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ABSTRACT
We propose a new motion-based background removal tech-
nique which along with panoramic mosaicing forms the core
of a vision system we have developed for analyzing the load-
ing efficiency of intermodal freight trains. This analysis is
critical for estimating the aerodynamic drag caused by air
gaps present between loads in freight trains. The novelty of
our background removal technique lies in using conventional
motion estimates to design a cost function which can handle
challenging texture-less background regions, e.g. clear blue
sky. Supplemented with domain knowledge, we have built a
system which has outperformed some recent background re-
moval methods applied to our problem. We also build an or-
thographic mosaic of the freight train allowing identification
of load types and gap lengths between them. The complete
system has been installed near Sibley, Missouri, US and pro-
cesses about 20-30 (5-10 GB/train video data depending on
train length) trains per day with high accuracy.

Index Terms— background removal, panoramic mosaicing,
intermodal freight train, wayside inspection

1. INTRODUCTION

Intermodal (IM) freight trains are the most common and eco-
nomical mode of transporting goods across long distances in
the North American Freight Railroads network. These trains
are composed of different kinds of loads mounted and placed
securely on rail cars. They operate at speeds of 75− 80 miles
per hour (mph). At such high speeds, the air drag between the
gaps of loads creates considerable amount of air resistance re-
sulting in increased fuel consumption and operating costs. It
was shown in [1] that an analysis of loading efficiency and
gaps in an IM freight train can help railroad companies eval-
uate their loading techniques at IM facilities and save fuel
costs.
A machine vision system which can compute length of all
gaps present in an IM freight train by analyzing a video of the
train was proposed in [2, 3]. The background (BG) in such
videos consists of trees, sky etc visible through the gaps and
above the train (Fig. 1(a)). The foreground (FG) consists of
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Fig. 1. (a) Consecutive image frames of an intermodal train
video with moving trees visible in the background. (b) Back-
ground removed using our technique. (c) Orthographic mo-
saic of the train.

the fast moving train (Fig. 1(b)). An accurate BG subtraction
in these videos allows us to identify gaps and boundaries of
loads on the train. In the current setting of IM train videos,
the problem of BG subtraction is made challenging due to the
following constraints and requirements:
Accuracy: FG needs to be detected accurately for correct gap
estimation between successive loads.
Image distortion: Radial distortion and perspective projec-
tion cause similar scene points to image differently in consec-
utive frames of the video. This change in shape of FG objects
is more prevalent when the object is close to the camera, e.g.
loads in IM train videos.
Illumination variations: Long term and short term changes
in weather conditions and sunlight direction can modify the
captured intensity of FG and BG in a single video.
Camouflage: The FG and the BG can be of similar color
making it difficult to distinguish them.
Computational Speed: Since the goal is to develop a com-
puter vision application for real world use, the computational
speed of BG subtraction is critical. Typically 30-40 trains
need to be captured and processed per day, where each train
is captured at 30 fps and requires approximately 5−10 GB of



storage. Thus the BG removal has to be fast while also being
accurate.
Image noise: Photon noise and sensor noise are inherent in
acquired videos as the aperture is kept open for short periods
to avoid motion blur due to fast moving trains.
In this paper, we focus on developing a BG subtraction
method which can handle aforementioned issues. Tradi-
tionally intensity modeling [4, 5, 6] have been used for BG
subtraction. We employ a motion estimation based technique
for BG subtraction as they can handle persistent dynamic
nature of BG and FG [7] e.g. train in our videos. But mo-
tion estimation is known to fail at texture-less regions [8] e.g
BG consisting of clear sky. Thus, we need to define a new
cost function which can handle such situations. In addition,
we also show a technique to create panoramic mosaic of the
complete BG removed train. Our contributions are:
1. Designing a motion based cost function (Sec. 3) which is
robust than naive motion estimates to distinguish static BG
from dynamic FG. Specifically, it can handle texture-less re-
gions which are known to be challenging for motion esti-
mation [8]. This simple method has just a single parame-
ter τ (Sec. 3.2) which needs to be set manually as compared
to other sophisticated methods which typically have multiple
parameters. The upside of this is that we can handle many
videos with varying illumination conditions while still obtain-
ing accurate BG subtraction results (Sec. 5).
2. Generating an orthographic panoramic mosaic (Sec. 4) of
the train using motion estimates and BG removed images.
This is useful for gap detection, visualization and classifica-
tion of loads on the train [2].

2. PREVIOUS WORK

Background subtraction is a popular and well studied problem
in computer vision. We present the prior work with respect to
generic BG subtraction and domain dependent BG removal
pertaining to IM freight train analysis.
Generic BG subtraction: Many techniques have been devel-
oped for generic BG subtraction [9, 10]. The most common
technique is to model pixel intensities as a time series and fit
a dynamic unimodal or multi modal Gaussian distribution to
them [11, 4, 12]. Elgammal [13] proposed a non-parametric
modeling of BG distribution based on kernel-density estima-
tion. All of these techniques appear to fail and become param-
eter sensitive if the FG and BG are similar in intensity. This
affects the applicability of these techniques on videos cap-
tured under wide range of illumination conditions. The BG
subtraction problem can also be modeled as FG extraction by
employing motion based features to distinguish fast moving
FG and static/quasi-static BG [7, 14].
Intermodal BG subtraction: For IM freight train analysis,
Kumar [2] did BG subtraction using simple edge detection
techniques. But this technique required appropriate values
for a number of parameters making it unsuitable for handling

wide range of videos. This was followed by a statistical learn-
ing based approach in [3], which employed domain knowl-
edge to learn background removal parameters but still the sen-
sitivity of this algorithm to its parameters made it difficult
to generalize to different background and illumination condi-
tions throughout an year.

3. MOTION BASED BACKGROUND SUBTRACTION

In this section, we describe a hypothesis and validation based
technique for BG removal using motion based features for IM
freight train videos. We define this feature at each pixel loca-
tion in an image frame as the amount by which this pixel shifts
horizontally across consecutive frames. The vertical motion
is assumed to be negligible. This is imposed by calibrating
the pose of the camera such that there is only horizontal mo-
tion of the train. We also assume that there is at least a single
frame of complete BG visible before the train appears in the
video. This provides us with a model for the BG.
A video with N image frames is denoted as V . Thus V =
{I1, . . . , It, . . . , IN} where It is the image frame at time in-
dex t. Let us consider It from which we want to remove BG.
The hypothesis and validation steps are as follows.
Hypothesis: As the camera is static and the rails of the track
are fixed, we know the location of the moving railcar and
wheels of the train in a image of the train. Thus, we know
the location of some regions of the FG. We select two im-
age patches A and B at the known FG location in It and the
next image frame It+1 respectively. The height of patch A
and patch B are same but patch B is wider than patch A. The
patch A is then correlated with shifted versions of patch B
and the shift which results in maximum correlation is com-
puted. This shift is thus the initial estimate of the velocity of
the FG, i.e. the train. We denote this shift as v and this is our
hypothesized train velocity in pixel shifts/frame. The correla-
tion is computed by applying Normalized Cross Correlation
(NCC) [15]. This technique is invariant to linear changes in
illumination. A patch based correlation (and not a pixel) also
ensures robustness to assumed Gaussian image noise.
Validation: Given an estimate v of the train velocity in terms
of pixel shifts/frame, the next step is to validate other parts of
the image and test if they conform to this motion. The regions
which pass this validation test should correspond to FG, while
the remaining regions will correspond to BG. But such a val-
idation test will fail for texture-less (zero image gradient) BG
regions, as two patches separated by some pixel-shifts/frame
will match for any hypothesized velocity including v. To
avoid this we incorporate the idea of validation to design a
new cost function which can handle texture-less BG regions.

3.1. Generic Motion Estimation

In this section, we implement the validation step for each
pixel and compute few quantitative values, which are later
useful in designing our proposed cost function in Sec. 3.2. We



consider four image frames: It−1, It, It+1 and Ibg (Fig. 2).
Here, Ibg is the latest estimate of the BG image. The first in-
stance of this image corresponds to the image frame captured
just prior to the appearance of the train in the video. This is
done by applying the Gaussian Mixture Model (GMM) based
technique [4] to the image frames in the beginning of the
video. As the BG is assumed to be visible at the beginning
of the train video, this technique can model the BG quite effi-
ciently and detect the train as a FG object as soon as it appears
in the first image frame.
Now, lets consider a pixel p with coordinates (x, y) in It
(Fig. 2). Its velocity is unknown to us. If p belonged to FG
it should be observable at location (x− v, y) in It−1 and and
at location (x + v, y) in It+1. This is illustrated in Fig. 2 by
the pixel surrounded by the dashed square window. We as-
sume that a local patch around p also moves with velocity v
and select square patchesWt, Wt−1, Wt+1 andWbg centered
at location (x, y), (x − v, y), (x + v, y) and (x, y) in image
frames It, It−1, It+1 and Ibg respectively.
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Fig. 2. Validating the hypothesized velocity v at two image
patches: red (dashed boundary) belonging to FG and orange
(solid boundary) belonging to BG.

Given Wt−1,Wt,Wt+1 and Wbg, we compute the NCC [15]
values among these image patches as shown in Eq. 1,2,3. The
NCC values lie between −1 and 1, where high value indi-
cates matching candidate patches, while smaller values indi-
cate unmatched patches. It can be observed that Eq. 1 and
Eq. 2 encode the validation method (Sec. 3) as they check for
the correctness of hypothesized velocity v using NCCcp and
NCCcn. If they are close to 1, then Wt is a FG image patch.
We denote these equations as validation equations. But, such
a criteria alone will not detect texture-less BG correctly as
shown in Sec. 3.2. The inclusion of NCCcbg in the validation
analysis will be critical to solve this problem. This forms the
basis of our proposed cost function Cp in Eq. 4.

NCCcp(x, y) = NCC[Wt(x, y),Wt−1(x− v, y)] (1)
NCCcn(x, y) = NCC[Wt(x, y),Wt+1(x+ v, y)] (2)
NCCcbg(x, y) = NCC[Wt(x, y),Wbg(x, y)] (3)

Before going further, we note that due to image distortion and
perspective projection different parts of the train move with
slightly perturbed values of v. Thus, we increase the set of
hypothesized velocities to v′ = [v−δ, v+δ] and then compute
Eq. 1-3 for each v′. We select the candidate with maximum
value. We empirically set δ = 3.
3.2. Proposed Cost Function

The problem with using simple validation based techniques
(Sec. 3) and corresponding equations (Eq. 1,2) to classify
Wt(x, y) as FG/BG can be explained as:
Case 1. If Wt(x, y) ∈ FG: NCCcp ≈ 1 and NCCcn ≈ 1 as
we cross-correlate similar patches.
Case 2. If Wt(x, y) ∈ BG: If BG is textured, then NCCcp ≈
−1 and NCCcn ≈ −1, but if BG is texture-less then
NCCcp ≈ 1 and NCCcn ≈ 1 as the BG patches at (x, y),(x−
v, y) and (x+v, y) are similar. This observation satisfies Case
1 above and classifies Wt(x, y) as FG.
Case 3. If Wt(x, y) ∈ FG+BG: If pixel p is located at the
FG and BG boundary, then Wt(x, y) will include both FG
and BG regions. It is known that motion estimation in such
regions is challenging [8]. In our case, we post-process these
regions after our BG subtraction to get refined FG boundaries.

(a) (c)(b)

Fig. 3. (a) Input image. (b) FG cost Cp. (c) Extracted FG.
Based on these observations, we propose the following cost
function using the NCC information available in Eq. (1,2,3):

Cp = [NCCcp +NCCcn − 2 ∗NCCcbg]/4 (4)

It can be observed that ifWt(x, y) ∈ FG, we have Cp(x, y) ≈
1 and if Wt(x, y) ∈ BG, then Cp(x, y) ≤ 0 for textured
as well as texture-less regions. The application of this cost
function is demonstrated in Fig. 3 where BG needs to be sub-
tracted in a block (yellow) at the center of the image. The BG
consists of both textured (trees) as well as texture-less (blue
sky, clouds) regions. The computed Cp at all pixel locations
inside the block is shown in Fig. 3(b). As can be seen most of
the BG have Cp ≤ 0 (see color bar). To extract the FG inside
the block, a threshold τ is set and each column of the cost Cp

is compared to find the index where the threshold is reached.
This gives the top edge of the container. From earlier analysis
of Cp, ideally τ = 0 should be able to differentiate BG and
FG. In practice, we found that τ = 0.2 gives better perfor-
mance. This is because due to image noise there are no ideal
texture-less regions and a slightly higher value of τ is prefer-
able. Once the top boundary of the container is found, all the
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Fig. 4. (a) BG subtraction mask on different illumination conditions. The BG mask in proposed technique is missing at the
boundaries as those regions were either not present or are lost in previous and next image frames respectively. (b) Orthographi-
cally projected panoramic mosaics. They can be concatenated from left to right to obtain the complete mosaic.

pixels below it are classified as FG (Fig. 3(c)). to construct
panoramic mosaics as follows.

4. PANORAMIC MOSAIC GENERATION
Let a BG subtracted image corresponding to It be denoted as
fgt. Since we also know the pixel velocities for each pixel
in the FG, they can be averaged to obtain a global velocity
vfg of the FG. This implies that a new image patch of width
vfg will be seen in frame It+1. Thus, one can select image
patches of width vfg from the center of each BG subtracted
image (where image distortion is least) and concatenate such
patches to create an orthographic mosaic of a BG subtracted
IM train video. Such a technique guarantees that the shape
of the train is not elongated or shortened due to overlap or
underlap of image patches in the mosaic. A mosaic is useful
for visualization of the complete train and can be used for
classification of individual load types [2]. A sample mosaic
for a train is shown in Fig. 4(b).

5. RESULTS
Data acquisition: A video acquisition system is installed at
Sibley, MO, USA. A camera of focal length 8 mm is used
to capture the video of the train at 30 fps. An auto-exposure
routine is run before capturing a train and camera parameters
are adjusted for current lighting conditions. These are then
kept fixed for the entire video. The size of each image frame
is 640× 480. Each train consumes approximately 5− 10 GB
of space depending on its length.
BG subtraction: The proposed technique has been tested on
a wide variety of videos captured over a period of 12 months
under varying illumination conditions. Our results of BG sub-
traction are shown in Fig. 4 on three different kinds of videos.
The results are compared with three state of the art methods:
GMM [4] (our implementation), SOBS [5] and VIBE [6] (au-
thor’s implementation). We use all the implementation with

default values and keep them same for all the experiments.
Fig. 4(a) top row shows the results for a video with clear blue
sky, where all the methods perform well. Although, the FG
is classified as BG inside the containers as the texture of trees
and container is similar. Fig. 4(a) middle row shows results
for a cloudy sky. Here also the performance of our technique
is at par with other methods. Although, the VIBE method is
not able to remove all the BG. In Fig. 4(a) bottom row, we
have a video captured during the evening when the illumina-
tion levels are really low. It can be seen that all the methods
except for our technique fail to detect the FG near the bottom
of the image (rail car and wheels).
Gap length accuracy: Fig. 4(b) shows the orthographic mo-
saic generated from BG subtracted images. The boundaries
of the container have been post-processed to take care of er-
ror resulting from using patch-based technique for computing
NCC values. This mosaic can be used to compute the length
of all gaps in pixel lengths. We manually computed the accu-
racy of BG subtraction, by visually inspecting 22, 000 gaps in
such mosaics and comparing the FG boundary from the video
and the one computed in the mosaic. After defining an accept-
able error threshold of ±5 pixels, we computed the accuracy
of BG subtraction to be 90.90%.
Computational speed: On a 2.67GHz, Intel Core i7 CPU
with 64-bit windows, the BG subtraction and mosaic genera-
tion is done at the rate of 16.2 fps while the video acquisition
rate is 30 fps.

6. CONCLUSION
This paper proposes a new cost function which can handle
texture-less BG regions, while applying motion-based BG
subtraction. It has been implemented as part of a machine
vision system for analyzing gap lengths in IM freight trains.
The system has been functional at an outdoor location.
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