
Line Drawings 
of Octree-Represented Objects 

JACK VEENSTRA and NARENDRA AHUJA 

University of Illinois 

The octree structure represents the space occupied by an object as a juxtaposition of cubes, where 
the sizes and position coordinates of the cubes are integer powers of 2 and are defined by a recursive 
decomposition of three-dimensional space. This makes the octree structure highly sensitive to object 
location and orientation, and the three-dimensional shape of the represented object obscure. It is 
helpful to be able to see the actual object represented by an octree, especially for visual performance 
evaluation of octree algorithms. Presented in this paper is a display algorithm that helps visualize 
the three-dimensional space represented by the octree. Given an octree, the algorithm produces a line 
drawing of the objects represented by the octree, using parallel projection, from any specified viewpoint 
with hidden lines removed. The order in which the algorithm traverses the octree has the property 
that if node x occludes node y, then node x is visited before node y. The algorithm produces a set of 
long, straight visible edge segments corresponding to the visible surface of the polyhedral object 
represented by the octree. Examples of some line drawing produced by the algorithm are given. The 
complexity of the algorithm is also discussed. 

Categories and Subject Descriptors: 1.2.9 [Artificial Intelligence]: Robotics-sensors; 1.2.10 [Ar- 
tificial Intelligence]: Vision and Scene Understanding-represent&ons, data structures and trans- 
forms; shape; 1.4.9 [Image Processing]: Applications 

General Terms: Algorithms 

Additional Key Words and Phrases: Hidden line removal, line drawing, octree, three-dimensional 
representation 

1. INTRODUCTION 

The octree representation is a hierarchical description of the three-dimensional 
space occupied by objects. It decomposes the volume of the given objects using a 
cubical tessellation. Thus the volume is expressed as a union of a set of cubical 
blocks whose positions and sizes are restricted variables [l, 9, 141. Starting with 
an upright cubical region of space that contains the object, one recursively 
decomposes the space into eight smaller cubes called octants, which are labeled 
O-7 (see Figure 1). If an octant is completely inside the object, the corresponding 
node in the octree is marked black; if it is completely outside the object, the node 
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Fig. 1. A cube and its decomposition into octants. 

is marked white. If the octant is partially contained in the object, the octant is 
decomposed into eight suboctants, each of which is again tested to determine 
whether it is completely inside or completely outside the object. The decompo- 
sition continues until all o&ants are either inside or outside the object or until a 
desired level of resolution is reached. Those octants at the finest level of resolution 
that are only partially contained in the object are approximated as occupied 
or unoccupied by some criteria. Since they represent space in terms of non- 
overlapping volumetric primitives, octrees are well suited for performing 
geometric computations such as collision and intersection detection among 
three-dimensional objects. 

We call the starting cubical region the “universe cube.” The recursive subdi- 
vision of the universe cube in the manner described above allows a tree description 
of the occupancy of the space (see Figure 2). Each octant corresponds to a node 
in the octree, and the node is assigned the label of the octant. Figure 2a shows a 
simple object. Figure 2b shows the same object enclosed in the universe cube, 
and Figure 2c shows the corresponding octree. The children nodes are arranged 
in increasing order of label values from left to right. The black nodes are shown 
as dark ovals, and the white and gray nodes are shown as empty ovals. In practice, 
of course, the white nodes need not be stored. 

Because of restrictions on the positions and sizes of the cubes, even compact 
objects may require a large octree representation. Of course, the size of the octree 
varies with the position and orientation of the object; for some positions of the 
object the tree may be compact, whereas for other positions the tree may become 
very deep. Thus the restriction on the depth of the octree may have a small or 
large impact on the quality of the representation according to the position and 
orientation of the object. 

A decomposition of an dbject shape into more naturally defined components 
than a fixed set of cubes would be desirable. For example, generalized cylinders 
[3] provide a good description of a variety of shapes. However, these represen- 
tations are hard to derive from images. Since the purpose of octrees is to perform 
coarse occupancy analysis, octrees reduce the complexity of derivation such as 
characterizes the generalized cylinder representation for coarseness of the derived 
occupancy map. A by-product is that the representation makes the spatial 

ACM Transactions on Graphics, Vol. 7: No. 1, January 1988. 



Line Drawings of Octree-Represented Objects 63 

(4 (b) 

01234507 

Fig. 2. (a) An object; (b) object en- 
closed in universe cube; (c) its octree 
representation (from [l]). 
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information obscure. Visualization of the three-dimensional shapes represented 
is difficult and requires analysis. The sensitivity of the octree to object location 
and orientation further compounds the problem. 

In this paper we describe an algorithm that serves as an interface between the 
octree and the observer. It transforms the octree into a line drawing representa- 
tion of the object, thus mapping all octree representations of the same shape (at 
different locations) onto a line drawing displayed by using parallel projection 
from any desired viewpoint and with hidden lines removed. The motivation for 
the algorithm came from the need for monitoring the performance of another 
algorithm we have developed that generates the octree of an object from its 
silhouette images [2, 161. Other octree algorithms [4, 8, 151 should also benefit 
from the work reported in this paper. 

Initially, we did the performance evaluation by printing each node in the octree 
with its associated label and verifying by hand that the octree was correct. As 
the octrees became larger, however, it became necessary to be able to view directly 
the object that the octree represented. 

An alternative method of displaying the object represented by an octree is 
described by Meagher [ll, 121. His algorithm produces a surface display from 
octree after hidden surface removal and is designed to be implemented in VLSI 
processors for real-time applications. Meagher uses a quadtree to represent the 
display screen. Each octree node is projected onto the screen, and the quadtree 
nodes that are contained within that projection are assigned an intensity value, 
unless an intensity value has already been assigned. Thus, the first octree node 
to project onto the area covered by a quadtree node determines the intensity for 
that region of the screen. Since octree nodes closer to the viewer are processed 
first, hidden nodes are not displayed. 
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Doctor and Torborg [5] also use a surface display algorithm that makes use of 
a quadtree to represent the image. Their algorithm includes an added feature 
called “semitransparency,” which provides the ability to view internal surfaces. 
Semitransparency is accomplished by averaging the color values of octree regions 
that project onto the same area in the image. The color values are multiplied by 
a weighting factor on the basis of the thickness of the octree region, which 
represents the degree of opaqueness. 

Surface display algorithms, however, depend on light source positions. In 
addition, many output devices cannot draw shaded surfaces. A line drawing 
representation, on the other hand, captures the essential details of the object 
structure in the form of edges, since the objects are polyhedral. We therefore 
chose to display the objects represented by the octree as line drawings that can 
be easily drawn. 

2. THE LINE DRAWING ALGORITHM 

The algorithm consists of t.he following steps. First, the octree is traversed, using 
a recursive, front-to-back traversal method similar to the one described by 
Meagher [ll, 121. This traversal has the property that if node x occludes node y, 
then node x is visited first. For each black leaf node, graphics information is 
collected and stored in a “graphics node.” (To avoid confusion with octree nodes, 
we call the data structure containing the graphics information a “graphics node.“) 
When a graphics node is created, it is added to the end of a linked list of graphics 
nodes. As a consequence of the tree traversal method, this linked list also has 
the property that, if node 3: occludes node y, then the graphics node for x occurs 
earlier in the list than the graphics node for y. By traversing the tree in this 
manner, we take advantage of the spatial organization of the octree, which 
simplifies the removal of h.idden lines later on. During tree traversal, black leaf 
nodes are “threaded” to point to their neighbors. This allows the elimination of 
“cracks,” discussed below, and is useful in the final stage when the line segments 
are displayed. 

After the linked list of graphics nodes has been created, each such node is 
projected onto the image screen and the screen coordinates of the vertices of the 
projection are stored in the graphics node. Each graphics node represents a cube 
that projects, in general, as a hexagon. The numbering schemes for the corners 
and edges of a projected cube are given in Figure 3. The top corner or edge is 
numbered 0, and successive integers are assigned clockwise around the projection. 

Finally, hidden lines are removed by comparing each graphics node in the 
linked list against nodes closer to the beginning of the list. Since a graphics node 
y may be occluded by another graphics node x that is closer to the beginning of 
the list, any overlap of node y with node x represents a hidden part of node y and 
is therefore removed. 

The coordinate frame of reference for the octree is such that the coordinates 
of the viewer are always positive. The universe cube is rotated, if necessary, so 
that the viewpoint falls in the positive octant. Since this requires rotation by 
multiples of 90”, it is performed by simply relabeling the octants. We now present 
a more detailed description of the algorithm. 
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Fig. 3. The labeling scheme for the corners (a) and edges (b) of a projected 
octant. 

2.1 Elimination of “Cracks” 

A problem unique to line drawings generated from octrees is the elimination of 
“cracks” from the drawing. A “crack” is a line that should not be drawn because 
it corresponds to an edge between two adjacent octants whose surfaces are 
contiguous and, were it to be drawn, would appear as a crack on an otherwise 
smooth surface. Since a large octant may have many small neighbors along an 
edge, eliminating the cracks may fragment the edge into several pieces. For this 
reason edges are stored as linked lists of visible segments. 

To eliminate cracks, all the neighbors must be found and tested to see whether 
they share a common border. In our algorithm we do this by traversing the tree 
and “threading” black leaf nodes to point to their neighbors. We use six of the 
eight unused child pointers of the black leaf node to point to neighbors in the six 
directions corresponding to the faces of a cube. Since the black nodes have no 
children, these pointers are known to be threads. The threaded octree turns out 
to be useful for other reasons as well. We use a seventh child pointer to point to 
the graphics node that is created at the time the black octant is first encountered. 

Only black octants have associated graphics nodes, and a black octant that is 
surrounded on all six sides by other black octants is skipped since it will not 
show in the display. 

After cracks are removed, the projections of the black octants are calculated 
and stored in their respective graphics nodes. Each graphics node also contains 
a pointer to the octant it represents so that the neighbors of a graphics node can 
be found quickly. This facilitates the plotting of long, straight lines as a unit 
instead of a sequence of short, contiguous line segments. 

2.2 Elimination of Hidden Lines 

After cracks are removed and the projections are calculated, the hidden lines are 
removed by using a straightforward edge intersection technique [6, 131. Each 
edge of a projected octant is tested for intersection with projections of all other 
octants whose graphics nodes occur earlier in the list. Thus the computation time 
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Fig. 4. The bit codes for the six half-planes 
defined by the edges of a projected octant. 010000 
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to eliminate hidden lines is proportional to the square of the number of graphics 
nodes. In practice, however, we have observed that the computation time is more 
closely related to the complexity of the image (see Section 3.2). 

A modified Cohen-Sutherland clipping algorithm is used to carry out the 
intersection tests (see Figure 4). The line that contains an edge of a projected 
octant defines two half-planes, one of which contains the projection and one that 
does not. The six edges deiine six half-planes that do not contain the projected 
octant. Each of these half-planes is assigned a different bit in a 6-bit code. The 
code for a point is the logical OR of the bit codes of the half-planes that contain 
that point. 

Given an edge segment, we calculate the bit codes for its two endpoints. If the 
edge is completely outside the projection (and therefore visible), the logical AND 
of the two bit codes will be nonzero. If the edge is completely within the projection 
(and therefore hidden), then both bit codes will be zero. Otherwise, the edge 
partially overlaps the projection. The overlapping segment of the edge corre- 
sponds to its hidden part and must be removed, 

If an edge segment partially overlaps the projected octant, then the intersection 
with the projection must be calculated. This can be done by taking the intersec- 
tion of the edge segment with the appropriate edge of the projection that 
corresponds to a nonzero bit in the bit code for an endpoint of the edge segment. 

2.3 Elimination of “Dots” 

After hidden lines are removed, the data are ready for display. At this point the 
graphics nodes contain pointers to all the visible edge segments. On certain 
output devices (notably moving-pen plotters) an aesthetic problem will arise if 
the edges are output in the obvious sequence of their order of occurrence in the 
linked list of graphics nodes. Because the octree representation decomposes the 
object into various sized cubes, a long, smooth line on the object may be broken 
up and represented as several pieces-each piece in a different octree node. 
Therefore, instead of plotting one long line segment, several short line segments 
are plotted. On a moving-pen plotter, a small dot is visible at the start and end 
of every line segment. Not only is this displeasing to the eye, but, in addition, 
when a long line is plotted as several dozen short segments, the tip of the pen 
takes a beating. These problems do not arise on a graphics terminal or on a laser 
printer, but plotting short segments has other undesirable traits that apply 
to all output devices. On all output devices, plotting a long list of short line 
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segments will, in general, be less efficient (slower) than plotting a single long 
line segment. Furthermore, since each segment is processed separately, the 
plotted segments may have slightly different slopes and may not line up exactly, 
thereby giving a jagged, broken appearance to what should be a smooth straight 
line. 

The solution to these problems is to logically connect contiguous line segments 
before plotting. The threaded octree is useful for this purpose since it allows us 
to check the neighboring octant and connect adjacent edge segments. The result 
is a line drawing without any jagged edges. 

2.4 Representation of Graphics Information 

The above algorithm was implemented in the C programming language [lo] 
under the UNIX1 operating system. Details of our implementation are given 
below. 

To facilitate integer instead of floating-point representations, the side length 
of an octant at the lowest level in the octree (i.e., the smallest possible octant) is 
defined to be 1. The center of the octree is defined to be the origin of the octree 
coordinate system. 

The graphics node used to represent an octant and its projection onto the 
screen coordinate system is defined by the following C structure: 

typedef struct box { 
OCTREE *act; 
int origin[3]; 
int len; 
float corners[6][2]; 
float xhigh, yhigh, xlow, ylow; 
float xleft, yleft, xright, yright; 
EDGE *edges[9]; 
struct box *next; 

] BOX; 

Each BOX structure describes a cube. The first element, act, points to the 
black octree node; origin contains the coordinates of the corner farthest from the 
viewer (i.e., the hidden corner); len is the side length of the cube; corners is an 
array of the screen coordinates of the vertices of the hexagonal projection of the 
cube; xhigh, yhigh, xlow, ylow, xleft, yleft, xright, yright are the screen coordinates 
of the highest, lowest, leftmost, and rightmost vertices, respectively, in corners; 
edges is an array of pointers to EDGE structures representing the nine potentially 
visible edges of the projected cube; finally, next is a pointer to the next element 
in the linked list. 

Edges of projected cubes are represented by linked lists and are defined 
in C as 

typedef struct edge ( 
int min, max; 
float 3Cmin, ymin, xmax, ymax; 
struct edge *next; 

] EDGE; 

1 UNIX is a trademark of AT&T Bell Laboratories. 
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Fig. 5. The line drawing for the octree representation of a cylinder. 

The first two elements of the EDGE structure, min and mux, store the beginning 
and ending positions of a segment of the ‘edge. The values of min and max 
represent the distance from the beginning of the edge in terms of the side length 
of the smallest octree node. The next four elements, xmin, ymin, xmax, ymax, 
are the screen coordinate:s of the points represented by min. and max. Finally, 
next points to the next edge segment. 

3. PERFORMANCE OF THE LINE DRAWING ALGORITHM 

In this section we present examples of line drawings produced by our algorithm 
for a number of octrees and some comments on the computational complexity of 
the algorithm. 

To evaluate the performance of our display algorithm, we supplied to it the 
octrees produced by our octree generation algorithm [2, 161. The octrees were 
generated for a known set of objects. It was easy to check the correctness of the 
line drawing algorithm since the octree generation algorithm followed by the line 
drawing generation algorithm should provide a display of the original object as 
represented by the octree. 
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Fig. 6. The line drawing for the octree representation of a cone. 

Fig. 7. The line drawing for the octree representation of a sphere. 

3.1 Example Line Drawings 

The line drawing algorithm was executed on a VAX and the output sent to a 
QMS laser printer. Figures 5-8 show the line drawings generated for the octrees 
of some simple geometric objects. Figure 9 is a line drawing generated from an 
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Fig. 8. The line drawing for the octree representation of a pyramid. 

octree that was obtained from gray-level silhouette images of a coffee cup taken 
from three orthogonal viewing directions. Figure 10 shows the drawing for a more 
complex object, which exhibits self-occlusion. Figure 11 shows an object whose 
silhouette is a diamond when viewed from any face of the universe cube that 
contains it. The blocky structure of the surfaces actually represented by the 
constructed octree can be seen in all figures. For example, there are small steps 
leading down from the top face of the cylinder in Figure 5. Some blockiness will 
always be present in the surfaces represented by octrees because of their finite 
resolution. Our algorithm results in additional blockiness for the following 
reasons. First, the intersections performed over successive cylinders give only a 
polyhedral approximation to a smooth surface. Second, the silhouettes of the 
objects used in our experiments were stored as digital regions, with jagged 
boundaries, resulting in a staircase approximation of continuous boundaries, as 
can be seen in Figure 5. 
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Fig. 9. A line drawing of a coffee cup. 

3.2 Complexity 

Figure 12 shows the execution time of the line drawing algorithm as a function 
of the number of nodes in the octree. The graph shows that there is no simple 
relationship between the two. The octree is traversed once to construct the linked 
list of graphics nodes, but each graphics node is revisited for every graphics node 
that occurs later in the linked list, thus resulting in a number of visits that are 
proportional to the square of the number of graphics nodes. However, the 
processing time required at each graphics node varies greatly. Extra processing 
is required at a node if its screen projection overlaps the screen projections of 
other nodes. Processing time is further increased in the cases in which edge 
intersections between two overlapping projections must be computed. Since the 
computation of edge intersections dominates the processing time at a node, the 
overall processing time is largely determined by the number of edge intersections 

ACM Transactions on Graphics, Vol. 7, No. 1, January 1988. 



72 - J. Veenstra and N. Ahuja 

Fig. 10. A complex object that exhibits self-occlusion. 

in the image rather than by the number of graphics nodes visited. Therefore, the 
execution time depends more on the complexity of the image (i.e., how many 
hidden lines must be removed) than on the number of octree nodes. 

The memory requirements for the graphics information (in addition to the 
memory used by the octree) consist of at most one graphics node for each black 
octree node. Each graphics node contains pointers to linked lists (representing 
visible edges), which may contain zero or more elements (depending on the degree 
of fragmentation of an edge). If the image has a large number of partially occluded 
octants, then some graphics nodes may require long linked lists to represent the 
visible edge fragments. In addition, if the object is oriented poorly with respect 
to the decomposition space of the universe cube, the octree itself may be very 
large. Thus the space complexity is dependent on both the complexity of the 
image and the efficiency of the octree decomposition. 

Gargantini [7] has proposed a data structure for storing octrees that does not 
use pointers but instead encodes the octree as a linear list of the black octants, 
where each black octant is uniquely determined by its “path” from the root. This 
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Fig. II. A line drawing of a diamond-shaped object. 

method requires less memory for storing a given octree than does a data structure 
that uses child pointers. Our line drawing algorithm, however, frequently needs 

to examine neighboring octants of a given node, which is efficiently accomplished 
by following pointers in a threaded octree. 

4. SUMMARY 

We have presented a display alguL~~~~LLL UV =--- ace a line drawing of an object 

from its octree. The object is drawn using parallel projection with cracks and 
h’dden lines removed for any specified viewpoint. Line drawings are a useful 
t:ol in visualizing objects represented by octrees that are hard to interpret as 
geometric objects by direct inspection. 

ACM ‘!hxm&&ons on Graphics, Vol. 7, NO. 1, J~IIUIQ 1988. 



74 

C 

P 

U 

s 

E 

C 

0 

N 

0 

5 

. J. Veenstra and N. Ahuja 

408 

I-- 

200 

_I1 

4 

0 

; 2e’ee 4 

I 

7- 

43 

00 
I 

I0 Gee0 BBBB teeee 12 

T / 
/ 
./+ 

, 

/ 

P 

It?0 

NUMBER OF NODES IN OCTREE 

Fig. 12. Graph of line drawing generation time as a function of the number of nodes in the octree: 
“0” represents total nodes; “+” represents black (leaf) nodes. 
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