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The cells of the Voronoi tessellation are used as primitives to represent image regions. The 
tessellation is derived from a Poisson point process. The random shapes of cells make the 
representation attractive for Secure traIWIIi.SSiOn. Q 1985 Academic Press. Inc. 

1. INTRODUCTION 

The major approaches to image representation [l] in terms of its constituent 
regions may be divided into two broad categories: (1) those which specify the 
borders of the regions and (2) those which describe their interiors. Most of the 
approaches and the more interesting ones, belong to the latter category. This may be 
attributed to the increased dimensionality of information (regions, rather than 
curves) to be represented. An important subclass of these methods, called medial 
axis transforms (MAT) [l], involves representation of the regions by a set of 
maximal 2dimensional blocks, of a fixed shape. Each maximal block lies completely 
within a single region, and is not contained in any other such block. The blocks may 
have any size and may be placed anywhere in the image as determined by the 
locations of the regions. The simplest choice for the block shape is the circle as 
originally proposed by Blum [2]. Squares, or, equivalently, diamonds, may be more 
appropriate for grid images [3]. 

If the purpose of the image representation is data compression only, the choice of 
the block shape is not critical for an arbitrary image with unknown region geometry. 
However, if the image MAT must be transmitted and security is a concern along 
with compression, the choice of a fixed shape for blocks may not be ideal. A 
collection of randomly shaped blocks may provide an MAT coding for the image 
regions that is less likely to be broken. 

This paper describes an MAT that uses irregular polygonal blocks whose shapes 
and sizes are determined by a planar random process. Section 2 defines the Voronoi 
tessellation of the plane generated by a planar random point process; the cells of the 
tessellation are used as the blocks of the MAT. Section 3 discussed the derivation of 
the MAT and a scheme for secure transmission of a given piecewise uniform image. 

Experimental results on two images are also given. Section 4 describes an adaptive 
Voronoi partitioning scheme that uses variable spatial resolution to improve the 
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accuracy of the representation in the vicinity of region boundaries. Section 5 
presents concluding remarks. 

2. VORONOI TESSELLATION 

Suppose that we are given a set S of three or more points in the Euclidean plane. 
Assume that these points are not all collinear, and that no four points are cocircular. 
Consider an arbitrary pair of points P and Q. The bisector of the line joining P and 
Q is the locus of points equidistant from both P and Q and divides the plane into 
two halves. The half plane @(H,‘) is the locus of points closer to P(Q) than to 
Q(P). For any given point P a set of such half planes is obtained for various choices 
of Q. The intersection n PES ez J$ defines a polygonal region consisting of 
points closer to P than to any ‘other point. Such a region is called the Voronoi [4] 
polygon associated with the point. 

Voronoi polygons may be viewed as the result of a growth process. Assume all 
points (nuclei) simultaneously start a uniform outward growth along a circular 
frontier. The growth stops at points of contact between any two circles which then 
expand into straight line segments along which growth frontiers meet and freeze. An 
edge continues elongating until it encounters the border of a third expanding circle. 
Eventually, only the circles whose nuclei are on the convex hull of S are still 
expanding. Each of the remaining nuclei is contained in exactly one convex polygon. 
The set of complete polygons is called the Voronoi diagram of S [5]. The Voronoi 
diagram together with the incomplete polygons in the convex hull define a Voronoi 
tessellation of the entire plane. An example of Voronoi tessellation is shown in Fig. 
1; 0( N log N) algorithms to construct the Voronoi tessellation of N points are given 
by Shamos and Hoey [5] and Lee [6]. 

3. IMAGE REPRESENTATION AND SECURE TRANSMISSION 

Traditionally, for obtaining the MAT of a given image, the locations and sixes of 
the blocks are determined by the requirement that the block sizes be locally 
maximal. Thus, the image regions determine the block locations. Since our goal in 
this paper is to obtain a representation that is relatively secure for transmission, we 
choose a random set of locations to generate the Voronoi tessellation. In particular, 
we use the Poisson point process to randomly drop the nuclei of the Voronoi 

FIG. 1. Voronoi tessellation defined by a given set of points. Dotted lines show the corresponding 
Delaunay tessellation. 
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polygons. On a grid, a discrete version of the planar Poisson point process must be 
used. 

3.1. Digital Poisson Point Process 

In the Euclidean plane, a process is said to be a homogeneous Poisson point 
process of intensity X iff: 

(i) the number of points in any region of area A has a Poisson distribution 
with parameter XA, and 

(ii) the random variables corresponding to the numbers of points in disjoint 
regions are independent. 

Any finite region in the Euclidean plane corresponds to a finite number of nodes 
on an overlying grid. Whereas the actual Poisson process can drop an arbitrarily 
large number of points in such a region with positive probability, the digital Poisson 
process can drop at most as many points as there are grid nodes in the region. Each 
node is at the center of an implicit square of unit area. A node will be selected by the 
digital Poisson process whenever at least one point is dropped by the Poisson 
process in the square. From property (i) we have 

p = Pr (a given node on the grid is selected by the digital 

Poisson process of intensity X) 

= Pr (a square of unit area in the Euclidean plane contains at 

least one point dropped by a process of intensity X) 
= 1 - e-h. 

A digital Poisson point process is thus a binomial process with parameter 
p = 1 - emh, and Pr {n points fall in a region consisting of N grid nodes} 
= 

( 1 fP”U-PI . N-n To simulate a Poisson process on the grid thus amounts to 
making a binary decision at each of its nodes. 

3.2. Representation 

We will consider representing a facet image, where each region is characterized by 
a constant gray level or by a mean gray level (color). A set of points is dropped on 
the image which is then used to derive the Voronoi tessellation. Each cell is 
examined for homogeneity. If the cell lies completely inside a region (or background) 
then the region’s color is assigned to the cell nucleus. The cells that contain pixels 
from more than one type of region, i.e., the cells covering region borders, cannot be 
given a unique color. The nucleus of each such cell is assigned the color of the 
majority of the pixels in the cell. The set of nuclei along with the assigned colors 
constitute the representation of the image. 

3.2.1. Experimental Results 
Representations were derived for two 128 X 128 images shown in Fig. 2. The 

images were first thresholded to make the cell homogeneity test simple. The digital 
Poisson process was used to drop points over a range of intensity values. The points 
were then assigned colors as described above. Each of the resulting representations 



FIG. 2. Two images used in our experiments 

was used to reconstruct the original image by coloring the cells in the tessellation 
uniformly with the color values assigned to their nuclei. Clearly, the reconstruction is 
only an approximation to the original as the border cells, which contain more than 
one color, are assigned the majority color. In fact, the edges of the reconstructed 
image come from the edges of the tessellation, i.e., the border of a given region in the 
image is approximated by a sequence of connected tessellation edges. Thus the pixels 
having minority color in a cell receive incorrect color in the reconstruction. Table 1 
lists the experimental results on the two images. A values were used in the range 0.01 
to 0.05, with increments of 0.01. Intensity values larger than 0.05 generated points 
that occasionally fell too close (on neighboring grid nodes). This caused problems in 
obtaining the tessellation. Values smaller than 0.01 gave too coarse a tessellation and 
hence were not used. Five different sets of nuclei were dropped for each A value, by 
varying the seed of the pseudo random number generator. Thus, five different. 
statistically identical representations were derived for each h value. On each repre- 
sentation the following observations were made: the total number of nuclei 
( = number of cells), the number of border cells, and the number of error pixels in 
the reconstruction. Table 1 lists these observations along with the percentage 
numbers of border cells and error pixels. The percentage number of error pixels is a 
measure of the mean squared error in the reconstructed image. Figures 3 and 4 show 
the error pixels in typical reconstructions of the images shown in Fig. 2. The 
concentration of errors near region borders and the reduction in the amount of error 
with increasing intensity can be seen. Figures 5 and 6 show the edges of the 
tessellations that constitute the region borders in the representations, i.e.. the 
tessellation edges separating the Voronoi cells of different colors. 

3.2.2. Data Compression 

To transmit an n x n image, n2 color values need to be transmitted, one for each 
pixel. If the chosen Voronoi representation uses N nuclei, then the information to be 
transmitted would consist of N colors, the seed for the pseudo-random number 
generator and the value of A. The number of bits necessary to transmit the seed and 
A can be ignored in comparison with the number of bits necessary to transmit the N 
colors. Thus a data compression of n */N is achieved as a result of using the Voronoi 
representation. The last column of Table 1 lists the compression rates achieved for 
various values of mean squared error in the reconstructions. 
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TABLE 1 
Voronoi Representation of the n X n (n = 128) Images in (a) Fig. 2a and (b) Fig. 2b 

Intensity 
(A) 

(4 

0.01 

0.02 

0.03 

0.04 

0.05 

(b) 

0.01 

0.02 

Total 
Number of 

Cells 
(W 

154 
164 
159 
155 
155 

Number of 
Border Cells 

(4,) 

54 
51 
51 
51 
51 

Number of 
Error Pixels 

1099 
1084 
1241 
1238 
1235 

211 19 921 
302 83 151 
304 85 871 
299 76 832 
334 90 783 

491 95 152 
452 99 716 
453 92 675 
488 109 715 
491 88 161 

639 101 615 
660 112 635 
631 108 711 
600 114 630 
601 114 646 

769 124 533 
771 132 561 
119 122 590 
787 121 608 
783 128 591 

145 25 815 
167 27 153 
173 31 536 
154 31 626 
169 35 688 

320 43 484 
255 36 521 
331 41 480 
304 45 431 
316 44 488 

Average 
Percentage 
Number of 

Average Error Pixels Average 
Percentage = Percentage Data 
Number of Mean Compression 

Border Cells Squared Error (= n’/p) 

33.6 7.20 104.09 

27.3 5.08 54.04 

20.3 4.42 34.41 

17.6 3.95 26.11 

16.1 3.52 21.06 

18.4 4.17 101.39 

14.1 2.95 53.68 
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TABLE 1 -Continued 

Average 
Percentage 
Number of 

Total Average Error Pixels Average 
Number of Number of Percentage = Percentage Data 

Intensity Cells Border Cells Number of Number of Mean Compression 

(A) (N) (N,,) Error Pixels Border Cells Squared Error (= n’/N) 

425 50 381 
412 56 433 

0.03 473 54 411 11.6 2.41 35.16 
472 51 426 
488 58 371 

646 69 326 
657 67 335 

0.04 638 73 325 10.5 
635 62 354 
632 66 325 

2.03 25.54 

784 65 324 
793 67 218 

0.05 789 80 311 8.8 1.92 21.11 
711 62 314 
803 70 284 

Note. Five samples of the representation were generated for each value of A. Here x denotes the 
average value of A. 

FIG. 3. Pixels having incorrect colors in the reconstruction of the image shown in Fig. 2a: (a) A = 0.01 
(b) X = 0.02; (c) X = 0.03; (d) h = 0.04; (e) X = 0.05. 
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FIG. 4. Pixels having incorrect colors in the reconstruction of the image shown in Fig. 2b: (a) 
A = 0.01; (b) X = 0.02; (c) X = 0.03; (d) X = 0.04; (e) h = 0.05. 

FIG. 5. Edges generated by the representation of the image in Fig. 2a for X = 0.05. 

FIG. 6. Edges generated by the representation of the image of Fig. 2b for X = 0.05. 
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3.2.3. Secure Transmission 

The representation obtained above is particularly suitable for secure transmission. 
The locations of the nuclei need not be transmitted explicitly. As long as both the 
sender and the receiver use the same pseudo-random number generator, only the 
seed used to derive the set of nuclei providing an acceptable representation need be 
transmitted. The coordinates of the nuclei can be generated by the receiver in the 
same way as at the transmitting end, e.g., along a raster scan. Along with the seed. 
an ordered list of colors associated with the nuclei must also be sent to complete the 
representation. 

Note that the error of representation as discussed in subset. 3.1.1 could conceiv- 
ably be reduced by manipulating the locations of the nuclei near region borders, 
such that the tessellation edges better approximate image edges. However, this would 
require including in the representation explicit information about the region shapes. 
which would make the transmission less secure. 

4. ADAPTIVE VORONOI REPRESENTATION 

The errors in the Voronoi representation result from the pixels in the vicinity of 
edges. The number of error pixels goes down with increasing intensity of the Poisson 
point process since the cell size is reduced. However, the total number N of cells 
increases, thus decreasing the data compression factor. Note that to reduce the error 
we only need to reduce the size of the border cells. The reduction in size of the 
remaining (interior) cells offers no advantage. Thus, it would be useful to confine the 
effect of increased intensity values to border areas. Once again, we do not want to 
include any information regarding border locations in the representation. 

We accomplish selective increase in intensity by first dropping points at high 
intensity throughout the image. Now, those cells which are homogeneous and are 
surrounded by homogeneous cells occur deep in the interiors of regions, and hence 
can be deleted. The image area covered by such a cell can then be occupied by its 
neighboring cells which grow larger. To identify the deleted nuclei, a special marker 
is transmitted as the color of the nucleus. At the receiver, such nuclei are deleted 
from those generated by the random number generator, before the Voronoi tessella- 
tion is obtained, Note that the number of bits assigned to the marker can be 
minimal, perhaps one. Thus the deletion of the large number of interior cells results 
in direct savings in the total number of transmitted bits, without reducing the spatial 
resolution in the border areas. The reduction in the required data rate is propor- 
tional to the gray level resolution, i.e., the number of bits used to represent color. Let 
N, denote the number of the deleted, interior cells, and let B denote the number of 
color bits per pixel. Then, to transmit an interior (noninterior) nucleus requires 1 
(B + 1) bits. Thus, the total number of bits required to transmit the n X n image is 
N, + (N - Ni)( B + l), giving a data compression rate of 

n2B n2B 
N, +(N - Ni)(B + 1) = (N - N,)B + N’ 

Thus, there is improvement in data compression over the nonadaptive case whenever 
N, B > N. This will often be the case for blocky images as there would be a large 
number of interior cells. If (N - Ni)B +z N then the data compression rate is 
n *B/N. Table 2 lists for the adaptive representation, the number of noninterior cells 



294 IMAGE REPRESENTATION 

TABLE 2 
Averages of Experimental Results for the Adaptive Representation of the Images in (a) Fig. 2a 

and (b) Fig. 2b 

Intensity 

Average 
Total 

Number of 
Cells, 
From 

Table 1 

Average 
Number of 
Noninterior 

Cells Average Percentage 

Average 
Data 

Compression 

(W (N-IV,) Number of Error Pixels 

(4 0.01 157.40 125.60 7.20 107.90 
0.02 303.20 275.60 5.08 50.23 
0.03 476.20 416.20 4.50 33.06 
0.04 627.40 529.40 4.02 25.84 
0.05 777.80 663.40 3.58 20.65 

(b) 0.01 161.60 96.80 4.17 132.41 
0.02 305.20 183.00 2.95 70.05 
0.03 466.00 247.20 2.52 50.43 
0.04 641.60 334.80 2.07 37.09 
0.05 776.00 388.20 1.95 31.65 

Note. Here 7 denotes the average value of A. 

and percentage number of error pixels, and the value of the data compression rate 
for B = 6. The numbers of error pixels here should have been the same as in Table 
1. The small differences present result from the random manner in which the pixels 
along a tessellation edge separating an interior cell and a border cell are assigned to 
either of the two cells. These pixels may assume correct or incorrect color and thus 
cause a small, random change in the total number of error pixels compared to the 
nonadaptive case. The image in Fig. 2a is not sufficiently compact to benefit from 
the extra overhead involved in the adaptive representation, as can be seen from the 
average percentage numbers of border cells and the data compression rates in Tables 
la and 2a, respectively. For Fig. 2b, on the other hand, the adaptive representation 
provides higher compression rates for the same mean squared errors. 

5. CONCLUDING REMARKS 

We have described a method of image representation based on the Voronoi 
tessellation of the image defined by a randomly distributed set of points. The 
representation is particularly useful for secure transmission of images. The Voronoi 
polygons are used as uniformly colored, randomly shaped blocks which fit together 
as in a jigsaw puzzle, to provide a mosaic approximation to the given piecewise 
constant image. This scheme resembles the MAT representation in that it uses 
certain primitive shapes to approximate the image. The nuclei and thus the corre- 
sponding cells can fall anywhere in the image. Unlike the classical MAT, the 
locations of the individual cells cannot be tuned to minimize the representation 
error. The error can be reduced by increasing the density of points, and for a given 
density, by trying different sets of statistically similar point patterns and selecting 
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one that gives the minimum error. The lack of freedom to control individual point 
locations is the price paid for achieving the security in transmission. The data 
compression achieved by the representation is further improved by marking for 
deletion those cells that are deep in the interior of a region. Such an adaptive 
representation achieves high spatial resolution in the border areas, where it is 
necessary, and coarse resolution in the interiors. The experimental results given in 
the paper used binary images extracted from gray level images by thresholding. 
However, gray level images can be processed directly by carrying out neighborhood 
cell homogeneity tests in the manner described in [3]. 
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