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Abstract

Radial distortion for ordinary (non-fisheye) camera
lenses has traditionally been modeled as an infinite series
function of radial location of an image pixel from the image
center. While there has been enough empirical evidence to
show that such a model is accurate and sufficient for ra-
dial distortion calibration, there has not been much analysis
on the geometric/physical understanding of radial distor-
tion from a camera calibration perspective. In this paper,
we show using a thick-lens imaging model, that the vari-
ation of entrance pupil location as a function of incident
image ray angle is directly responsible for radial distortion
in captured images. Thus, unlike as proposed in the current
state-of-the-art in camera calibration, radial distortion and
entrance pupil movement are equivalent and need not be
modeled together.

By modeling only entrance pupil motion instead of radial
distortion, we achieve two main benefits; first, we obtain
comparable if not better pixel re-projection error than tra-
ditional methods; second, and more importantly, we directly
back-project a radially distorted image pixel along the true
image ray which formed it. Using a thick-lens setting, we
show that such a back-projection is more accurate than the
two-step method of undistorting an image pixel and then
back-projecting it. We have applied this calibration method
to the problem of generative depth-from-focus using focal
stack to get accurate depth estimates.

1. Introduction
Camera calibration entails estimation of intrinsic and ex-

trinsic parameters of a camera given a set of known world
points and their measured image coordinates on the image
plane [3, 13, 14, 7, 16]. The intrinsic parameters model the
geometric properties of the image sensor and the extrinsic
properties model the pose of the camera in a known coordi-
nate system.

Camera calibration depends on the imaging model that
governs the camera optics. In this paper, we focus on or-

dinary (non-fisheye) camera lenses whose image forma-
tion can be described as ideal perspective projection fol-
lowed by small deviations/distortions. These distortions
cause straight lines in the scene to be imaged as curved
lines. In calibration, image distortion has been modeled
as a combination of radial distortion [3] to model radially
outward movement of ideal image points and decentering
distortion to model keystone like distortions owing to small
lens-sensor misalignment [14, 4]. Both of these distortion
models are in the form of an infinite series function of ideal
image coordinates [14, 16, 7]. Since, they are not physi-
cally motivated, these models are only approximate in na-
ture. Previously, Kumar and Ahuja [10] have proposed a
physical model for decentering distortion via a rotation ma-
trix to encode the lens-sensor tilt. In this paper, we show
that the physical motion of the entrance pupil as a function
of the incident ray angle is the cause of radial distortion in
images. Based on this analysis, we propose a new camera
calibration method which features a pupil-centric imaging
model [10] (more accurate than traditional pin-hole model),
rotation-based image sensor misalignment [10, 5] (to model
decentering effects) and moving entrance pupil model (to
model radial distortion) to achieve lower pixel re-projection
errors. Moreover, our calibration allows for accurate back-
projection of image rays directly from distorted image pix-
els. Our analysis shows that the combined modeling of en-
trance pupil motion and radial distortion [14] as done in the
current state-of-the-art in camera calibration [5] is redun-
dant. Thus, our main contributions in this paper are:

1. In a pupil-centric imaging framework, we show that
the physical motion of entrance pupil along the optic
axis causes radial bending of image rays thus resulting
in radial distortion of image pixels (Sec. 2).

2. We propose a new pupil-centric calibration algorithm
based on these ideas and obtain less pixel re-projection
error compared to prior calibration methods (Sec. 3)
and show accurate pixel ray back-projection (Sec. 5).

3. We present a categorization of various prior calibration
algorithms based on their underlying assumptions and
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show how the proposed model is new and differs from
all of them (Sec. 4).

4. We present a generative depth-from-focus algorithm
which depends on accurate ray back-projection and
uses the proposed calibration method to compute scene
depth (Sec. 5).

In Sec. 6, we compare our calibration results with those
obtained by prior methods and show that we get least re-
projection error without increasing the parameterization of
the calibration problem. Finally, in Sec. 7, we discuss the
limitation of our calibration algorithm with respect to im-
age distortion and propose alternate approximations to over-
come them.

2. The New Insight on Radial Distortion Mod-
eling

In this section, we first present definitions of some lens
parameters useful to explain our radial distortion model.
Then, we present the traditional radial distortion model
which assumes pin-hole imaging. This is followed by the
proposed entrance pupil motion based modeling of radial
distortion for thin and thick lenses.

Lens parameters: See Fig. 1. A typical lens consists
of a system of lenses with a physical aperture stop some-
where between these lenses. This stop physically limits the
amount of light and controls the depth of field captured in
focus by the lens. The entrance pupil (En) is defined as the
virtual image of the aperture stop as seen from the front of
the lens. Similarly, the exit pupil (Ex) is the image of the
apertures stop as seen from behind the lens. For a given im-
age pixel, the corresponding image ray forming that pixel,
typically referred to as the chief ray, must physically pass
through the aperture stop. Thus, it also appears to pass
through the center of the entrance and exit pupil. In cam-
era calibration, most of the prior works assume these points
to be fixed, except [5], which models their motion. In this
work, we will assume that entrance pupil moves.

aperture

stop

entrance

pupil
exit

pupil

chief

ray

EnEx

image

sensor

image

object

Figure 1. Typical lens design: entrance, exit pupil, aperture stop.

Conventional radial distortion modeling: Let an ideal
perspective projection of a world point on the image plane
be Pp = (xp, yp). Due to distortion, this point actually ap-
pears at location Pd = (xd, yd). Assuming no decentering

of lens-sensor, these two points can be related by only radial
distortion parameters (k1, k2) as:

[
xd

yd

]
= (1 + k1 · r2p + k2 · r4p)

[
xu

yu

]
(1)

where rp =
√

x2
u + y2u. This is conventional radial distor-

tion modeling as in [3, 14, 7, 16].
Thin-lens: stop location and radial distortion: Con-

sider a thin-lens setting as shown in Fig. 2(a, b, c) where the
chief ray forms the image, while the stop location varies.
We observe that depending upon the stop location, the chief

Orthoscopic/
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Aperture stop
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Principal ray
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O
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O

Figure 2. (a) No-distortion: aperture stop coincides with the princi-

pal point O. (b,c) Barrel and pin-cushion distortion due to change

in stop location.

ray bends as it does not pass through the center of the lens. It
is known that any ray passing through the lens center remain
undeviated [6], thus forming ideal perspective image. Thus,
we can conclude that changing the stop location causes the
resulting image to distort on the image plane.

Thick-lens: stop location and radial distortion Now,
we model the lens as being thick-lens and extend the above
analysis to relate radial distortion and stop location. A
thick-lens model follows a pupil-centric imaging geome-
try as shown in Fig. 3. which is parameterized by a set

En
Ex

H1 H2

θin

θout

an ax

principal
planes

entrance
pupil

exit
pupil

θin≠θout

zo
zi

yo

yi

Figure 3. Pupil-centric imaging model for thick lenses.

of known lens parameters, namely entrance pupil En, exit
pupil Ex and the front and back principal planes H1, H2.
The chief ray passes through En and exits through Ex, mak-
ing an angle of θin at En and θout at Ex . It was shown
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in [1], that θin and θout are related as

tan(θin) =
F

F − ax
tan(θout) (2)

where F is the optical focal length of the system. If yo an yi
are object and image heights respectively and zo and zi are
object and image distances from En and Ex respectively,
then we have tan(θin) = yo

zo
and tan(θout) = yi

zi
. The

transverse magnification MT [6] of the system can then be
computed from Eq. 2 as:

MT =
yi
yo

=
F − ax

F
∗ zi
zo

(3)

If zo and zi are fixed, then MT is fixed as ax and F are fixed.
Thus, we can conclude that for fixed lens parameters there
is a constant magnification factor relating all object points
on a fixed plane at z0 and the captured image points. But,
we know from observed images captured from a thick lens,
that magnification is not constant across the image plane,
rather it either increases or decreases as the image points
move far from the center of the image. Or in other words,
the magnification MT is radially varying causing observed
radial distortion of image points. Thus, we can give the
following hypothesis.

En

H1 H2

Ex

Pw

θin

(a) Small incidence angle

small

distortion

En

H1 H2

Ex

Pw

θin

(b) Large incidence angle

large

distortion

large entrance

pupil movement

small entrance

pupil movement

Figure 4. Angle of incident light ray moves the entrance pupil lead-

ing to different amounts of radial distortion: (a)small incident an-

gle (b)large incident angle.

Our hypothesis: moving entrance pupil causes radial
distortion in pupil-centric setting The only way to have
varying magnification/radial distortion over the image plane
is to assume that all of the ray geometries shown in
Fig. 2(a,b,c) occur simultaneously. This would imply that
there are multiple aperture stop locations in the imaging sys-
tem at the same time. Since, this is physically impossible,
we hypothesize that in the case of a thick lens, the entrance
pupil varies its location monotonically depending on the an-
gle θin of incidence of the incoming ray. Such phenomenon

has previously been observed for fish-eye lenses by Gen-
nery [5]. This allows us to explain for small angles of inci-
dence (Fig. 4(a)), we have ideal perspective projection (sim-
ilar to Fig 2(a)), agreeing with the observation that there is
almost no radial distortion at regions near the image center.
But as the incident ray angle θin increases (Fig. 4(b)), the
entrance pupil location changes and the imaging system be-
haves similar to Fig. 2(b) or (c). This confirms to the obser-
vation that radial distortion is higher towards the periphery
of the image. Thus, we can conclude that the movement of
the entrance pupil as a function of incident ray angle θin is
a predominant geometric reason for the occurrence of radial
distortion on the image plane. Next, based on our hypothe-
sis, we present our new camera calibration model.

3. Proposed Camera Calibration Modeling
Our camera calibration model assumes pupil-centric

imaging with moving entrance pupil and non-frontal sen-
sor model [10] as shown in Fig. 5, where a known world
point location Pw is imaged to pixel Pi based on current
calibration parameters and P̂i is the actual measured image
coordinate. We define the following coordinates systems:
• world coordinate system (Cw): The known world

points are defined in this coordinate system e.g. a
checkerboard.

• entrance pupil coordinate system (CEn ): The origin
of this coordinate system lies at the entrance pupil En

of the imaging system. Since, in our case En is as-
sumed to be moving with respect to the incident image
ray (Sec. 2), we define the origin of CEn

to correspond
to the location where the incidence rays with θin ≈ 0
intersect the optic axis. This location can typically be
obtained from the lens data sheet as a signed distance
from the front principal plane.

• sensor coordinate system (Cs): The xy plane of this
coordinate system lies on the image sensor with origin
at the intersection of optic axis and the sensor. This in-
tersection point is the center of radial distortion (CoD).

• image coordinate system (Ci): The measured pixel
values are described in this coordinate system.

The distances are measured in pixels in Ci and in metric
(e.g. mm) in Cw, CEn

, Cs. See Fig. 5. Let the world point

be Pw = (X,Y, Z) and the measured image point be P̂i =

(Î , Ĵ). Let the signed distance of En from H1 be an and of
Ex from H2 be ax. Ignoring noise, we have the following
transformations relating Pw and P̂i.

Transformation from Cw to CEn : Let S = {sij : 1 ≤
(i, j) ≤ 3} be the rotation matrix and T = (tx, ty, tz) be
the translation between these two coordinate systems. Then,
Pw can be expressed as Pl = (xl, yl, zl) in CEn

as:⎡
⎣ xl

yl
zl

⎤
⎦ =

⎡
⎣ s11 s12 s13

s21 s22 s23
s31 s32 s33

⎤
⎦
⎡
⎣ X

Y
Z

⎤
⎦+

⎡
⎣ tx

ty
tz

⎤
⎦ (4)
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Figure 5. Geometry of proposed calibration model.

Incorporating entrance pupil movement: Let the ray
from Pw be incident on the optical axis at En(θ) at an an-
gle of θ. Let the distance between En and En(θ) be σ(θ),
where we use the model for σ(θ) from [5] as:

σ(θ) =

(
θ

sin(θ)
− 1

)(
ε1 + ε2θ

2 + . . .
)

(5)

Here (ε1, ε2) are the pupil movement parameters. As the
distance moved by the pupil σ(θ) and θ are dependent on
each other they cannot be determined independently. But, a
simple trigonometric equation can be derived in terms of Pl

and θ [5] as:

zl sin(θ)−
√
x2
l + y2l cos(θ)− (θ − sin(θ))(ε1 + ε2θ

2) = 0

and can be solved iteratively for θ using Newton-Raphson

method using initial value of θ as arctan

(√
x2
l +y2

l

zl

)
and

current estimates of calibration parameters S, T, ε1, ε2. An
example plot of the variation of entrance pupil center as in-
cident ray angle θ changes is shown in Fig. 6 for the lens
used in our experiments. As can be seen, the default En

provided by the manufacturer has been calibrated for inci-
dent rays with θ ≈ 50 degrees.
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Figure 6. Moving entrance pupil vs angle of incidence ray. The

plot is based on (ε1 = −5.304, ε2 = 6.474) computed from cal-

ibration results from our proposed method as shown in the last

column of Table. 1.

Computing incident ray intersection with H1: Given
the computed ray direction θ, the incident ray from Pw in-
tersects the front principal plane H1 at some location q1.
Using coordinate geometry, the coordinates of q1 are:

q1 =
−(an + σ(θ))

zl − σ(θ)

[
xl

yl

]
(6)

As ray incidence on H1 and H2 are same, we have q1 = q2.

Computing the exitence ray from Ex to q2: As the exit
ray must appear to come from Ex, its intersection with the
non-frontal sensor plane can be computed. We assume that
the image sensor is rotated with respect to H2 by a two pa-
rameter rotation matrix R(α, β) [10]. We also assume that
the origin of the non-frontal sensor is located at a distance
of λ from H2. We have Ex = (0, 0, ax). Now, both Ex and
q2 can be obtained in terms of Cs as:

ECs
x = R [0 0 ax + λ]

t
(7)

qCs
2 = R [q2(x) q2(y) λ]

t
(8)

where, [ ]t denotes transpose. Let the intersection of this ray
with the image sensor be Ps = (xs, ys).

Obtaining image coordinates: If the pixel sizes are sx
and sy and the origin of Cs is at (I0, J0) on the image, then
Ps can be transformed to pixel coordinates Pi = (I, J) as[

I
J

]
=

[ xs

sx
− I0

ys

sy
− J0

]
(9)

We refer to (I0, J0) as the center of distortion (CoD). Thus
Pi is obtained in terms of 14 calibration parameters U as:

U = { S, T,︸︷︷︸
extrinsic(6)

R(α, β), sx, λ, I0, J0, ε1, ε2︸ ︷︷ ︸
intrinsic(8)

} (10)

We note that sy is assumed to be known as it decides the
scale of the calibration estimates [13, 14, 16].

Linear and nonlinear optimization: The calibration is
done in two stages (1) initial linear estimation and (2) fi-
nal nonlinear refinement using the estimated parameters
from linear estimation. For stage (1), we assume that
the entrance pupil is fixed and used the analytical tech-
nique in [10]. The final nonlinear estimation is done using
Levenberg-Marquardt optimization [7] by minimizing the
pixel re-projection error over N world-image point corre-
spondences:

U∗ = argmin
U

N∑
n=1

‖P̂n
i − Pn

i (U) ‖22 (11)

where U∗ is the final optimal results. The results in the
columns of Table. 1 for various calibration techniques cor-
respond to U∗ from respective methods.
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4. Comparison with Other Calibration Algo-
rithms

In this section, we describe a subset of existing state-
of-the-art in camera calibration with which we would be
comparing our proposed model’s calibration accuracy in the
results section (Sec. 6). These methods vary with respect
to each other in terms of the imaging model, the distortion
model and the orientation of the image sensor. We next
explain these criteria and various models which fall under
these criteria.

Imaging model : The imaging model describes the im-
age formation from the world point to the image point.
There are two types of imaging model being employed in
camera calibration. The basic thin-lens model assumes that
the incident and exiting rays responsible for image forma-
tion by the optical system are principal rays which pass
through the optic center of the system of lenses and are par-
allel to each other [3, 13, 14, 7, 16]. The second model
called as pupil-centric model assumes that the image rays
responsible for image formation are the chief rays which
enter the imaging system at the entrance pupil and appear
to exit from the exit pupil [6, 1]. In this model, the location
of the entrance pupil can either be assumed to be fixed [10]
or it can be assumed to be moving [5].

Distortion model: Real imaging systems behave far
from ideal perspective projection and are often accompa-
nied by some amount of visible distortion on the image
plane where straight lines in real world are imaged as
curves. The distortion can be modeled as a combination
of radial and decentering distortion [3, 13, 14, 7, 16]. The
model is basically an infinite series function of the ideal im-
age points.

Orientation of the image sensor: Many times the imag-
ing surface may not be normal to the physical optic axis of
the lens system due to manufacturing limitations or some-
times to achieve special effects, e.g. tilt-shift effect. Tra-
ditionally, it has been assumed that there exists an effec-
tive optic axis which is normal to the image sensor plane.
This is referred to as a frontal sensor [14, 7] model. Re-
cently, it has been proposed that calibration can be designed
about the physical optic axis by assuming that the sensor is
non-frontal with respect to the lens (H2) plane. The non-
frontalness can be modeled as a two parameter rotation ma-
trix relating the lens plane and the image sensor plane. This
is called as non-frontal sensor modeling [5, 10].

Based on the above criteria, we can classify many prior
camera calibration techniques into the following three cate-
gories, shown graphically in Fig. 7.

Category 1: See Fig. 7(a) for the calibration model in
this category. A number of existing calibration methods
fall in this category including those proposed in Weng [14],
Heikkila [7], Zhang [16]. In this category, imaging is as-
sumed to be thin-lens, the sensor is frontal and image dis-
tortion is modeled as a combination of explicit radial and
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exit

pupil

(c) Category 3

pupil-centric

imaging

optic axis
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(d) Proposed Calibration 
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(b) Category 2

thin-lens
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frontal

sensor
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thin-lens

imaging

Figure 7. Various calibration models which have been used in liter-

ature. (a) Category1/Classical Method : thin-lens imaging, frontal

sensor, radial and decentering distortion model. (b) Category 2 :

thin-lens imaging, moving entrance pupil, non-frontal sensor, ra-

dial distortion model. (c) Category 3 : pupil-centric imaging, fixed

entrance pupil, non-frontal sensor radial distortion. (d) Proposed

Calibration Model: pupil-centric imaging, moving entrance pupil,

non-frontal sensor.

decentering distortion.
Category 2 (Gennery [5]): See Fig. 7(b) for the com-

plete model. Here the imaging model is thin-lens and the
image forming incident and the exiting rays are incident at
the entrance pupil location instead of the optic center. But,
the entrance pupil is not fixed and is assumed to be moving
depending on the incident ray angle. The image sensor is
assumed to be non-frontal, i.e. calibration is modeled about
the physical optic axis. Any observed image distortion is
modeled as explicitly being radial about the physical optic
axis.

Category 3 (Kumar [10]): See Fig. 7(c) for this model.
The imaging model here is pupil-centric with incident ray
entering the lens system at the entrance pupil and exiting the
system at the exit pupil. The entrance pupil is assumed to
be fixed. The image sensor is assumed to be non-frontal and
it is shown that sensor non-frontalness compensates for de-
centering distortion adjustment typically done in Category
1 techniques. The only distortion that is modeled is radial
distortion using traditional infinite series formulation. Com-
pared to all these methods, our proposed method does not
fall in any of these categories as our imaging model is pupil-
centric, assumes moving entrance pupil and the image sen-
sor is assumed to be non-frontal and we don’t propose to ex-
plicitly model the image distortion based on our analysis on
equivalence of moving entrance pupil and observed radial
distortion. We also incorporate non-frontal sensor model as
it physically corresponds to decentering distortion effects
and is more robust for large sensor tilts.

5. Ray Back-Projection and Depth From Focus
Since the proposed calibration model does an accurate

modeling of forward image projection, its easy to back
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project an image pixel accurately (see the blue solid line
in Fig. 5). Comparatively, the traditional radial distortion
model first corrects for image distortion on the image plane
and then back-projects it. Lets assume in Fig. 5, that the
undistorted point corresponds to ideal image coordinates.
The back-projected ray (see the red dotted line in Fig. 5)
is altogether different from the actual image forming blue
solid ray. Any vision algorithm depending on ray back-
projection analysis might get effected due to this discrep-
ancy. Next, we present a depth from focus algorithm which
depends on accurate ray back-projection and where we have
applied the results of our proposed camera calibration.

Our depth from focus algorithm takes a focal stack as
input. A focal stack is a set of registered images which fo-
cus at different scene depths in each image such that each
scene point is in focus (imaged sharply) in at-least one im-
age frame. Given this focal stack, an all-focused image of
the scene can be computed using techniques from [9, 15].
We have the image formation model y = k � x, where y
is the observed image, k is the depth dependent blur kernel
and x is the ideal sharp image. For our case, y is the focal
stack and x is the all-focused image which we have already
computed and the goal is to compute scene depth encoded
in k. Our generative algorithm can be described as:
• Input: camera calibration parameters U∗ (Eq. 11), all-

focused image If , focal stack FS.
• Repeat for all pixel locations p in If , denoted as If (p)

– Back-project pixel p to an image ray−→p using U∗.
– For discrete depths d along−→p , obtain the hypoth-

esized 3D location of p as P (xd, yd, d), where
(xd, yd) can be obtained from ray geometry of−→p .

– Using U∗, forward project P (xd, yd, d) onto all
the other images in the FS and compute the blur
kernels k

′
for each image in FS.

– Synthetically generate blurred image windows
y

′
= k

′
� If around p in all other FS images.

– Compare the sum of squared pixel wise error be-
tween synthesized and observed images.

– Select the depth d which gives minimum error.
• Output: 3D scene depth
The computed depth using our depth from focus algo-

rithm and the calibration estimates U∗ using the proposed
calibration method are showed on a set of different scenes
is shown in Fig. 8 and Fig. 9. Ray back projection has also
been used for SLAM in [12].

6. Pixel Re-projection Results
Calibration data: The calibration data consists of a

precisely constructed glass checkerboard with 5 × 5 mm
squares. Since the checkerboard is transparent, it is back lit
to generate white and black squares on the captured calibra-
tion images. The checkerboard is fixed at a location and a
camera with a tilted image sensor is used to capture a set of
5 images of the checkerboard from different viewpoints. A

Figure 8. Rocks dataset: (left) shows the setting of various geo-

metric objects in the scene. The objects consist of a flat planar

board, a prism object and more generic shaped objects in the form

of rocks; (middle top) shows the omnifocus image of the scene;

(right top) shows the medial filtered (11 × 11) 2D depth map;

(middle and right bottom) shows two 3D views of this dataset.

For non-paraxial image rays, Petzval field curvature distortion [6]

causes planes to focus on a curved surface. We observe this as the

curved reconstruction of the planar board.

Figure 9. Cylinder dataset: (left) shows a cylindrical container and

a flat board as the geometric objects in the scene; (middle top)

shows the omnifocus image; (top right) shows the median filtered

(11×11) 2D depth map of the cylinder; (middle and right bottom)

shows two 3D view of the cylinder.

tilted sensor camera is useful in validating the non-frontal
modeling in [5, 10]. The corners from the checkerboard im-
ages are detected using MATLAB Bouguet’s toolbox [2].
The accuracy of corner detection is separately calculated
using the method of [11] and is found to be ≈ 0.011 pixels.

Camera specifications: We use an AVT Marlin F033C
camera with a custom made image sensor which has been
slightly tilted by about 3 degrees. This camera is fitted
with a Cinegon 1.4/8.2 mm lens. The data sheet [8] of
the lens provides the pupil-centric parameters of the cam-
era. In Fig. 10, we show the various parameters provided
by the manufacturer. Out of these numbers, the two num-
bers which we use in our calibration are the distance of
the entrance pupil from the front principal plane denoted
as H1En(an) and the distance of the exit pupil from the
rear/back principal plane denoted as H2Ex(ax). Simple
computations from Fig. 10 lead to an = 6.5 mm and
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Table 1. Calibration results on real data. (TL = Thin-lens, PC = Pupil-centric, ME = Moving Entrance, NF = Non-frontal, F = Frontal)

Method Heikkila [7] GenneryA [5] GenneryB [5] Kumar [10] Ours

distortion model Radial+Decentering Radial Radial Radial −
imaging model TL TL TL+ME PC PC+ME

sensor orientation F NF NF NF NF
#intrinsic parameters (8) (8) (10) (8) (8)

scale
sy
sx

1.000 1.001 1.001 0.999 0.999

λp (mm) 8.240 8.383 8.358 8.650 8.593
principal point([7])/ I0 218.647 223.612 223.859 229.662 228.645
CoD([5, 10])(pixels) J0 330.477 327.462 327.300 332.216 332.409

radial k1 −0.0019 −1.9e− 03 −4.3e− 03 −0.002 −
distortion k2 .000034 4.2e− 05 3.8e− 05 .00004 −

entrance pupil ε1 − − 8.122 − −5.304
movement ε2 − 15.178 − 6.474
decentering p1 .000015 − − − −
distortion p2 −.000085 − − − −

image sensor α − 0.105 0.114 −0.424 -0.451
rotation (degrees) β − 0.424 0.439 3.278 3.051

re-projection error 0.077 0.079 0.078 0.076 0.076

Table 2. Std. deviation of calibration parameters shown in Table. 1.

Calibration Method λpx =
λp

sx
λpy =

λp

sy
I0 J0 α β

Heikkila [7] 0.955 0.944 0.457 0.387 − −
GenneryA [5] 0.131 0.127 0.559 0.625 0.029 0.027
GenneryB [5] 0.173 0.170 0.411 0.431 0.022 0.023
Kumar [10] 0.674 0.650 1.042 0.336 0.038 0.230

Ours 1.176 1.180 0.288 0.239 0.031 0.083

ax = 31.4 mm. We use these values in our calibration
method in Eq. 6 and Eq. 7.

36.5 mm

8.2 mm

11.7 mm

12.6 mm

8.2 mm

-27.0 mm

(20.9 mm)

13.4 mm

+

-Distance Sign Convention

H1 H2EnEx

L1 = Front Glass Vertex

L2 = Rear Glass Vertex

En = Entrance Pupil

Ex = Exit Pupil

F = Front Focal Point

F’ = Rear Focal Point

H1 = Front Principal Plane

H2 = Rear Principal Plane

Principal planes

H1En = 6.5 mm

H2Ex = 31.4 mm

an ax

Figure 10. Lens data-sheet values for Cinegon 1.4/8 mm Lens.

Analysis of calibration results: Here, we present the re-
sults of proposed calibration method and compare the pixel
re-projection error with the representative algorithms for
each of the calibration categories mentioned in Sec. 4. The
results for these prior techniques and our current method
(last column) are shown in Table. 1. The different imaging
conditions have been abbreviated in the caption of Table. 1.

The second column of this table corresponds to the im-
plementation of Heikkila [7]. Here, the estimate of the CoD
(218.647, 330.477) corresponds to the principal point on

the image plane where the effective optic axis is normal to
the sensor. In the third and fourth column, we shown the
results obtained from a Category 2 calibration method of
Gennery [5]. Here, we implement two variations of their
method. The method in column labeled as GenneryA uses
a thin-lens imaging model with radial distortion and non-
frontal senor and a fixed entrance pupil location. The fixed
entrance pupil allows us to conduct calibration over the
same number of intrinsic calibration parameters, namely 8,
as in our proposed method. The re-projection error here is
higher than all other methods. The estimate of sensor tilt
of ≈ 0.424 degrees is also far from the known lens specifi-
cations. The method in GenneryB is a full implementation
of [5] where we have thin-lens imaging, moving entrance
pupil, non-frontal sensor and radial distortion parameteri-
zation. The entrance pupil model adds two more calibration
parameters making the number of intrinsic parameters 10.
Thus, the re-projection error of GenneryB is less than Gen-
neryA since we have used more number of parameters, yet
it is more than our method. In the fifth column, we imple-
ment the calibration method of Kumar [10] from Category
3, where pupil-centric imaging model is used along with
non-frontal sensor and radial distortion. Since decentering
is encompassed in non-frontal sensor model, it is not cal-
culated. The re-projection error is 0.076 pixels. Finally,
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the sixth column presents the calibration results from our
method where there is no explicit radial or decentering dis-
tortion modeling. It can be seen that among the calibra-
tion methods with same number of intrinsic parameters, our
method achieves re-projection error of 0.076 pixels which
is equal (approximated to three decimal places) to the cur-
rent state of the art [10]. By obtaining re-projection error
comparable to the state-of-the-art methods, we confirm the
validity of our proposed model. The standard deviation of
a set of intrinsic calibration parameters is also shown in Ta-
ble. 2. The deviation in the estimation of CoD is minimal in
our case. An interesting observation is that the standard de-
viation of sensor tilt angle β for Kumar [10] is 0.230 which
is close to the difference of β estimates of 3.278 degree
and 3.051 degree obtained by them and our current method.
Thus, our estimates of sensor tilt (α, β) have better confi-
dence levels.

7. Image Undistortion
In our paper, an ideal undistorted image is the one which

is formed when all the image rays from the scene pass
through the same entrance pupil location and thus have a
fixed magnification as given by Eq. 3. This entails pre-
dicting the intersection of red dotted line, corresponding to
the image ray from Pw which passes through the ideal en-
trance pupil location En in Fig. 11, with the image sensor
plane. But, the depth of Pw is along the actual distorted
image ray (solid blue line in Fig. 11), is not known. Thus,
the location of ideal undistorted point becomes depth de-
pendent (solid green and blue lines in Fig. 11) and can not
be predicted accurately from our calibration model. But,
empirically we have observed that the variation in the posi-
tion of undistorted image point (corresponding to solid blue
line in Fig. 11) as a function of its depth is very small.
Thus, we propose to use a fixed scene depth for all im-
age points in the scene and then obtain undistorted image
points. Fig. 11(middle) compares the straight line fitting er-
ror for image undistortion using our method for various as-
sumed scene depths and the traditional polynomial method
of [7]. The ground truth depth of checkerboard is in the
range of 70 − 100 mm from the entrance pupil for which
our undistortion error is 0.028 pixels (see the minimum in
the red curve) which is smaller than obtained by traditional
methods which is 0.030 pixels (blue line). For other depth
ranges, the fitting error from our method is higher but up-
per bounded by 0.035 pixels. Fig. 11(bottom) shows a pair
of distorted and corresponding undistorted image using our
method and known approximate depth of 70− 100 mm.

8. Summary
In summary, Hecht [6] has shown that for thin lenses,

the location of aperture stop dictates the amount by which
an ideal single image ray distorts. But in a real image,
due to thick lens, we observe that different image rays get
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Figure 11. (top)Depth dependent undistortion (best viewed in

color). (middle)Straight line fitting error using proposed (assum-

ing different depths) vs traditional [7] undistortion. (bottom) Dis-

torted image (left) is undistorted (right) using proposed method

and assuming a depth of 75 mm.

distorted by different amounts. This would imply multi-
ple apertures stop locations dictating the distortion of each
image ray. This, we know is physically impossible as aper-
ture stop is fixed in an imaging system. But, now if we
assume that thick lenses follow pupil-centric image forma-
tion, then the location of entrance pupil, which is the image
of aperture stop, dictates the amount of distortion. And, it
has been shown in fish-eye literature [5], that the entrance
pupil location can vary as a function of incidence image
ray angle and is not fixed. This allows us to optically ex-
plain the occurrence of varying amounts of radial distortion
due to varying entrance pupil location. We then propose a
new calibration model considers pupil-centric imaging with
moving entrance pupil and a non-frontal sensor. The mov-
ing entrance pupil models radial distortion and non-frontal
sensor models decentering distortion.
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