 8-10). ACM, New York, pp.
136-145.

KEDEM, K., AND SHARIR, M. 1988. An automatic
motion planning system for a convex polygonal
mobile robot in 2-D polygonal space. In Pro-
ceedings of the 4th Annual ACM Symposium on

Gross-Motion Planning . 287

Computational Geometry (Urbana, Ill., June
6-8). ACM, New York, pp. 329-340.

KepEM, K., AND SHARIR, M. 1985. An efficient
algorithm for planning collision-free motion of
a convex polygonal object in 2-dimensional
space amidst polygonal obstacles. In Proceed-
ings of the 1st Annual ACM Symposium on
Computational Geometry (Baltimore, June
5-7). ACM, New York, pp. 75-80.

KEHTARNAVAZ, N., AND L1, S. 1988. A collision-
free navigation scheme in the presence of mov-
ing obstacles. In The International Conference
on Computer Vision. IEEE Computer Society,
Los Angeles, pp. 808-813.

KemL, J. M., anp Sack, J. R. 1985. Minimum
decomposition of poly¥onal objects. In Compu-
tational Geometry. Elsevier Science Publishers,
North Holland, Amsterdam, pp. 197-216.

KuATiB, O. 1985. Real-time obstacle avoidance
for manipulators and mobile robots. In Pro-
ceedings of the IEEE International Conference
on Robotics and Atomation (St. Louis,
Missouri). IEEE, New York, pp. 500-505.

KHATIB, O., AND MampPEY, L. M. 1978. Fonction
decision-commande d’'un robot manipulateur.
Rep. 2/7156. DERA /CERT, Toulouse, France.

KHERADPIR, S., AND THORP, J. S. 1987. Real-time
control of robot manipulators in the presence of
obstacles. IEEE Int. J. Robotics Auto. RA-4, 6
(Dec.), 687-698.

KHosLA, P., AND VoLPE, R. 1988. Superquadric
artificial potentials for obstacle avoidance and
approach. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Philadelpkia, Apr. 24-29). IEEE, New York,
pp. 1778-1784.

KEIRsEY, D. M., AND MITCHELL, J. S. B. 1984.
Planning strategic paths through variable ter-
rain data. In Proceedings of SPIE Applications
of Artificial Intelligence vol. 485, SPIE,
Bellingham, Washington, pp. 172-179.

KIRKPATRICK, D. G. 1979. Efficient computation
of continuous skeletons. In The 20th Sympo-
sium on the Foundations of Computer Science
(San Juan, Puerto Rico, Oct. 29-31). pp. 18-27.

KocH, E., YEN, C., HILLEL, G., MEYSTEL, A., AND
Isik, C. 1985. Simulation of path planning
for a system with vision and map updating. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (St. Louis,
Missouri). IEEE, New York, pp. 146-160.

KopritscHEk, D. E. 1989. Robot planning and
control via potential functions. In Robotics
Review, vol. 1, O. Khatib, J. Graig, and T.
Lozano-Pérez, Eds. MIT Press, Cambridge,
Mass.

KoODITSCHEK, D. E. 1987. Exact robot navigation
by means of potential functions: Some topologi-
cal considerations. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Raleigh, N. Carol, Mar. 31-Apr.
3). IEEE, New York, pp. 1-6.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

288 . Y. K. Hwang and N. Ahuja

Konpo, K. 1991. Motion planning with six
degrees of freedom by multistrategic, bidirec-
tional heuristic free space enumeration. IEEE
Trans. Robotics Auto. 7, 3 (June), 267-277.

KrOGH, B. H., aND THoRPE, C. E. 1986. Inte-
grated path planning and dynamic steering
control for autonomous vehicles. In Proceed-
ings of the IEEE International Conference on
Robotics and Automation (San Francisco, Apr.
7-10). IEEE, New York, pp. 1664-1669.

Kuan, D. T., Zamiska, J. C., aND Brooks, R. A.
1985. Natural decomposition of free space for
path planning. In Proceedings of the IEEE
International Conference on Robotics and
Automation (St. Louis, Missouri). IEEE, New
York, pp. 168-173.

LaroMmBE, J. C. 1991.
Kluwer Academic
Dordrecht /London.

Leg, D. T. 1978. Proximity and reachability in
the plane. Ph.D. dissertation, Univ. of Illinois,
Urbana-Champaign, Il1.

LEg, D. T., AND DRYSDALE, R. L. 1981. General-
ization of Voronoi diagram in the plane. SIAM
J. Comput. 10, 73-83.

LEE, S., AND SHIN, Y. G. 1990. Disassembly plan-
ning based on subassembly extraction. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Cincinnati, May
13-18). IEEE, New York, pp. 1606-1613.

Leg, D. T, CHEN, T. H., AND YaANG, C. D. 1990.
Shortest rectilinear paths among weighted
obstacles. In Proceedings of the 6th Annual
ACM Symposium on Computational Geometry
(Berkeley, Calif., June 6-8). ACM, New York,
pp.- 301-310.

LENGYEL, dJ., REICHERT, M., DoNALD, B. R., aAND
GREENBERG, D. P. 1990. Real-time robot
motion planning using rasterizing computer

Robot Motion Planning.
Publishers, Boston/

graphics hardware. Comput. Graph. 24, 4
(Aug.), 327-335.
LiN, M. C., aND CaNNy, J. F. 1991. A fast algo-

rithm for incremental distance calculation. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (Sacramento,
Apr. 7-12). IEEE, New York, pp. 1008-1014.

Liu, Y. H., Kuropa, S., Naniwa, T., NoBorio, H.,
AND ARIMOTO, S. 1989. A practical algorithm
for planning collision-free coordinated motion
of multiple mobile robots. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Scottsdale, Ariz., May 14-19).
IEEE, New York, pp. 1427-1432.

LozaNo-PEREz, T. 1987. A simple motion-
planning algorithm for general robot manipula-
tors. IEEE J. Robotics Auto. RA-3, 3 (June),
224-238.

LozaNo-PErez, T., AND O’DoNNELL, P. A. 1991.
Parallel robot motion planning. In Proceedings
of the IEEE International Conference on
Robotics and Automation (Sacramento, Apr.
7-12). IEEE, New York, pp. 1000-1007.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

LozaNO-PEREZ, T., AND WESLEY, M. A. 1979. An
algorithm for planning collision-free paths
among polyhedral obstacles. Commun. ACM 22,
10 (Oct.), 560-570.

LozaNo-PERez, T., JonNEs, J. L., MAaZEr, E.,
O’DONNELL, P. A. 1989. Task-level planning
of pick-and-place robot motions. IEEE Comput.
22, 3 (Mar.), 21-29.

Lozano-PEREzZ, T., JonEs, J. L., Mazer, E.,
O’DoNNELL, P. A, GriMsoN, E. L., TOURNAS-
souD, P., AND LANUSSE, A. 1987. Handey: A
robot system that recognizes, plans, and ma-
nipulates. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Raleigh, N. Carol.,, Mar. 31-Apr. 3). IEEE,
New York, pp. 843-849. *

LuMELSKy, V. J. 1987. Effect of kinematics on
motion planning for planar robot arms moving
amidst unknown obstacles. IEEE J. Robotics
Auto. RA-3, 3 (June), 207-223.

LUMELsKY, V. 1986. Continuous motion planning
in unknown environment for a 3D cartesian
robot arm. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(San Francisco, Apr. 7-10). IEEE, New York,
pp. 1050-1055.

LUMELSKY, V., AND SKEwis, T. 1988. A paradigm
for incorporating vision in the robot navigation
function. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Philadelphia, Apr. 24-29). IEEE, New York,
pp- 734-739.

LUMELSKY, V., AND Sun, K. 1987. Gross motion
planning for a simple 3D articulated robot arm
moving amidst unknown arbitrarily shaped
obstacles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Raleigh, N. Carol.,, Mar. 31-Apr. 3). IEEE,
New York, pp. 1929-1934.

MACIEJEWSKI, A. A.,, aND KLEIN, C. A. 1985.
Opstacle avoidance for kinematically redun-
dant manipulators in dynamically varying
environments. Int. J. Robotics Res. 4, 3 (Fall),
109-117.

MappiLas, S. R. 1986. Decomposition algorithm
for moving a ladder among rectangular obsta-
cles. In Proceedings of the IEEE International
Conference on Robotics and Automation (San
Francisco, Apr. 7-10). IEEE, New York, pp.
1413-1418.

McCARTHY, J. M., GE, Q., AND BobbpULURI, R. M. C.
1989. The analysis of cooperating planar robot
arms in the image space of the workpiece. Int.
J. Robotics Res.

MITCHELL, J. S. B., AND PaPaDIMITRIOU, C. H. 1987.
The weighted region problem. In Proceedings
of the 3rd Annual ACM Symposium on Compu-
tational Geometry (Waterloo, Ontario, June
8-10). ACM, New York, pp. 30-38.

MiTcHELL, dJ. S. B., Mount, D. M., aND
PapapimITRIOU, C. H. 1987. The discrete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

geodesic problem. SIAM J. Comput. 16, 4
(Aug.), 647-668.

MircHELL, J. S. B., ROTE, G., AND WOEGINGER, G.
1990. Minimum-link paths among obstacles
in the plane. In Proceedings of the 6th Annual
ACM Symposium on Computational Geometry
(Berkeley, Calif., June 6-8). ACM, New York,
pp. 63-72.

Mivazaki, F., AND ARIMOTO, S. 1984. Sensory
feedback based on the artificial potential for
robots. In Proceedings of the 9th Triannual
World Congress of International Factory Au-
tomation (Budapest, July 2-6). Pergamon
Press, New York, pp. 2381-2386.

MONTGOMERY, M., Gaw, D., AND MEYSTEL, A. 1987.
Navigation algorithm for a nested hierarchical
system of robot path planning among polyhe-
dral obstacles. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Raleigh, N. Carol., Mar. 31-Apr.
3). IEEE, New York, pp. 1612-1622.

MounTt, D. M. 1985. On finding shortest paths
on convex polyhedra. Tech. Rep. 1495, Dept. of

Computer Science, Univ. of Maryland,
Baltimore.
NewMAN, W. 1989. Automatic obstacle avoidance

at high speeds via reflex control. In Proceed-
ings of the IEEE International Conference on
Robotics and Automation (Scottsdale, Ariz.).
IEEE, New York, pp. 1104-1109.

NEwMAN, W., aND HocaN, N. 1987. High speed
robot control and obstacle avoidance using
dynamic potential function. In Proceedings of
the IEEE International Conference on Robotics
and Automation (Raleigh, N. Carol.,, Mar.
31-Apr. 3). IEEE, New York, pp. 14-24.

NGUYEN, V. D. 1984. The Findpath problem in
the plane. Al Memo 760, Artificial Intelligence
Lab., Massachusetts Inst. of Technology,
Cambridge, Mass.

Nosorio, H., Naniwa, T., AND ARIMOTO, S. 1989.
A feasible motion planning algorithm for a
mobile robot on a quadtree representation. In
Proceedings of the IEEE International Confer-
ence on Robotics and Automation (Scottsdale,
Ariz., May 14-19). IEEE, New York, pp.
327-332.

O'DoNNELL, P. A., AND LozaNo-Ptrez, T. 1989.
Deadlock-free and collision-free coordination of
two robot manipulators. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Scottsdale, Ariz., May 14-19).
IEEE, New York, pp. 484-489.

O’DCNLAING, C. 1987. Motion planning with
inertial constraints. Algorithmica 2, 4, 431-
475.

O'DUNLAING, C., aAND Yap, C. K. 1985. A retrac-
tion method for planning the motion of a disc.
J. Algor. 6, 1(Mar.), 104-111.

OOMMEN, B. J., IYENGAR, S. S., Rao, N. S. V., AND
Kasuvap, R. L. 1987. Robot navigation in
unknown terrains using learned visibility

Gross-Motion Planning . 289
graphs. Part I: The disjoint convex obstacle
case. IEEE Int. J. Robotics Auto. RA-3, 6 (Dec.),
672-680.

O'ROURKE, J., SuURl, S., AND BooTH, H. 1984.
Shortest paths on polyhedral surfaces. Tech.
Rep. The Johns Hopkins Univ., Baltimore.

PADEN, B., MEES, A., AND FISHER, M. 1989. Path
planning using a Jacobian-based freespace gen-
eration algorithm. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Scottsdale, Ariz. May 14-19).
IEEE, New York, pp. 1732-1737.

PapapmmiTrIOU, C. H. 1985. An algorithm for
shortest-path motion in three dimensions. Inf.
Process. Lett. 20, 5 (Jyne), 259-263.

PavLov, V. V., aAND VORONIN, A. N. 1984. The
method of potential functions for coding
constraints of the external space in an intelli-
gent mobile robot. Soviet Auto. Cont. 6.

PREPARATA, F. P., AND SHamos, M. I. 1985. Com-
putational Geometry, An Introduction.
Springer-Verlag, New York.

Quek, F. K. H., FrankuLiN, R. F., aNnDp Pont, F.
1985. A decision system for autonomous robot
navigation over rough terrain. In Proceedings
of SPIE Applications of Artificial Intelligence
(Boston).

Rao, N., IYENGAR, S., AND DESAUSSURE, G. 1988.
The visit problem: Visibility graph-based solu-
tion. In Proceedings of the IEEE International
Conference on Robotics and Automation
(Philadelphia, Apr. 24-29). IEEE, New York,
pp. 1650-1655.

RerF, J. H. 1979. Complexity of the mover’s
problem %nd generalizations, extended
abstract. In Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science (San
Juan, Puerto Rico, Oct. 29-31), IEEE, New
York, pp. 421-427.

Rerr, J. H., AND SHARIR, M. 1985. Motion plan-
4 ning in the presence of moving obstacles. In
Proceedings of the 26th Annual IEEE Sympo-
sium on Foundations of Computer Science
(Portland, Oreg., Oct. 21-23). IEEE, New York,

pp. 144-154.

Rewr, J. H., AND STORER, J. A. 1988. 3-
dimensional shortest paths in the presence of
polyhedral obstacles. In Proceedings of the
IEEE Symposium on Foundations of Computer
Science. (White Plains, New York, Oct. 24-26),
IEEE, New York, pp. 85-92.

REIF, J. H., AND STORER, J. A. 1985. Shortest
paths in Euclidean space with polyhedral
obstacles. Tech. Rep. CS-85-121, Computer Sci-
ence Dept., Brandeis Univ., Waltham, Mass.

RICHBOURG, R. F., Rowge, N. C., Zypa, M. J., AND
McGHEE, R. B. 1987. Solving the global,
two-dimensional routing problem using Snell’s
Law and A* search. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Raleigh, N. Carol., Mar. 31-Apr.
3). IEEE, New York, pp. 1631-1636.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

290 . Y. K Hwang and N. Ahuja

Rimon, E., AND KODITSCHEK, D. E. 1989. The con-
struction of analytic diffeomorphism for exact
robot navigation on star worlds. In Proceedings
of the IEEE International Conference on
Robotics and Automation (Scottsdale, Ariz.,
May 14-19). IEEE, New York, pp. 21-26.

RimoN, E., aNnD KoDITSCHEK, D. E. 1988. Exact
robot navigation using cost functions: The case
of distinct spherical boundaries in E". In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation (Philadelphia, Apr.
24-29). IEEE, New York, pp. 1791-1796.

RuUEB, K. D., AND WONG, A. K. C. 1987. Structur-
ing free space as a hypergraph for roving robot
path planning and navigation. IEEE Trans.
Patt. Anal. Machine Intell. PAMI-9, 2 (Feb.),
263-273.

SCHWARTZ, J. T., AND SHARIR, M. 1983a. On the
piano movers’ problem: I. The case of a two-
dimensional rigid polygonal body moving
amidst polygonal barriers. Commun. Pure Appl.
Math. 36, 3(May), 345-398.

ScHWARTZ, J. T., AND SHARIR, M. 1983b. On the
piano movers’ problem: III. Coordinating
the motion of several independent bodies
amidst polygonal barriers. Int. J. Robotics Res.
2, 3 (Fall), 46-75.

SCHWARTZ, J. T., AND SHARIR, M. 1981. On the
piano movers’ problem: II: Techniques for com-
puting topological properties of real algebraic
manifolds. Report No. 39, Courant Inst. of
Mathematical Sciences. New York Univ.

Scuwartz, J. T., AND Yapr, C. K. 1987. Advances
in Robotics, Vol. 1, Algorithmic and Geometric
Aspects of Robotics. Erlbaum, Hillsdale, New
Jersey.

SHamos, M. I, aND Hoky, D. 1975. Closest point
problems. In Proceedings of the 16th IEEE
Symposium on Foundations of Computer Sci-
ence (Berkeley, Calif., Oct. 13-15), IEEE, New
York, pp. 151-162.

SHARIR, M. 1987. Efficient algorithms for plan-
ning purely translational collision-free motion
in two and three dimensions. In Proceedings of
the IEEE International Conference on Robotics
and Automation (Raleigh, N. Carol., Mar.
31-Apr. 3). IEEE, New York, pp. 1326-1331.

SHARIR, M., AND SCHORR, A. 1986. On shortest
paths in polyhedral spaces. SIAM J. Comput.
15, 1(Feb.), 193-215.

SHARIR, M., AND SCHORR, A. 1984. On shortest
paths in polyhedral spaces. In Proceedings of
the 16th Symposium on the Theory of Comput-
ing. American Computing Machinery, pp.
144-153.

SHARIR, M., AND SIFRONY, S. 1988. Coordinated
motion planning for two independent robots. In
Proceedings of the 4th Annual ACM Sympo-
sium on Computational Geometry (Urbana, Il1.,
June 6-8). ACM, New York, pp. 319-328.

SHILLER, Z., AND DUBOWSKY, S. 1988. Global time
optimal motions of robotic manipulators in the

ACM Computing Surveys, Vol. 24, No. 3, September 1992

presence of obstacles. In Proceedings of the
IEEE International Conference on Robotics and
Automation (Philadelphia, Apr. 24-29). IEEE,
New York, pp. 370-375.

SHIN, K. G., AND McKay, N. D. 1984. Open-loop
minimum-time control of mechanical manipu-
lators and its application. In Proceedings of the
American Control Conference (San Diego, June
6-8). IEEE, New York, pp. 1231-1236.

SINGH, S., AND WAGH, M. D. 1987. Robot path
planning using intersecting convex shapes.
IEEE J. Robotics Auto. RA-3, 2 (Apr.), 101-108.

Strip, D. R., AND MACIEJEWSKI, A. A. 1990.
Archimedes: An experiment in automating
mechanical assembly. In The 1I1th Interna-

tional Conference on A¥sembly Automation
(Dearborn, Mich.). pp. MS90-839.

Surl, S. 1986. A linear time algorithm for mini-
mum link paths inside a simple polygon. Com-
put. Vision, Graph. Image Proc. 35, 99-110.

TANNENBAUM, A., AND YOMDIN, Y. 1987. Robotic
manipulators and the geometry of real semial-
gebraic sets. IEEE J. Robotics Auto. RA-3, 4
(Aug.), 301-307.

TARABANIS, K., Tsal, R. Y., AND ALLEN, P. K. 1991.
Automated sensor planning for robotic vision
task. In Proceedings of the IEEE International
Conference on Robotics and Automation
(Sacramento, Apr. 7-12). IEEE, New York, pp.
76-83.

Tarskl, A. 1951. A Decision Method for Elemen-
tary Algebra and Geometry, 2nd ed. University
of California Press, Berkeley, Calif.

THORPE, C. E.. 1984. Path relaxation: Path plan-
ning for a mobsle robot. In Proceedings of the
AAAI (Austin, Tex., Aug. 6-10). Morgan Kauf-
mann Publishers, Inc. Los Altos, Calif,, pp.
318-321.

WARREN, C. W. 1989. Global path planning using
artificial potential fields. In Proceedings of the
IEEE International Conference on Robotics and
Afltomation (Scottsdale, Ariz., May 14-19).
IEEE, New York, pp. 316-321.

WEeLzZL, E. 1985. Constructing the visibility
graph for n line segments in O(n?) time. Inf.
Process. Lett. 20, 4May), 167-171. '

WILFONG, G. 1989. Shortest path for autonomous
vehicles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation
(Scottsdale, Ariz., May 14-19). IEEE, New
York, pp. 15-20.

WILFONG, G. 1988a. Motion planning for an
autonomous vehicle. In Proceedings of the IEEE
International Conference on Robotics and
Automation (Philadelphia, Apr. 24-29). IEEE,
New York, pp. 529-533.

WILFONG, G. 1988b. Motion planning in the pres-
ence of movable obstacles. In Proceedings of
the 4th Annual ACM Symposium on Computa-
tional Geometry (Urbana, 1., June 6-8). ACM,
New York, pp. 279-288.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WiLsoN, R. H. 1992. On geometric assembly
planning. Tech. Rep. STAN-CS-92-1416, Dept.
of Computer Science, Stanford Univ., Stanford,
Calif.

Yap, C. K. 1985. An O(n log n) algorithm for the
Voronoi diagram of a set of simple curve seg-
ments. Rep. No. 43, Courant Inst. Robotics
Laboratory, New York Univ.

YEUNG, D. Y., AND BEKEY, G. A. 1987. A decen-
tralized approach to the motion planning prob-

Gross-Motion Planning . 291

lem for multiple mobile robots. In Proceedings
of the IEEE International Conference on
Robotics and Automation (Raleigh, N. Carol.,
Mar. 31-Apr. 3). IEEE, New York, pp.
1779-1784.

Zuu, D., anp LatomBg, J. C. 1990. Constraint
reformulation in a hierarchical path planner.
In Proceedings of the IEEE International
Conference on Robotics and Automation
(Cincinnati, May 13-18). IEEE, New York, pp.
1918-1923.

Received April 1990; revised March 1991; final revision accepted March 1992.

ACM Computing Surveys, Vol. 24, No. 3, September 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

