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Abstract

Given a stack of registered images acquired using a
range of focus settings (focal stack images), we propose a
new focus measure to identify the most focused image. Al-
though, most of the paper is concerned with the new focus
measure, for evaluation purposes, we will present it in the
context of an application to generating omnifocus images.
An omnifocus image is the composite image in which each
pixel is selected form the frame in the stack in which it ap-
pears to be in best focus. Conventional focus measures usu-
ally maximize some measure of image gradient in a window.
They tend to fail when one of the edges of the window lies
near the boundary of an intensity edge, or the pixel is near
other complex edge patterns. This leads to the misidentifi-
cation of the focused frame and formation of artifacts in om-
nifocused image. Our proposed measure does not attempt
to identify the focused frame by calculating the degree of
defocus, like the gradient based methods. Rather, it hypoth-
esizes that a specific frame is in focus and then validates or
rejects this hypothesis by recreating the defocused frames
in the vicinity, and comparing them with the observed de-
focused frames. This forward generative process leads to
correct focus frame selection in regions where typical mea-
sures fail. This is because the conventional measures try to
identify the focused frame from its distorted version which
is the result of a complex convolution process. This involves
a backward estimation for a many-to-one transformation.
On the other hand, the generation of defocused frames from
a hypothesized focused frame is more accurate since it in-
volves applying an operator in the forward direction. We
analytically show that under ideal imaging conditions, the
proposed focus measure is unimodal in nature. This makes
the search for the best focused image unambiguous. We
evaluate our focus measure by generating omnifocus im-
ages from real focal stack images, and show that it performs
better than all the existing focus measures.

1. Introduction

Conventional cameras have limited Depth of Field
(DoF), i.e. at a time they can focus only on a fixed range

of depths depending on the camera setting used for image
capture. Due to this, scene depths outside the DoF limits
are imaged in defocus and much of the high frequency de-
tails pertaining to edges and corners of the objects at these
depths is lost. This could be critical for various low-level
vision algorithms relying on pixel level image information
e.g. segmentation. Additionally, partially focused images
are not visually pleasing. Thus, capturing a scene with ex-
tended DoF and generating an omnifocus (omni=all) image
of the scene has been a popular research area in computer
vision [15, 18, 14, 23] and optics [8]. With the recent af-
fordability of DSLR cameras and smart phones fitted with
better cameras, there has been a renewed interest towards
omnifocus imaging [17, 6, 7] and related areas of refocus-
ing [19, 25], optimal number of images to capture subject
to reduced noise and defocus [11] and exposure [10] for ex-
tended DoF capture etc. In this paper, we focus on the prob-
lem of omnifocus imaging using focal stack images [15, 25]
which use a focus measure [22, 18, 23] metric to quantify
the amount by which an image pixel is in focus. This met-
ric is then used to predict the best focused pixel across the
focal stack for each pixel location. In our paper, we ana-
lyze a small but critical drawback in the design of existing
focus measure techniques which can lead to artifacts near
intensity edges (not depth edges) located on locally planar
surface. We thereafter propose a new focus measure to han-
dle this problem and show results on real data. A detailed
review of existing omnifocus imaging techniques including
the ones employing focus measure criteria is presented next.

2. Previous Work

Most of the previous work in omnifocus imaging can be
broadly divided into two categories:

(A)Computational Cameras/Single Image: The camera
optics is modified to acquire an image with depth invariant
blur and a single deconvolution is used to obtain omnifocus
image [8, 7]. Levin [16] capture a single image using coded
aperture and use calibrated blur kernels to simultaneously
obtain depth and an omnifocus image.

(B)Conventional Cameras/Multiple Images: In this tech-



nique, a set of images is first captured by moving the sensor
plane along the optical axis, thereby focusing on different
depths in each captured image. This set of images is re-
ferred to as focal stack images [4] (Figure 1). To obtain the
image in which a given object at a certain depth is best fo-
cused a focus measure is computed across the focal stack
images [13, 20, 15, 22, 18, 1, 23, 14]. This measure gives
a quantitative estimate of how focused an image is in any
one of the given focal stack images (See Fig. 1). Thus, the
extrema of the focus measure corresponds to the best fo-
cused image. Once this image is known, the pixel intensity
corresponding to that object is extracted from that image
and pasted on a new image. This procedure is repeated for
pixels corresponding to all the objects being imaged and fi-
nally a omnifocus image is obtained. Hasinoff et.al. [11]
have also shown that omnifocus image obtained using fo-
cal stack usually have a higher signal-to-noise(SNR) ratio
as compared to single shot based techniques i.e. Category
A. Nagahara [17] combine focal stack images captured us-
ing a computational camera and shown that the blur kernel
of the integrated images is relatively constant over the set of
depths imaged by all the input focal stack images. Thus, a
single deconvolution of the integrated image is sufficient to
yield an omnifocus image.

Figure 1. (a-f) Focal stack images. The goal is to design a focus
measure which detects the best focused image (image (c)).

Traditional focus measures [20, 22, 18, 15] find the best
focused image frame for a given pixel across the focal stack
by maximizing the gradient present in a window around the
pixel location. But, it has been shown in Ning [3, 23] that
such methods fail to identify the best focused pixel if the
window over which the gradient is being computed lies in
the neighborhood of an intensity edge on a locally planar
surface(See Fig. 2). In such a situation, the windows lying
in focused image have less/no gradients, whereas the same
window in a blurred image contains intensity values which
have bled into it due to the defocusing of a sharp edge lying
at the border of the window. A synthetic example where
gradient maximizes for defocused windows near sharp in-
tensity edges is shown in Fig. 3. In real images this leads to
artifacts in omnifocused images near intensity boundaries.
It can be noted that although there intensity edge could be a

depth edge also, no focus measure can perform well at such
boundaries as the defocus blur kernel is a complex combina-
tion of two different blur kernels [4]. As such, the proposed
focus measure can not handle depth boundaries and regu-
larization techniques based techniques need to be applied to
handle it.

(a) (b) () (d)
Figure 2. Synthetic example (a)Focused image consisting of an
intensity edge. (b)Zoomed out small window near intensity edge
has no gradients. (c)Artificially blurred image of (a). (d)Zoomed
out patch (intensity scaled between [0 255] for better visualiza-
tion) located at the same location as in (a). This window contains
significant gradients causing errors in gradient based focus mea-
sure.

Figure 3. (a)Focused (b)Blurred with isotropic Gaussian blur of
o = 2.47. (c-d)Red indicate pixel locations where focus measures
based on(c) Variance [15], (d) Energy of Gradient [22] (ina 5 X 5
window) is higher for image (b) compared to the corresponding
location in image (a). These regions lie near intensity edges.

In order to alleviate this problem, we propose a new fo-
cus measure by modeling forward focal stack image forma-
tion (See Fig. 4), thus called as generative focus measure.
Specifically, a window is first chosen around a pixel loca-
tion in one of the focal stack images and it is assumed to
be in focus. Then, based on this assumption, the amount
of blurring which would be produced in windows at same
location but in all other frames is predicted. If the focus as-
sumption were indeed correct, then the predicted blur will
be same or close to the actually observed blur in all the fo-
cal stack images. Thus, the L? norm between the predicted
and observed blurred images is defined as the focus mea-
sure. This norm minimizes for the best focused image. This
modeling is closest to the forward modeling of depth and
omnifocus image proposed in Favaro [9] and omnifocus im-
age estimation in Hasinoff [11]. Compared to both of these
techniques, the proposed focus measure based technique is
much simpler to compute and is independent of any opti-
mization step which could be prone to local optima if not
initialized properly. We show that under noiseless imaging
and Gaussian optical blurring [12], the proposed focus mea-




sure at each pixel location is unimodal in nature (Section 5).
Thus a focused image pixel is determined uniquely at each
pixel location. Also, our technique is based on capturing
all the depths in a desired range to be in focus in at-least
a single image. This varies from [11], where this is not a
necessary requirement and the omnifocus image is an esti-
mation problem from an optimal set of focal stack images.

Section 3 describes our technique in detail. Also, we
assume that the various camera parameters, namely focal
length, F-number and the location of sensor planes used to
capture focal stack are already known by camera specifica-
tion or can be estimated via camera calibration [24].
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Figure 4. Multifocus imaging geometry. Focused(middle) and the
defocused(left,right)

3. Focus Measure Calculation

Since the proposed focus measure depends on formation
of focused and defocused images, we first discuss the focal
stack geometry in Section 3.1. The captured images have
the property that each image focuses on different depths.
Given this focal stack, Section 3.2 explains the proposed
technique for generating focus measure vector to obtain an
omnifocus image.

3.1. Focal Stack Acquisition

A focal stack is acquired by first fixing all the camera
parameters while setting the aperture to the maximum, thus
allowing for a very small DoF to be focused in each image.
The sensor plane is then sequentially moved along the opti-
cal axis in discrete amounts S; (¢ denotes time) (See Fig. 4)
measured from the center of the lens. At each .S¢, an image
is captured and stored, thus generating a set of input images.
The number of acquired images and the corresponding sen-
sor locations can be optimized [2] such that the combined
sum of the DoF of all images is closest to a input larger DoF
over which we want to compute the omnifocus image.

From Fig. 4, given a unit source of light at O, the ra-
dius of the point spread function on frames (located at
St—p, St+4) neighboring to the focus frame f (located at

S}) can be calculated as,
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where, D is the diameter of the aperture stop. The PSF can
be analytically modeled either as a Pillbox or a Gaussian
distribution. The pillbox model assumes a perfect imaging
system devoid of any noise, where the resulting light energy
due to defocusing is equally spread across the area of the
circular blob. It can be represented as h,:

Rt—b(xa y) =

L., for z?4y% < R%
— TR2° — ’
hp(l‘,y) { 0, for 332 +y2 > RQ. (1)
But, due to imaging imperfections and noise in the imag-
ing system the spread of light energy is not uniform in the
circular blob and a Gaussian distribution for the PSF seems
more practical.
1 1‘2 + y2
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where o ~ % and ¢ = v/2 [22]. Thus, given a model of im-
pulse response or PSF h = {h,, hy}, derived from known
camera parameters and an unknown omnifocus image, any
defocused image g captured by the camera can be obtained
as the following convolution:

glzy) = [ [ o — &y —mh(Enydedn  3)

By applying a forward convolution and assuming each focal
stack image as a candidate for being an omnifocused image
(locally), we derive a generative focus measure as described
below.

3.2. Generative Focus Measure

This section describes a generative focus measure for
omnifocus imaging. It is assumed that various camera pa-
rameters namely: intrinsic camera parameters, aperture di-
ameter D and the sensor plane distances S;, where ¢ varies
from 1 to IV are known. As the sensor plane shifts along the
optical axis in discrete steps, an image of the scene is cap-
tured. The complete set of N images are called focal stack
images, as they capture the scene with different amounts of
focus and defocus (described in Section 3.1).

The set of N focal stack images can be represented as
a 3D matrix M, where the index MI(x,y,k) denotes
the intensity value at a 2D location (x,y) in the k' focal
stack image. Also, let the size of each focal stack image
be X x Y. Since the focal stack images are registered,
MI(z,y,k)Vk € {1,---, N} represents the complete set
of focused and defocused intensities corresponding to the
entire scene in the 3D world. In order to find the optimal
index k* representing the best focus frame for a given scene
object, the following focus measure is applied.



e Step 1: Repeat the following for all pixel locations
(x,y),wherex € {1,...,X}andy € {1,...,Y}.

e Step 2: Select a focal stack image index k, where k €
{1,...,N}.

e Assume the pixel intensity at MI(x,y, k) is a fo-
cused intensity. If the object appearing at (z,y) was
indeed focused in frame k located at a distance of S},
from the lens, then the images formed on all other sen-
sors will be defocused in accordance with the defocus
procedure described in Section 3.1.

e Step 3: Seta = 1 and b = 1. Since sensor locations
SksSk—p and Sk4p are known, use Eq. 1 to calculate
the blur radius Ry_;, and Ry, on sensors locations
Sk—b and Sk+a~

e Step 4: Given the two radius, calculate two Gaussian
PSFs hg and hg using Eq.[2]. The choice of Gaussian
PSF over Pillbox is validated in Section 4.

e Step 5: Now, assign intensities selected from a W =
W x W sized window around the pixel location (z, y)
in the k'" focal stack image to f. Thus f is of size V.

e Step 6: Apply convolution Eq. 3 to obtain artificially
defocused images as : g, = f * hg and g, = [ * hg.

e Step 7: Go to Step 4, and vary b from 1 to (kK — 1)
to obtain (k — 1) artificially defocused images, G, =

98, g2, .., gr "] Similarly, vary a from 1 to (N — k)
to obtain (N — k) artificially defocused images, G, =
(90,925 90 "]-

e Calculate Focus measure F(x,y,k) for (z,y) being

focused in frame k as described below.

If the assumption of intensity M I (x, y, k) being focused
made in Step 3 of the algorithm was indeed correct, then the
artificially generated images G and G, will be quite simi-
lar to the originally observed intensities in a W sized win-
dow located around MI(z,y,k — b) and MI(z,y,k + a)
where asusuala € {1,...,N—k}andb e {1,...,k—1}.
This is in accordance with focal stack imaging theory de-
scribed in Section 3.1. Otherwise, if k were actually de-
focused, there will be considerable difference between the
generated and observed. Based on this intuition, we define
our focus measure F'(x,y, k) as the L? norm taken on a W'
sized window between artificially blurred set {G,, G, } and
the observations {M1(x,y,k — b), M(x,y,k + a)}. This
norm is a measure of how focused an image formed at (z, y)
is in the k" focal stack image. Thus we have,

F(x, y, k:) = Fy + F,; where 4)
Z > lgh— MI(z,y,k—i)
i=1 (w yEW

F_Z > lgh - MI(z,y.k+j))?
i=1 (z,y)eW

Thus, the focus measure function I’ is defined such that as-

suming that the PSF is correctly modeled, it should attain
minimum magnitude only for the correctly hypothesized fo-
cus frame index. After calculating the focus measure vector,
the best focused frame £* from the set of focal stack images
for a pixel location (z,y) can be easily obtained as:

k* = argmin F(x,y,k). (5)
ke{l,...,N}

Finally, the intensities in the omnifocus image are obtained
as OF (z,y) = MI(z,y,k"). This process is repeated for
all pixel locations to obtain the complete omnifocus image
OF. Due to the dependence of our focus measure on the
existence of an accurate PSF model, the next section is de-
voted towards an analysis of the effect of choice PSFs on
the proposed focus measure.

4. Analysis of Focus Measure : Pillbox or

Gaussian PSF

The Pillbox PSF model is built on the assumption that
imaging conditions are ideal, due to which the light energy
is uniformly distributed in the region enclosed by the circu-
lar defocus blob formed on some sensor plane. On the other
hand, a Gaussian PSF model captures the effects of diffrac-
tion and imaging imperfections [12, 20] on the intensity
distribution inside the circular blob. One way of analysis
each of these would be to calculate proposed focus measure
curves using them and then studying the attributes of these
curve to infer the characteristics of corresponding PSF mod-
els. We proceed by selecting a pixel location Q = (z4,y,)
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Figure 5. Plot of Focus Measure values Vs focal stack image frame
index for Pillbox(P) and Gaussian PSF(G). Since, the slope of G
is more than P, the focus measure curve corresponding to Gaus-
sian PSF finds the optimal focus frame ‘4’ more unambiguously as
compared to the one using Pillbox PSF.

from one of the focal stack image frames such that it lies
near an intensity edge. The choice is based on the fact that



focusing/defocusing effects are more prominent near inten-
sity edges. The focus measure F'(z,,y,,!) (Eq. 4) is then
evaluated at ) in each of the input focal stack images k by
first setting the PSF as h = h,, (pillbox, Eq. 1) and then
h = hg (Gaussian, Eq. 2 with ¢ = \/5) in Step 5 of the al-
gorithm mentioned in Section 3.2. Thus, two focus measure
curves are obtained. Fig. 5 shows two such sample curves,
with the magnitude of focus measure values plotted against
their corresponding focal stack frame index. Henceforth,
the Pillbox PSF based focus measure curve will be referred
to as P and Gaussian PSF based focus curve will be re-
ferred to as G. Additionally, the top of the Fig. 5 shows a
small region from the corresponding focal stack images in
which the focus measure was calculated. It is also observed
that both the focus curves attain their minimum values for
the same correctly focused image window in spite of using
different PSF models. Each of the focus measure plots are
analyzed on the basis of the following two features:

e The magnitude of the minimum of focus measure

curve attained by the best focused frame,

Fmin = F(Iqayqak*)
where k* = argmin F(z,,yq, k). (6)
k

The F,;, for each curve can be thought of as a mea-
sure of the accuracy with which a particular PSF model
models the defocusing produced by the correctly fo-
cused frame on all other images in the focal stack; the
lower the value, the better the PSF model.

e The slope of a focus measure curve given as

_ OF (x4, Yq, k)
ok

The slope captures the information of increase in the
magnitude of F(z,,y,, k), as one moves away from
the index of the correctly focused frame k*. The larger
the increase, larger is the SNR for finding £*.
Thus, an ideal PSF model for computing the focus measure
would be the one, with has lowest F},,;, and has highest
AF among all the PSF models. For our case, P has smaller
Finin, as well as smaller AF' compared to G. Since, the
goal is to obtain the index of best focused image with less
ambiguity, the criteria of highest AF is favored over the
criteria of least F,,;, for selecting appropriate PSF model.
Thus, a Gaussian PSF model corresponding to ¢ = /2
is used for obtaining the focus measure vector. Not sur-
prisingly, the proposed analysis matches previous works
of [20, 22] which have suggested the use of Gaussian PSF.

AF )

5. Unimodality of the Focus Measure

The search for best focus image frame for a given scene
point implies minimizing Eq. 5. The solution becomes rel-
atively unambiguous and accurate if the focus measure is

unimodal in nature and the minimum lies at the correct fo-
cal stack image index. In the following, we prove that the
proposed focus measure is indeed unimodal in nature under
some mild assumptions.

Based on the observability analysis of Favaro [9] which
shows that smooth regions and regions with brightness gra-
dient do not get effected by rotationally symmetric blur (in
our case Gaussian defocus blur in focal stack images), we
present the current analysis for regions in the desired omni-
focus image having sufficient textures. For smooth regions,
any of the focal stack images would suffice as they are in-
distinguishable. We first assume that the sensor planes are
shifted along the optical axis in such a manner that all the
depths in the scene are captured in focus in at-least one of
the focal stack images. Secondly, we assume that the blur
can be modeled as having a Gaussian distribution with mean
0 and some variance o2 (as in Section 3).

A Orthographic View of Multifocus Imaging
Blur )
Radius| —2 O—P_ GREEN _

Origin X

X Xk

Sensor Plane Distances x

Figure 6. The RED rays correspond to the formation of a set of
focal stack images on sensor plane located along the x-axis, with
the focused image being formed at . The BLUE rays correspond
to hypothesized set of focal stack images assuming xy, is focused
and blurring the observed image at . But, this blurring in turn
generates the GREEN set of rays, as the image at x was already
defocused.

In order to make our analysis easy, it is assumed that
sensor plane distances: S, and corresponding blur radius
formed on that sensor plane due to defocusing: R, are con-
tinuous. Although, the sensor planes are located at discrete
distances, yet unimodality of a function in continuous do-
main automatically holds for the discrete domain as well.
Next, a coordinate system is defined with respect to which
all distances would be measured. The y axis of this system
coincides with the location of the sensor plane closest to the
lens of the camera. The x axis coincides with the optical
axis as shown in Fig. 6. Lastly, it is assumed that there is
no sensor noise and the image degradation is only due to
optical blur.

Now, lets suppose that focal stack is given, such that an
object is imaged in best focus on the sensor plane located at
a distance of S, from the origin O (See Fig. 6). Since, we
assume the PSF follows a 2D Gaussian model, the amount



of degradation due to blurring is directly proportional to o2,
the variance of the Gaussian. Based on the algorithm pro-
posed in Section 3.2, we select a arbitrary sensor location
Suys Sz F Smf and assume that it is in focus. Then we cal-
culate the blurring produced on some other sensor located
at Sy, Sz, # Sz, as shown in Fig. 6. If S;, was indeed
focused, then the sensor located at Smp will be blurred by
o}, which can be given as (combining Eq. 2,

D [|Sz, — Sz, |
P k LAY 8
AW [ Sar ] ®

But, since it is already known that the sensor located at .S, P
was in focus, blurring the sensor at location S,, with UZ,
would actually produce a different blur at S, which can is

parameterized by o7, given as obtained as

|Sxk_ If|:| |:|ka arp|:|2 (9)
2\f S '

where we have utilized the dependence of ¢ on the geomet-
ric blur radius and applied the fact that convolving two 2D
Gaussians results in another 2D Gaussian, whose variance
is the sum of the variance of the two original Gaussians.

As the amount of blurring is directly proportional to vari-
ance, we use the following error measure AS;, , S, to de-
termine the difference in amount of blurring

k— f} ?
f
On partial differentiation of A(Sy, , S;,) W.r.t Sg,,

—2 2 D2
A(Sy,,S,) =0 —op = o [

OA(Szy, Sz,)

95, 52 [Sﬁk — Sup X Sz,] (10)

OA(S,, ,
For Sp, > S, %

tance of wrongly assumed frame S, increases beyond S, ,
the difference of blurring PSFs A(S,, , S, ) increases. In
other words, the focus measure defined in Eq. 4 increases as
0A(Sa,.52p)

95,
or the error increases again as Sy, moves away from the
correctly focused sensor located at S, towards origin.
Thus the focus measure increases on both sides of S, ; and

> 0, which means as the dis-

Sz, increases. Similarly, for S,, < Smf,

has a minimum at S, as o}, = o7, Thus the focus measure
is unimodal about the correctly focused sensor location .S,

6. Experiments and Results

The experimental setup consisted of a non-frontal imag-
ing camera [14] with a tilted sensor plane. The aperture was
set to wide open and the camera was rotated about the optic
center. As shown in [14], such a system allows easy acqui-
sition of focal stack images along with the fact that a wide

field of view can be imaged. The obtained images were cor-
rected for magnification by registering the images given the
known camera calibration parameters and vignetting was
removed using the technique proposed in Castano [5].

6.1. Results : Real Datasets

The accuracy of the proposed focus measure was com-
pared to five existing methods: Energy of the gradient [22],
Energy of Laplacian [22], Sum Modified Laplacian [18],
Variance in a window [22] and the gray level distribution
in a window [23]. All the focus measures were compared
using the same window size parameter of 7 X 7.

Fig. 7 shows a focus chart which has many sharp edges.
It is placed at a distance of 2ft from the optic center of the
camera and 11 focal stack images are captured. Next, var-
ious focus measures [22, 18, 23] are applied and the final
omnifocus image is obtained for each of them. A compar-
ison of the obtained results with our generative focus mea-
sure is shown in Fig. 7. The best performer among existing
methods is the energy of Laplacian [22] and the gray level
distribution based measure [23].

Focus Measure

Omnifocus Image Generative  Gradient
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Figure 7. Omnifocus image of a planar scene with comparison on
focus frame selection using generative and gradient based tech-
niques. The artifacts due to gradient methods are indicated in
zoomed out windows in black arrow.(a)energy of gradient [22].
(b)gray level distribution [23]. (c¢)SML [18]. (d)variance.
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In Fig. 8, we apply gradient based focus measure and our
proposed focus measure on a scene with non-planar objects.
The artifacts due to traditional methods is clearly visible in
the Fig. 8(middle). The computed initial depth map by just
using the focus measure is also shown in Fig. 8(right). This
depth map is refined by applying volumetric graph cuts [21]

In Fig. 9, we compare the performance of traditional
focus measures with generative focus measure for a pixel
located near an intensity edge. As hypothesized earlier,
traditional focus measures tend to fail near such loca-
tions. As can be seen in the plot, traditional focus mea-
sures [22, 18, 23] peak at the frame index 1, which corre-
sponds to a defocused frame. Whereas the proposed mea-
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Figure 8. (left) Computed omnifocus image of a textured scene (middle) Comparison of applying focus measure using generative and
gradient based technique. The artifacts due to gradient based techniques is clearly visible (yellow arrow). (right) Estimated coarse and
refined (using volumetric graph cuts) depth map of the scene (blue indicates close and red indicates far, see colorbar on left).

sure and Ning [23] correctly finds the focused image index
to be 3.
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Figure 9. Normalized focus measure around an intensity edge
using various techniques. Only the proposed technique and
Ning’s [23] technique succeed in finding the best focused frame
3 (encircled with solid lines). All focus measures were calculated
ina 7 x 7 window around a pixel

In Fig. 10, where the region for calculating focus mea-
sure contains considerable gradients, all the measures find
the best focused frame correctly.

Finally, in Fig. 11, we give a quantitative estimate of the
accuracy of our focus measure in finding the best focused
frame. A region of the scene is selected whose focus frame
index is already known. The index can be correctly pre-
dicted based on the fact object depth and the sensor plane
distances are known. Then, all the existing focus mea-
sures are applied at each pixel location in this patch and the
best focused frame index as predicted by them is obtained.
Thereafter, the absolute difference of focus measure predic-
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Figure 10. Normalized focus measure for various focus measure in

a window containing sharp intensity edge. All the measures peak
for the correct focused frame.

tion and the ground truth knowledge of focus index is calcu-
lated. The obtained differences are scaled between [0, 255]
and shown in Fig. 11. In the images shown, a 0 intensity
indicates a perfect match with the ground truth observation,
whereas any other intensity indicates false matches. As is
evident, most of the focus measures find the focus frame
index correctly at the boundary if intensity edge, but fail at
the windows which do not contain the boundary. Compared
to that, our generative measure detects all the focus frame
indexes correctly. The bottom row indicates the percent-
age of erroneous predictions by each measure. Our measure
has 3% error compared to more than 50% error in all other
measures. Computational Time: Given N focal stack im-
ages, the computational complexity of our focus measure is
O(N?) as compared to O(N) of traditional focus measures.
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Figure 11. The left most image is the region whose ground truth
focus frame index is known. The other images represent the ab-
solute difference between the focus frame index by different focus
measures and the ground truth focus frame index. The numbers in
the bottom represent the percentage of erroneous predictions. The
proposed generative focus measure has the best performance.

6.2. Discussion

Although, the method of [23] is specifically aimed at
solving the same problem as ours, yet the initial applica-
tion of that focus measure yields artifacts in smooth regions
as is shown in Fig 7(d), which is also common with other
conventional measures. This is because the focus measure
calculations at a pixel location are based on computation
of gradients within each frame, which are subject to image
noise. Thus, image noise adds randomness to selection of
the best focus frame. Thus, neighboring window patches in
smooth regions attain different focus frame indexes. Com-
pared to this, an estimate of focus measure for one frame by
using information from multiple frames, like our generative
focus measure, suppresses noise. Thus, our focus measure
is locally smooth. Consequently, the omnifocus image ob-
tained by our method are smooth in regions where there is
no texture at all. Thus, the requirement of image smoothing
methods like graph cuts [23] are not necessary in our case
for obtaining best omnifocus image.

7. Conclusion and Future Work

In this paper, we have presented a new generative fo-
cus measure and have shown its advantages above existing
focus measures via a number of analytical and empirical
ways. The generative focus measure correctly handles win-
dows near image boundaries which results in artifacts free
omnifocus image. The future work would concentrate on
making the algorithm faster and improving upon depth esti-
mation.
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