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Abstract. We consider the problem of estimating the 3D shape and reflectance properties of an object made of
a single material from a set of calibrated views. To model the reflectance, we propose to use the View Indepen-
dent Reflectance Map (VIRM), which is a representation of the joint effect of the diffuse+specular Bidirectional
Reflectance Distribution Function (BRDF) and the environment illumination. The object shape is parameterized
using a triangular mesh. We pose the estimation problem as minimizing the cost of matching input images, and the
images synthesized using the shape and VIRM estimates. We show that by enforcing a constant value of VIRM
as a global constraint, we can minimize the cost function by iterating between the VIRM and shape estimation.
Experimental results on both synthetic and real objects show that our algorithm can recover both the 3D shape
and the diffuse/specular reflectance information. Our algorithm does not require the light sources to be known or
calibrated. The estimated VIRM can be used to predict the appearances of objects with the same material from
novel viewpoints and under transformed illumination.
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1. Introduction

This paper is concerned with recovering the geomet-
ric and photometric information from images of a 3D
object acquired from multiple viewpoints. Many dif-
ferent methods have been proposed in the literature to
solve this problem. Stereo methods, which involve a
small number of views, usually employ a single depth
image from the viewpoint of one of the cameras to
represent the geometric information. While more re-
cently, full 3D models such as deformable meshes
(Samaras and Metaxas, 2003), volumetric (Kutulakos
and Seitz, 2000) or implicit representations (Faugeras
and Keriven, 1998) have been employed to incorpo-
rate more complicated visibility relations from a large
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number of viewpoints. These representations help to
meaningfully combine the information present in mul-
tiple views. In many of these algorithms, objects are
assumed to have Lambertian reflectance, i.e. their ap-
pearances do not change in different viewing direc-
tions. A simple consistency function can be defined
whose maximization yields a 3D model that is most
consistent with all the input views. However, many real
world scenes do not obey the lambertian law and spec-
ular reflections in such cases cause severe problems for
shape reconstruction. In addition, the non-lambertian
reflectance of the surface needs to be properly modeled
in order to fully reconstruct the object’s appearance in
different views.

To be robust to objects with non-lambertian re-
flectance, some methods remove the image areas with
specularities as outliers during the reconstruction (Lin
et al., 2002; Bhat and Nayar, 1998). This may be ac-
ceptable only when the specularities are sparse. Zickler
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et al. (2002) use the Helmholtz reciprocal property for
stereo matching, which holds even in specular areas.
This requires a careful control of the illuminant and
camera positions. Recently, Jin et al. (2003) propose
a rank constraint on radiance tensor to handle more
general non-lambertian reflectance. This constraint is
incorporated in an energy minimization framework to
solve for the 3D shape. Their method does not require
the control of illumination and does not assume the
sparseness of specularity. However, it requires every
scene point to be visible in a substantial number of
cameras. In addition, the estimates obtained by these
image correspondence based algorithms are confined
to individual pixels and cannot recover fine details of
the shape, e.g., those encoded by shading.

Through explicit modeling of the photometric
variation of the object surface, more scene details can
be recovered from the captured images. Given the
object shape, surface reflectance properties as well
as the illumination can be estimated (Yu et al., 1999;
Ramamoorthi and Hanrahan, 2001). A more difficult
problem, however, is to obtain the object shape. Shape
from shading or photometric stereo methods attempt
to recover surface details by imposing constraints
directly on the surface normal. However, shape
from shading algorithms are usually developed for
constrained environments, such as those involving
single material objects, lambertian reflectance, a
single viewpoint, known or very simple light source,
orthographic projection, and absence of shadows or
inter-reflections. Zhang et al. (1999) present a good
survey of different shape from shading methods. Fua
and Leclerc (1995) and Samaras et al. (2000) incor-
porate shape from shading method into multiple-view
reconstruction. They consider lambertian objects and
recover the piecewise constant albedo map as well
as the surface shape. Jin et al. (2004) also propose a
more complex illumination model, and use a level set
framework to recover the surface shape of a lambertian
object from the multi-view shading information
while simultaneously estimating the illumination.
For lambertian objects, complex lighting can be well
modeled locally using a single point light source. This,
however, is not the case for specular objects.

By controlling illumination, photometric stereo can
recover object shape and surface reflectance while
avoiding the difficulty of finding correspondences be-
tween images. Lee and Kuo (1997) use the Torrance-
Sparrow BRDF model and a triangular mesh represen-
tation of the surface shape to recover both the BRDF

and surface shape from images taken under known
illumination settings. Georghiades (2003) also uses
Torrance-Sparrow BRDF model and extracts the shape
and spatially varying BRDF using uncalibrated photo-
metric stereo. Hertzmann and Seitz (2003) and Treuille
et al. (2004) use several example spheres imaged to-
gether with the object to recover the object shape. Each
example sphere serves to extract the reflectance map
for a specific material. Their approach works only in a
single view and can deal with multiple non-lambertian
materials as well as unknown lighting; it however re-
quires placement of calibration objects in the scene and
change of lighting.

The approach we present in this paper is an extension
of shape from shading methods to handle specular sur-
face reflectance, uncontrolled illumination, and mul-
tiple views. We focus on single-material objects, and
assume that light sources are distant. We also assume
there is no shadow or inter-reflection effects on the ob-
ject. Our approach requires neither the knowledge of
light sources nor the light calibration tools. In fact, the
object itself serves as the calibration source. By im-
posing a global lighting constraint, we can recover the
3D shape of the object, as well as a View-Independent
Reflectance Map (VIRM), which is a representation of
the joint effect of the surface reflectance and environ-
ment illumination. This information allows us to pre-
dict the appearance of the object not only from novel
viewpoints, but also under transformed illumination.

This paper is organized as follows: Section 2 for-
mulates the problem in an energy minimization frame-
work. Section 3 introduces the View Independent Re-
flectance Map, which is used as the reflection model for
our approach. Section 4 presents details of our estima-
tion algorithms. Experimental results on both synthetic
and real data are given in Section 5. Section 6 presents
conclusions and future work.

2. Problem Formulation

Our objective is to reconstruct the 3D shape and sur-
face reflectance of an object from multiple images taken
from different viewpoints, given the intrinsic and ex-
trinsic camera parameters of each image and that the
object is made of a single material. This problem can be
formulated in an energy minimization framework. The
energy function E can be written as a weighted sum of
the image/data term Eimage and the regularization term
Ereg , as in the following equation:

E = Eimage + wreg ∗ Ereg (1)
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We represent the object shape as a triangular mesh,
which consists of a set of vertices and their connectivi-
ties. Given the connectivity, the mesh can be deformed
by changing its vertex positions, which we will denote
as the shape parameter vector V . The BRDF of the sur-
face is denoted by ρ(θi , φi , θo, φo), where (θi , φi ) and
(θo, φo) are the pairs of the polar and azimuthal an-
gles of the distant light direction and viewing direction
in the local surface coordinates, respectively. Consider
a patch P around the point of interest, small enough
so that it can be well approximated by a flat surface
triangle. The brightness of the patch R(θo, φo), when
viewed from a certain direction, can be computed by
multiplying the BRDF with the foreshortened lighting
distribution L(θi , φi ) and integrating the product over
the upper hemisphere of the patch:

R(θo, φo) =
∫ π

2

0

∫ 2π

0
ρ(θi , φi , θo, φo)L(θi , φi )

× cos θi sin θi dθi dφi (2)

Given the shape V , BRDF model ρ and lighting L ,
we can synthesize the images of the object using (2) as
the following. Let π j : R3 → R2 denote the perspec-
tive projection that maps the 3D world coordinates onto
a 2D image plane corresponding to the jth image I ( j).
For each triangle P visible in I ( j), let O j (I ( j)) = π j (P)
be the projection of P onto I ( j) (Fig. 1). We can com-
pute the brightness of O j in the synthesized image us-
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Figure 1. Synthesizing the appearance of the object from different
viewpoints by projecting the triangles on the object mesh to different
image planes. Pi is a triangle patch on the object mesh, Oi1 and Oi2

are two projected triangles of Pi to the image plane I 1 and I 2.

ing (2). Our image energy term can then be written as
the difference between the input images and the images
synthesized using the model parameters, V , ρ and L:

Eimage(V, ρ, L)

=
∑

j

D
(
I ( j)
syn, I ( j)

input

)
=

∑
j

∑
patch P visible in j

{
d
[
O j

(
I ( j)
syn

)
,O j

(
I ( j)
input

)]}
2 (3)

where D(I ( j)
syn, I ( j)

input ) is the difference between a syn-
thesized image and the input image, d(·, ·) is the anal-
ogous difference between image patches, and O j (I ( j))
is the set of pixels covered by patch O j in image I ( j).
We choose the following d(·, ·):

d
[
O j

(
I ( j)
syn

)
, O j

(
I ( j)
input

)]
= {R j (P) − mean

[
O j

(
I ( j)
input

)]} · n(O j ) (4)

where R j (P) is the brightness of P in I ( j) computed
from (2), mean[·] is the average pixel value in the patch,
and n(·) is the number of pixels in the patch.

The regularization term Ereg is used to impose a
general smoothness constraint on the object shape to
reduce the effect of noise. The actual choice of the
smoothness regularization will be discussed later in
Section 4. Our goal now is to find the optimal parame-
ters that minimize the total energy:

〈V, ρ, L〉 = arg min
V,ρ,L

[Eimage(V, ρ, L)

+ wreg ∗ Ereg(V )] (5)

3. View Independent Reflectance Map

Reflectance map is used in shape from shading meth-
ods to represent the mapping between surface normal
and the brightness value viewed from a certain direc-
tion. It avoids the separate estimation of the lighting
and BRDF, yet contains enough information to recover
shape from shaded images. For non-lambertian objects,
however, the reflectance map is viewpoint dependent.
If multiple reflectance maps are used for different view-
points, they will inevitably increase the redundancy and
the risk of over-fitting. On the other hand, Ramamoorthi
and Hanrahan (2001) point out that given the surface
shape, there is an inherent ambiguity when one tries
to fully recover the BRDF ρ and lighting L . A blurred
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light source and a sharp BRDF lead to the same re-
sults as those from a sharp light source and a low-pass
BRDF. A good intermediate representation that avoids
the above two problems is the reflection map (Miller
and Hoffman, 1984). Although the reflection map is
originally proposed to render specular objects from ar-
bitrary viewpoints given the object geometry and illu-
mination, we show in this paper that the same repre-
sentation (with some modifications) can also be used to
assist the estimation of the object geometry. To distin-
guish this representation from the reflectance map com-
monly used in previous shape from shading research,
we refer to it as the View-Independent Reflectance Map
(VIRM), which emphasizes that it is a viewpoint inde-
pendent representation of the non-lambertian surface
reflection.

3.1. The VIRM Model

According to Miller and Hoffman (1984), the surface
reflection of a specular object is a sum of different
components represented as spherical reflection maps.
For an object with both diffuse and specular reflectance,
the brightness of a surface patch with normal �n and
viewing direction �e can then be expressed as:

R(�n, �e) = Rd (�n) + Rs(�r ), (6)

where Rd (�n) is the diffuse component—a 2D spheri-
cal function of the surface normal. Rs(�r ) is the spec-
ular component. It is a 2D spherical function of the
reflected viewing direction �r (Fig. 2). Here we drop the
linear weights on the diffuse and specular components
since we consider only objects with homogeneous re-
flectance where the weights can be absorbed into Rd

and Rs .
The method proposed in Miller and Hoffman (1984)

requries the two spherical functions Rd and Rs to be the
filtered versions of the same environment illumination.

Figure 2. The View Independent Reflectance Map model. The surface reflection R(�n, �e) viewed from direction �e under a fixed illumination is
modeled as the sum of two independent 2D spherical functions. Rd (�n) is the diffuse component of VIRM which only depends on the surface
normal �n. Rs (�r ) is the specular component of VIRM which depends on the reflected viewing direction �r .

This dependency between the two components will re-
quire adding nonlinear constraints and will increase the
complexity of the estimation problem. In our approach,
we treat Rd and Rs as two independent components of
the VIRM model. This assumption allows us to pose
the estimation of VIRM given the observations and the
surface geometry as a simple linear least squares prob-
lem. In this paper, we represent both Rd and Rs using
spherical harmonics (Weisstein, 2005). The spherical
harmonic bases Ylm are given by:

Nlm =
√

2l + 1

4π

(l − m)!

(l + m)!
(7)

Ylm(θ, φ) = Nlm Pm
l (cosθ )eI mφ, (8)

where Pm
l (z) is an associated Legendre polynomial,

l ≥ 0 and −l ≤ m ≤ l. Rd and Rs can be written as
two truncated series:

Rd (θ, φ) =
Nd∑

l=0

l∑
m=−l

Rlm
d Ylm(θ, φ), (9)

Rs(θ, φ) =
Ns∑

l=0

l∑
m=−l

Rlm
s Ylm(θ, φ), (10)

where Rlm
d and Rlm

s are the coefficients of the spherical
harmonic bases. Spherical harmonics representation al-
lows us to control the level-of-detail in the VIRM esti-
mation by choosing the maximal order Nd and Ns . The
number of coefficients to be estimated for an order N
approximation is (N + 1)2. Given the observed bright-
ness, estimating these coefficients is a linear problem.

3.2. The Relationship between VIRM and other
Reflectance Models

The VIRM model is an approximation to many
parametric BRDF models (e.g. Torrance-Sparrow
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Figure 3. Plot of the F(µ, �n,�l, �e)G(�n,�l, �e)/4(�e · �n) in the Torrance-Sparrow BRDF model with respect to the viewing directions (upper
hemisphere) under different illumination directions (blue � is the normal direction �n and red ∗ represents the illumination direction �l). Intensity
value is proportional to the function value. (a) Light angle cos−1(�l · �n) = π/8 (b) Light angle cos−1(�l · �n) = π/4 (c) Light angle cos−1(�l · �n) =
3π/8. For most of the upper hemishpere F(µ, �n,�l, �e)G(�n,�l, �e)/4(�e · �n) remains constant except for very large viewing angles.

model (1967), isotropic Ward model (1992) and Phong
model (1975)) proposed for objects with specular
highlights. As an example, we show the connec-
tion of VIRM to these models by simplifying the
physics based Torrance-Sparrow BRDF model. Ac-
cording to the Torrance-Sparrow model, the BRDF of
a material can be written as:

ρ(θi , φi , θo, φo)

= ρ(�n,�l, �e)

= Kd +Ks
F(µ, �n,�l, �e)G(�n,�l, �e)D(σ, �n,�l, �e)

4(�l · �n)(�e · �n)
, (11)

where �n, �l and �e are surface normal, light direction and
viewing direction vectors, respectively. F(µ, �n,�l, �e) is
the Fresnel term, related to the material’s index of re-
fraction µ, G(�n,�l, �e) is the geometric attenuation term,
and D(σ, �n,�l, �e) is the microfacet normal distribution
function. The brightness value of a patch illuminated
by a directional source L is given by

R(�n, �e, �L, ρ)

=|�L|·
[
Kd (�l · �n)+Ks

F(µ, �n,�l, �e)G(�n,�l, �e)D(σ, �n,�l, �e)

4(�e · �n)

]
,

(12)

where �L = |�L| · �l is the light vector for the directional
source.

For simplicity we assume F(µ, �n,�l, �e)G(�n,�l, �e)/
4(�e · �n) to be constant and absorb them into Ks .
This approximation is valid when the viewing an-
gle is quite different from π/2. Figure 3 shows the
F(µ, �n,�l, �e)G(�n,�l, �e)/4(�e · �n) as a function of the
viewing direction for different illumination directions
according to the Torrance-Sparrow model. We can see

that the value remains near constant over the viewing
hemisphere, except for the area where the viewing an-
gle is close to π/2.

Now let us consider the microfacet normal distribu-
tion function. A simple form of D is:

D(σ, �n,�l, �e) = 1

πσ 2
exp

(
−

(
θh

σ

)2)
, (13)

where cos θh = �n · �h, and �h is the vector half way
between �l and �e (Fig. 4) and σ is the variance of the
microfacet normals. Let us take the mirror image of
viewing direction �e with respect to the surface normal
�n and denote it as the reflection vector �r . If the light
direction �l is co-planar with the surface normal �n and
viewing direction �e, we will have:

θrl = 2θh, (14)

where θrl is the angle between the reflection vector �r
and the light direction vector �l . Substituting (14) into

n h
e

lhθ
rlθ

r

Figure 4. The angular relation between the viewing direction �e,
the surface normal �n, the reflected viewing direction �r and the mid-
vector �h. If �e, �n and �l are co-plane, then angle θrl between �r and �l is
twice of the angle θh .
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Figure 5. Comparison of the micro-facet distribution function D(σ, �n,�l, �e) and its approximation D̃(σ, θrl ) for different light directions.
Function values are plotted with respect to the viewing direction on the unit sphere. Blue � is the normal direction �n and red ∗ is the light
direction �l. (a) Light angle cos−1(�l · �n) = π/8 (b) Light angle cos−1(�l · �n) = π/4. The deviation from D increases with the increase of light
angle.

(13), and denoting it as D̃, we get:

D̃(σ, θrl) = 1

πσ 2
exp

(
−

(
θrl

2σ

)2)
(15)

Generally, D is not symmetric around �r . So strictly
speaking, D̃ 	= D when �l deviates from the plane
determined by �e and �n. However, Ramamoorthi and
Hanrahan (2001) point out that when viewing an-
gle (angle between �e and �n) is small, assuming D is
symmetric around �r is a good approximation. Under
this assumption, we can use D̃(σ, θrl) to approximate
D(σ, θh). Now the brightness value in (12) is

R(�n, �e, �L, ρ) = |�L| · Kd (�l · �n) + Ks | �L|D̃(σ, θrl) (16)

Figure 5 shows the distribution of function D(σ, θh)
and D̃(σ, θrl) with respect to the viewing vector for
different light directions. As the angle between light
vector and surface normal vector θnl becomes larger, the
bright area (where the reflected light is clearly visible)
of D(σ, θh) becomes more elliptical while for D̃(σ, θrl)
it remains circular.

If all the patches have the same material and all the
surface patches are illuminated under the same light-
ing, the diffuse term (16) depends only on the surface
normal �n, and the specular term depends only on θrl .
Furthermore, we can merge | �L| and D̃(σ, θrl) in the
specular term and view it as the result of filtering the
single directional light source with a circular symmetric
function D̃. Since the light source is fixed, the merged
term depends only on �r . Therefore (16) can be written
as:

R(�n, �e, �L, ρ) = Rd (�n) + Rs(�r ) (17)

This is exactly the VIRM representation for the joint
effect of illumination and BRDF. This approximation
is derived under single directional light source assump-
tion, but it can be extended to the case of multiple di-
rectional light sources since both distant illumination
model and the circular symmetric filtering are linear
operations. The VIRM model uses the property that
the specular part of the BRDF can be approximated by
a function that has only the reflection angle θrl as its
variable. Note this is also true for the Phong reflectance
model (Phong, 1975). Therefore, the VIRM model is
also compatible with the Phong model.

3.3. VIRM based Shape Reconstruction

VIRM serves the same role in our reconstruction al-
gorithm as the reflectance map in single view shape
from shading. If we assume that all the surface patches
of the object have the same BRDF and the lighting re-
mains constant, then the VIRM model is constant for all
the patches and viewing directions. This gives a global
constraint over all the surface patches and input views.
By using VIRM as the reflectance model, we can write
our optimization target in (5) as:

〈V, Rd , Rs〉 = arg min
V,Rd ,Rs

[Eimage(V, Rd , Rs)

+ wreg ∗ Ereg(V )] (18)

However, we should point out that when there are
local variations of lighting caused by non-distant light
sources, self-shadows or inter-reflections, VIRM will
not necessarily be constant. Also, in the process of
reducing the Torrance-Sparrow model to VIRM, we
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make the assumption that FG/(�e · �n) in (12) is constant
and D can be approximated by D̃, both of which re-
quire the viewing angle to be sufficiently different from
π/2 to keep the approximation valid.

4. Algorithm and Implementation

In this section we present the various aspects of the
algorithm we have used to implement the approach
described in Sections 2 and 3.

4.1. Overall Algorithm

Equation (18) defines a nonlinear optimization problem
with a large number of parameters to be chosen. How-
ever, it is easy to find out that the VIRM parameters are
linearly constrained. Since Ereg depends only on the
object shape, if all the shape parameters are fixed, esti-
mating the optimal VIRM is just a linear least squares
problem. Because of this, we choose to optimize the
shape and VIRM parameters separately and interleave
these optimization processes, as illustrated in Fig. 6.

The inputs to our algorithm are the object images
taken from different viewpoints and the corresponding
camera parameters. A coarse visual hull (represented
as a triangular mesh) is computed from the silhouettes
of the object and used as the initial shape for the first
VIRM optimization. During the VIRM optimization,
we fix all the vertices of the mesh and find an optimal
VIRM that minimizes the total energy in (18). During
the shape optimization, we fix the VIRM parameters

Figure 6. Flow chart of the iterative optimization algorithm for the shape and VIRM parameters.

and optimize the mesh vertex positions that minimize
the total energy. The iteration is terminated when the
average vertex position change after the shape opti-
mization is smaller than a preset threshold.

4.2. VIRM Optimization

When shape parameters are fixed, optimizing (18) to
find VIRM is equivalent to solving a set of linear equa-
tions in least squares sense. Each visible triangle patch
in a single view gives a linear equation in Rd (�n) and
Rs(�r ), which can be converted into a linear equation in
coefficients Rlm

d and Rlm
s by using Eqs. (9) and (10).

We filter out patches that have large viewing angles
(>70◦ in our experiments) to avoid poor constraints
being used in estimating VIRM. Because the number
of patches is usually greater than the number of coef-
ficients, we still obtain an over-determined system for
solving the VIRM coefficients.

4.3. Shape Optimization

We represent the object surface using a triangular mesh,
where each triangle serves the role of patch P in (4),
and the 3D positions of all the vertices in the mesh are
the shape parameters V . Shape optimization in (18) for
a fixed VIRM is a non-linear least squares problem.
We solve it using the trust region reflection newton
method implemented in Matlab (2004). The gradient
of the energy function with respect to each vertices
are computed usingfinite differencing. The visibility
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of each triangle is determined by projecting the cur-
rent mesh to input viewpoints while removing the hid-
den surfaces. Similar to the VIRM estimation, patches
that have large viewing angles (>70◦) are not used in
computing Eimage in (3). Due to the continuous shape
deformation during the optimization, the elimination
of the oblique triangles might cause the changing of
optimization target and possible divergence of the al-
gorithm. We currently do not have a theoretical proof of
stability of the optimization algorithm, but in practice,
the overall system is highly constrained and converges
in a multi-camera configuration.1

We choose the total surface area of the mesh as the
shape regularization energy:

Ereg(V ) =
∑

i

A(Fi ) (19)

where A(Fi ) is the area of the i th triangle in the mesh.
This smoothness term will favor surfaces with smaller
overall areas to reduce the effect of noise.

Since each vertex on the mesh model has three de-
grees of freedom, the number of parameters that repre-
sent the shape is three times the number of vertices. To
reduce the number of parameters, we impose a restric-
tion that each vertex can only move along the vertex
normal direction.2 In addition to reducing the number
of shape parameters, this restriction also prevents ver-
tices from clustering together during the optimization.
At each iteration, the visibilities and vertex normals are
updated according to the current estimate of the shape.

Our algorithm requires a fairly good initial shape es-
timate, since the trust region reflective newton method
only finds a local minimum. The need to solve itera-
tively the VIRM further limits the size of the attraction
region of the optimization algorithm. This is in contrast
to the method proposed in Jin et al. (2004) where a cube
shape initialization is enough. This can be explained by
both the modeling and algorithmic differences. First,
we use a more complex spherical harmonics illumina-
tion representation while Jin et al. (2004) uses an ambi-
ent and positive/negative point sources model. Second,
we consider both diffuse and specular component in-
stead of just the diffuse reflectance in Jin et al. (2004).
Third, we do not use a constant radiance background
model. Finally, the choices of different optimization
methods (level set evolution v.s. gradient based method
over the mesh) also contribute to the difference.

To ensure a close enough initialization, we choose
the visual hull computed from silhouette cone intersec-
tion as the initial shape of our algorithm.3 The mesh

topology and connectivity of the initial mesh are fixed
in the entire shape optimization process in our exper-
iments. However, if necessary, they can also be up-
dated by using re-meshing operations (e.g. converting
the mesh into a signed distance function and extracting
the zero isosurface). The visual hull is also used as an
outer bound of the shape being estimated.

4.4. Multi-scale Processing

To avoid local minima and for computational effi-
ciency, we use multi-scale processing in the optimiza-
tion. We first optimize the shape parameters using
a coarse triangular mesh and a low order spherical
harmonics for VIRM. Then we use

√
3-subdivision

scheme (Kobbelt, 2000) to subdivide the triangles to
obtain a finer mesh and also increase the maximal or-
der of spherical harmonics in the VIRM.

5. Experiments

We test our algorithm on three data sets. The first one
contains a set of synthetic images of a sphere. The
experiment on this set is meant to test the effectiveness
of the VIRM estimation algorithm. The second data
set shows a synthetic buddha statue that has a more
complex shape, containing many surface details, and
under a complex illumination setting. The third is a real
data set of a Van Gogh statue taken under uncontrolled
indoor illumination.

5.1. VIRM Validation

We first validate the VIRM model using synthetic im-
ages. A set of 24 views of a specular sphere is synthe-
sized and used as the input to the VIRM optimization
method described in Section 4.2. We assume the sphere
radius is known and want to verify if the VIRM model
can reproduce the specular reflectance of the sphere.

In VIRM optimization, we need to choose the max-
imal order of the spherical harmonics for diffuse and
specular components. The order should be high enough
to model the frequencies in the actual diffuse and spec-
ular components, and yet still low to avoid overfitting.
We made these choices based on the visual quality of
the reconstructions. We choose the maximal orders that
did not introduce extraneous high frequency variations
in the reconstructions, which is 5 for diffuse VIRM, and
7 for specular VIRM. Figure 7 shows four of the in-
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Figure 7. (a) Four of the 24 input sphere images (b) Sphere rendered using estimated VIRM (average absolute image difference over all 24
views is 0.0075 on a scale of [0, 1]) (c) Estimated diffuse (left) and specular (right) component of VIRM along a grid defined by latitude (0 −π )
and longitude (0 − 2π ).

put sphere images as well as the corresponding images
rendered using estimated VIRM. Visually, the recon-
struction matches the originals well except for some
highlight regions where image values are saturated, and
some areas where viewing angles are large. The aver-
age absolute image difference between the input and
reconstructed images over the entire set is 0.0075 on a
scale of [0, 1]. The reconstructed VIRM is plotted in
longitude-latitude format as shown in Fig. 7(c).

5.2. Buddha Data Set (Synthetic)

The Buddha data set is a synthetic data set which con-
sists of 24 views of a Buddha sculpture made from a
single shiny material. The sculpture is illuminated by
60 directional light sources from a clustered result of
the light probe data (Debevec, 2004). Some input im-
ages are shown in Fig. 8. We run our algorithm at three

different scales. The numbers of triangles at the three
scales are around 6300, 19000, and 57000. The max-
imal order of spherical harmonics for diffuse VIRM
is 3 and 7 for specular VIRM. The final reconstructed
shape is also shown in Fig. 8, along with the ground
truth shape and the initial shape.

By comparing the second row and the fourth row
in Fig. 8, we can see that overall the algorithm cor-
rectly recovers the surface features of the object. We
can find that areas inside Buddha’s arms are not well
reconstructed. These concave areas have shadows and
inter-reflections that are not modeled in VIRM. In ad-
dition, the optimization algorithm is more prone to get-
ting stuck in local minima in these areas, which results
in several wrinkles that are visible.

To visually evaluate the quality of the VIRM es-
timates, we render an synthetic sphere under differ-
ent estimated VIRMs. Figure 9(a, b) shows the sphere
rendered under the estimated VIRMs using the initial
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Figure 8. First row: 5 of the 24 input images of the Buddha data set. Second row: The ground truth 3D model rendered with a dull material to
eliminate specularities, thus making visual evaluation of shape easier. Third row: The initial 3D shape, computed as the intersection of silhouette
cones from the input images. Fourth row: The recovered 3D shape using our algorithm.

Figure 9. Sphere rendered using different VIRM estimates of the Buddha data set. (a) Estimated VIRM using the initial shape from silhouette
cone intersection. (b) Estimated VIRM using the final shape of our algorithm. (c) Estimated VIRM using the ground truth shape. (d) Ground
truth sphere image rendered under the same illumination as the buddha.
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Figure 10. Synthesized images from a novel viewpoint. (a) Range image computed from the estimated shape. (b) Range image computed from
the ground truth shape. (c) A gray scale image with estimated VIRM and shape. (d) Ground truth image not used as input.

shape from silhouette and the final shape of our al-
gorithm. With the improvement of the shape estimate,
the estimated VIRM shows more specular component.
Figure 9(c) is rendered under the VIRM estimated us-
ing the ground truth shape. The difference between (b)
and (c) is solely due to the shape estimation error. The
sphere rendered in the ground truth illumination is also
shown in (d) for comparison. We can see even with
ground truth shape, the sphere image (c) shows a con-
siderable amount of under-estimation of the specular
component comparing with (d). There are several rea-
sons for this underestimate. First, unlike the sphere
data set, the buddha data set has self-shadowing and
inter-reflection effects that are not modeled in VIRM.
Second, even without the self-shadowing and inter-
reflection, the VIRM model is still an approximation to
the actual surface reflectance. Third, the spherical har-
monic representation of VIRM introduces some trunca-
tion error. Forth, the intensity saturation of the specular
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Figure 11. The various performance measures shown for different viewpoints. (a) Average Object Image Difference (AOID), Average Sphere
Image Difference (ASID) and Ratio of Uncovered Area (RUA), value normalized to [0, 1]. (b) Average Range Image Difference (ARID, absolute
value); the object’s bounding box is about 5 × 5 × 7 and distance to camera is 15. For both (a) and (b), data points 1–24 are from input views,
and 25–27 are from novel views.

highlights causes the input to the specular VIRM esti-
mation to be smaller than the actual value.

We also synthesize the range images of the estimated
shape, and the intensity image using reconstructed
shape and VIRM. Figure 10(a, c) show these images
from a novel viewpoint, compared with the ground truth
images not used as input. To evaluate the performance
of our algorithms quantitatively, we use several mea-
sures (Fig. 11). We compute the average absolute pixel
difference between ground truth and synthesized inten-
sity images. Average Object Image Difference (AOID)
and Average Sphere Image Difference (ASID) denote
the differences for the synthesized object and sphere
images, respectively. AOID reflects the quality of both
shape and VIRM estimates, whereas ASID reflects the
quality of the VIRM estimate. Ratio of Uncovered Area
(RUA) is the percentage of the non-overlapping silhou-
ette areas between the ground truth and synthesized
objects. Pixel values in these uncovered areas are not
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Figure 12. Synthesized novel view using estimated VIRM (a), novel view with VIRM rotated by 60 degree (c), to be compared with ground
truth (b, d). (e) is another object synthesized using the same VIRM as (a).

defined in either synthesized image or ground truth
image, so we do not include them in the calculation
of image differences. Finally, Average Range Image
Difference (ARID) more directly measures the errors
in estimated shape by computing average absolute ob-
ject range difference between synthesized range images
from estimated shape and those from the ground truth.
In Fig. 11(b), high ARID values are due to views that
have self-occluding boundaries. Since the recovered
self-occluding boundaries are not fully aligned with
the actual boundaries, they cause large differences in
the range image.

We also synthesize an image from a novel viewpoint
using estimated VIRM (Fig. 12(a)) and another image
with VIRM rotated by 60 degrees (Fig. 12(c)). The im-
ages are compared with ground truth images in Fig. 12.
Another new object rendered using the extracted VIRM
is shown in Fig. 12(e).

5.3. Van Gogh Data Set (Real)

The Van Gogh data set is provided by J.-Y. Bouguet and
R. Grzeszczuk of Intel. It consists of more than 300 cal-
ibrated images of a Van Gogh statue. We selected 21
images taken from different directions. These images
are manually segmented to remove the background and
the silhouettes are used to compute the initial shape. We
segment out the base of the statue since it is made of a
different material. Five of the input images are shown
in the first row of Fig. 13. We also have the 3D shape
obtained by structured light scanning of the statue
(Fig. 13 second row).

The minimization is done at two different scales. The
numbers of triangles at the two scales arearound 10,000

and 30,000. Since the statue is made of polished metal,
which exhibits a typical metal BRDF with almost no
diffuse component, we choose a very low maximal or-
der for the diffuse component. The maximal order of
spherical harmonics for diffuse VIRM is 2, and for
specular VIRM is 7. The reconstructed shape is shown
in the fourth row of Fig. 13. Note that calibration errors
are present in the reconstruction and they affect both
the VIRM and shape estimation.

Figure 14 shows the sphere rendered under different
VIRMs estimated from the Van Gogh data set, where
(a) and (b) compare the estimated VIRMs using ini-
tial shape and the final shape of our algorithm. Figure
14(c) shows the render sphere under the VIRM esti-
mated from the structured light scanned shape. It ap-
pears to be more blurry than (b) because the scanned
shape lacks many detailed surface normal variations
than those recovered by our algorithm. We do not have
the ground truth sphere images under the original illu-
mination, but overall, the estimated VIRM has blurry
specular component due to the same reason mentioned
in Section 5.2. Nevertheless, the plot of the specular
component of VIRM still shows the distribution of the
illumination, which is composed of four light sources
in the upper hemisphere and some reflection from the
desktop in the lower hemisphere.

We again use AOID, ARID and RUA defined in Sec-
tion 5.2 to evaluate the performance of our algorithm.
However, since we do not have the ground truth lighting
data from the original data set, we cannot compute the
ASID. The synthesized gray scale image (Fig. 15(a))
and range image (Fig. 15(c)) for one novel view are
also shown. We also synthesize the Buddha statue im-
age (Fig. 15(f)) with the estimated VIRM. Performance
measures for all viewpoints are summarized in Fig. 16.



Shape and View Independent Reflectance Map from Multiple Views 135

Figure 13. First row: 5 of the 21 input images. Second row: Shape obtained by structured light scanning rendered with a dull material for
visual shape comparison. Third row: Initial shape computed from silhouettes of the input images. Fourth row: The recovered 3D shape using
our algorithm.
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Figure 14. Sphere rendered using different VIRM estimates of the Van Gogh data set. (a) Estimated VIRM using initial shape from silhouette
cone intersection. (b) Estimated VIRM using the final shape of our algorithm. (c) Estimated VIRM using the structured light scanned shape. (d)
The specular VIRM plotted in latitude-longitude format, showing the four light sources in the environment (left part) and some reflections of
the white desktop (right part). The intensity of (d) is scaled for better visualization.

Figure 15. (a) Synthesized gray scale image with estimated VIRM and shape from a novel viewpoint. (b) Ground truth image from the same
viewpoint. (c) Range image computed from estimated shape. (d) Range image obtained from a laser scan. (e) Synthesized Buddha with the
estimated VIRM.
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Figure 16. The various performance measures of the Van Gogh data set, shown for different viewpoints. (a) Average Object Image Difference
(AOID) and Ratio of Uncovered Area (RUA), value normalized to [0, 1]. (b) Average Range Image Difference (ARID, absolute value); the
bounding box of the object is about 90 × 80 × 200, distance to camera is about 950. For both (a) and (b), data points 1–21 are from input images,
and 22–24 are from novel viewpoints.
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This data set is also used in Jin et al. (2003). Inter-
ested readers can compare the two results. Our major
improvements are the recovery of shape details, and
since VIRM is estimated, we get a compact reflectance
map that can predict the appearance of any shape and
from novel viewpoints or under transformed illumina-
tion.

6. Conclusions and Future Work

In this paper, we have proposed an algorithm to re-
construct the 3D shape and the View Independent Re-
flectance Map (VIRM) from multiple calibrated images
of an object. We pose the reconstruction task as min-
imizing the difference between the input images and
the synthesized images while regularizing the process
by enforcing the surface to be smooth. The VIRM is
an approximation to other parametric BRDF models,
and is used as a simplified model for single material re-
flectance under distant lighting with no self-shadowing
and no inter-reflections. An iterative method is used to
minimize the cost function to find the optimal shape
and VIRM. Our algorithm does not require the light
source to be known, and it can deal with specular re-
flectance. Experimental results on both synthetic and
real objects show that our algorithm can recover both
the 3D shape and the VIRM information.

We plan to investigate further on how the estimated
VIRM can be used to render other objects under the
same illumination, or to create animations that are con-
sistent with the original lighting. Alternatively, it is pos-
sible to change the material/lighting of the synthesized
image by directly modifying the VIRM. Other direc-
tions include taking into account self-shadowing and
inter-reflection, and allowing objects made of multiple
materials.

Notes

1. For multiple cameras, patches whose corresponding constraints
are removed in one camera can still have constraints in other
cameras that have smaller viewing angles. In our experiments,
we use more than 20 cameras, making the average ratio of the
number of constraints versus the number of vertices about 20:1.
Even after removing the oblique triangles this ratio is around 16:1,
which means we are still solving an over-determined system.

2. The vertex normal is computed by averaging the surface normals
of its neighboring triangles.

3. The object silhouettes can be obtained by using background sub-
traction methods, interactive or automatic segmentation methods.
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