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Abstract

This paper presents a model of spatiotemporal varia-
tions in a dynamic texture (DT) sequence. Most recent work
on DT modelling represents images in a DT sequence as
the responses of a linear dynamical system (LDS) to noise.
Despite its merits, this model has limitations because it
attempts to model temporal variations in pixel intensities
which do not take advantage of global motion coherence.
We propose a model that relates texture dynamics to the
variation of the Fourier phase, which captures the relation-
ships among the motions of all pixels (i.e. global motion)
within the texture, as well as the appearance of the texture.
Unlike LDS, our model does not require segmentation or
cropping during the training stage, which allows it to han-
dle DT sequences containing a static background. We test
the performance of this model on recognition and synthesis
of DT’s. Experiments with a dataset that we have compiled
demonstrate that our phase based model outperforms LDS.

1. Introduction

A dynamic texture sequence (DT) captures a random
spatiotemporal phenomenon. The randomness reflects in
the spatial and temporal changes in the image signal. This
may be caused by a variety of physical processes, e.g., in-
volving objects that are small (smoke particles) or large
(snowflakes), or rigid (grass, flag) or nonrigid (cloud, fire),
moving in 2D or 3D, etc. Even though the overall global
motion of a DT may be perceived by humans as being sim-
ple and coherent, the underlying local motion is governed
by a complex stochastic model. For example, a scene of
“translating” clouds conveys visually identifiable global dy-
namics; however, the implosion and explosion of the cloud
segments during the motion result in very complicated lo-
cal dynamics. Irrespective of the nature of the physical
phenomena, the usual objective of DT modeling in com-

puter vision and graphics is to capture the nondeterministic,
spatial and temporal variation in images. DT modeling is
motivated by a range of applications including DT synthe-
sis, background subtraction in dynamic environments, and
multi-layer motion separation. The challenges of DT mod-
eling arise from the need to capture the large number of
objects involved, their complex motions, and their intricate
interactions. A good model must accurately and efficiently
capture both the appearance and global dynamics of DT.

1.1. Related Work

The majority of methods that model DT fall into three
broad categories which we briefly review next. (1) Motion
field methods [15, 4] are based on motion analysis algo-
rithms, such as those that compute and model optical flow.
They are convenient, since frame-to-frame estimation of the
motion field has been extensively studied and computation-
ally efficient algorithms have been developed. However,
these methods are best suited to estimate local and smooth
motion fields. The non-smoothness, discontinuities, and
noise inherent to rapidly varying, non-stationary DT’s (e.g.
fire) pose a challenge to optical flow algorithms. Object
tracking methods [8] also tend to be infeasible here due to
the large number of extremely small and non-rigid moving
objects with little shape stability, complex motion charac-
teristics, and inter-object interactions.

(2) Physical modeling methods [11] attempt to capture
the attributes of the physical process from first principles.
These methods are primarily used to synthesize specific tex-
tures such as ocean water, smoke, etc. Being closely tied
to specific physical processes, they are difficult to general-
ize to other DT’s. They are also computationally expensive
since they must model physical phenomena.

(3) The third category consists of methods that obtain
statistical models of spatiotemporal interdependence among
images. They include the spatiotemporal auto-regressive
(STAR) model by Szummer et al. [23] and multi-resolution
analysis (MRA) trees by Bar-Joseph et al. [3]. These meth-



ods suffer from the following shortcomings: (i) DT repre-
sentation limits the amount of data involved (e.g. only a
finite-length sequence can be synthesized from the original
DT), (i7) constraints are imposed on the types of motion
that can be modeled (e.g. neighborhood causality is im-
posed in both the spatial and temporal domains), or (i)
they are applied directly to pixel intensities instead of more
succinct representations, thus, making them computation-
ally more challenging and sometimes infeasible. Within
this class of DT models, we mention the notable work of
Doretto et al. [22] that derives a stable linear dynamical
system (LDS) model for DT’s. Consecutive frames of a DT
sequence are linearly related and viewed as the responses
of the LDS to random noise input. This model has been
applied to DT synthesis [22], recognition [19], and segmen-
tation [10]. LDS has been expanded to accommodate a mix-
ture of modeled DT’s in [6] and its computational complex-
ity has been improved in [2]. Modifications that have been
made to this method include incorporating a lower dimen-
sional representation by using high energy Fourier descrip-
tors or state space variables instead of the estimated model
parameters [2]. However, its modelling of the intensity val-
ues of a DT as a stable, linear ARMA (1) process leads
to three main disadvantages: (z) the assumption of second-
order probabilistic stationarity, which does not hold for nu-
merous sequences (e.g. fire as in Figure 1), (:¢) the sub-
optimal relationship between the order of the LDS model
and the extent of temporal modelling possible (i.e. an LDS
of order n does not capture the most temporal variation in
a DT among all models of order n), and (i¢¢) significant
computational expense, since the model is applied directly
to pixel intensities without appropriately mitigating spatial
redundancy.

Our method can be categorized as a spatiotemporal,
image-based model that uses the Fourier phase content of
the DT sequence to model both its appearance and global
dynamics. In what follows, we justify our choice of using
phase (Section 2), present the details of our phase based
model (Section 3), apply it to DT synthesis and recognition,
and provide experimental results that compare its perfor-
mance to that of LDS (Section 4).

2. Motivation

In this section, we will establish that a model for the ap-
pearance and dynamics of a DT can be attained by repre-
senting its Fourier phase content alone. Following are the
advantages of using the frequency domain representation
that alleviate certain problems encountered in the spatial
domain and motivate our proposed approach. (1) Spatially
global features are captured locally in the frequency do-
main, since the change of the amplitude or phase of a certain
frequency results in a global spatial variation. This makes
frequency space modelling more appropriate for modelling

global patterns such as those associated with DT appear-
ance and dynamics. (2) Frequency analysis has been shown
to be robust to unavoidable perturbations in images such
as illumination changes [20] and additive noise [5]. (3)
Computational complexity can be reduced by exploiting the
inherent conjugate symmetry of the Fourier transform and
the usually seen concentration of spectral image energy at
low frequencies. (4) Furthermore, computationally efficient
algorithms and specialized hardware are available for the
computation of the Fourier transform (e.g. FFT).

In what follows, we justify why the phase content of DT
is a useful dual representation of its appearance and tempo-
ral variations, and leads to a compact spatiotemporal model.
(1) In [13], Hayes proved that it is possible to reconstruct
multi-dimensional signals from their phase content alone,
provided that these signals do not have symmetric factors in
their Z-transforms. In fact, if a hybrid image is constructed
from the phase spectrum of a given image and the ampli-
tude spectrum of any other, we use the iterative algorithm,
described in [16], to reconstruct the original image from the
hybrid image. This process is called phase-only reconstruc-
tion. Figure 1 shows an example of this algorithm applied
to ocean and fire images. In the rest of this paper, we as-
sume that DT sequences enjoy this phase-only reconstruc-
tion property. This assumption is justified, since symmetric
Z-transform factors seldom occur in practice.

(d) (e ®

Figure 1. The phase spectrum of an ocean image (a) combined
with the amplitude spectrum of a fire image (b) forms image (c).
Images in (d), (e), and (f) the results of 50, 100, and 250 iterations
of the reconstruction algorithm in [16], respectively.

(2) Complex stochastic motion, which characterizes a
DT, leads to complex stochastic variations in its phase con-
tent. We have empirically shown (see next section), for a
number of commonly encountered DT’s, that the temporal
variations of phase values do indeed capture most of the
DT’s dynamical characteristics and hence its global mo-
tion. This further validates, in addition to the phase-only-
construction property, the value of phase for DT modelling.



Figure 2 shows that many more principal components are
required to represent 80% of the variation in the phase of a
DT than to represent the same amount of variation in its am-
plitude. This implies that a DT’s phase varies significantly
more than its amplitude over time, and so the DT’s dynami-
cal properties are better captured in the Fourier phase space.
As aresult of (1) and (2) above, we conclude that modelling
a DT’s global spatiotemporal features can be efficiently per-
formed in Fourier phase space.
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Figure 2. PCA components for DT phase and amplitude.

Contributions The contributions of our model are two
fold: (1) it exploits the globally spatial features inherent
to the Fourier phase domain to form a computationally effi-
cient spatiotemporal model of a DT’s appearance and global
dynamics and (2) its training is insensitive to the static back-
ground that might accompany the DT itself and hence does
not require any segmentation or specialized cropping.

3. Proposed Model

Our proposed model captures the phase portion of a DT
and, for efficiency, represents it in PCA space. We call this
the Basic Phase PCA (BPP) model. To further increase the
efficiency, we propose a model which captures the phase
changes in DT over time, instead of the absolute phase val-
ues of each individual frame, as in BPP. We call this the
Principal Difference Phase PCA (PDPP) model. PDPP rep-
resents the phase changes in terms of the principal angle of
the difference between phase spectra of consecutive frames.
We transform the BPP phase into PDPP format as follows.
Each extracted phase spectrum is vectorized and replaced
by the sum of the previous phase spectrum and the princi-
pal angle of their difference,as illustrated in Equation 1.
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In fact, this transformation expands the domain of the
original BPP space by 27 in each dimension. Hence, the

PDPP space can be spanned by fewer principal components,
giving rise to a more compact spatiotemporal model. Fig-
ure 3 provides empirical evidence that PDPP can capture
significantly more variation in DT phase than BPP, for the
same number of principal components. Accordingly, a DT
is treated as a sequence of features embedded in a low di-
mensional PDPP space. We use two different methods to
represent the temporal variations in these features: either in
a holistic manner, for all components, using a probabilistic
framework, or modelling each component separately using
a deterministic framework. In the rest of this section, we
give a detailed description of both frameworks, and how the
model can be applied to two major tasks involving DT’s:
DT synthesis and recognition.
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Figure 3. BPP vs. PDPP for two DT’s

3.1. PDPP Algorithm

Each DT sequence is a set of F' frames (MxN in size).
In order to mitigate spectral leakage, we preprocess the DT
frames with a Hanning filter, whose spatial extent is set to
be the image size. We extract the phase sub-spectra, whose
energies exceed a predefined fraction of the total image en-
ergy. This fraction is increased to increase the compactness
of the model. Only half the phase spectrum is required due
to Fourier conjugate symmetry. Next, we transform these
sub-spectra into principal difference format. Equation 2 il-
lustrates how these spectra are embedded in a lower dimen-
sional PCA space to form PDPP features ({Z" }1_,).

By reducing the number of principal components used in
the representation to L < F', a more compact model is ob-
tained. More importantly, a DT sequence containing a static
background does not need to be cropped to show the dy-
namic texture alone. This follows from the fact that a static
background will result in an additive term in the Fourier do-
main, which varies minimally with time. Since the PDPP
features are formed from zero mean spectra and its basis
spans the directions along which temporal variance is max-
imized (property of PCA), the effect of background on the
model is highly reduced. Moreover, unlike LDS, no prior
assumptions are made on the statistics of the DT sequence
to be modelled.
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We will now describe the two frameworks for learn-
ing the spatiotemporal manifold of a DT sequence in the
PDPP feature space. The first framework (Section 3.2) cap-
tures the variations of all components in probabilistic terms,
while the other (Section 3.3) captures the variations of each
PDPP component separately and deterministically. Here,
we note that forming images from phase is a nonlinear op-
eration, since the phase appears in the complex exponent of
the Fourier spectrum. So, for both frameworks, to achieve
linearity we define the PDPP feature space to span the sinu-
soidal functions (i.e. cosine and sine) of the Fourier phase
instead of the phase itself.

3.2. Non-Parametric Probabilistic PDPP Model

In this framework, a DT sequence, (S) is represented
as a set of F' PDPP features, {#;}L;, corresponding to
F frames. We model the posterior distribution of S non-
parametrically, using Parzen windows with a suitably scaled
unitary function ®(¥) as illustrated in Equations 3 and 4.
We assume conditional independence between the features
{7:}L_,. We choose to use the RBF (radial basis function)
kernel due to the simple functional form of its gradient and
hessian.
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We now describe how we use this probabilistic formu-
lation for DT synthesis and recognition, using techniques
from Bayesian machine learning.

3.2.1 MAP-Based DT Synthesis

We first consider using a given DT sequence to synthesize
novel DT sequences, which resemble the original in appear-
ance and global dynamics. In other words, given a set of
PDPP features {7;} 1| that represent a DT, we want to find
a new feature vector ¥p;4p, which preserves the chosen
spatiotemporal properties, namely of this DT. We formulate
this synthesis problem as a multi-dimensional signal esti-
mation problem according to the probabilistic framework
described earlier. @y 4p is computed as the feature vector
that maximizes the weighted posterior probability defined
in Equation 5.
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This optimization problem can be solved locally using New-
ton gradient descent to find Zp;4p, since it is an uncon-
strained, non-convex maximization problem. Using the
RBF kernel simplifies the descent update stage. Differ-
ent synthetic frames are produced when the frame MAP
weights ({w; }f. ) are varied. The impact of each original
frame on the synthesis process is proportional to the magni-
tude of its corresponding weight. The larger the weight is,
the more the synthetic frame resembles the corresponding
original frame, in appearance, and dynamics relating it to
the next frame. A DT sequence of arbitrary length can be
synthesized by varying the MAP weights. This allows for
extrapolation of appearance and dynamics of the original
sequence without reproducing the original frames.

3.2.2 MAP-Based DT Recognition

We are given a set of C' classes of DT, each of which con-
tains DT sequences that have similar appearance and dy-
namical properties. A class c is represented as either a sin-
gle PDPP model formed by concatenating all the DT in-
stances in c or as a set of PDPP models (each for a different
DT in c¢) that will be processed independently. Experimen-
tation shows us that both methods result in similar recogni-
tion rates. For the sake of simplicity, let us assume that each
trained model (c) is represented by a single DT sequence,
{07

Each given test sequence (S7) of T frames is represented
by a sequence of T features {#¢}L_, for each class c. In
other words, {7¢}L | are the prO_]eCthIlS of St onto the
PDPP space that spans {#¢}L | and {§¢}L,. Therefore, the
task of recognizing St becomes the task of finding the class

, which maximizes the posterior probability of {Z¢}1
over all classes. This is formulated as follows:
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3.3. Piecewise Smooth PDPP Model

Local correlations between neighboring frequencies in
the Fourier phase domain are considerably smaller than
those between neighboring pixels in the spatial domain.
Making use of this property, we assume that the compo-
nents of a PDPP feature can be modelled as being indepen-
dent. In this regard, each component is represented by a
temporally varying trajectory, which is inherently oscilla-
tory. Consequently, we choose to model the trajectory of
the m!" PDPP component as a piecewise smooth function,
@(t|§m), (e.g. spline). Using the independence assumption
among the components, the PDPP model of a DT can then
be viewed as a sequence of samples from L independent
models given in Equation 7. Although the component-wise
independence assumption neglects underlying component
correlations, it allows for a more compact and computation-
ally efficient model, as compared to the probabilistic model
described earlier.

—

Tp(t) = ®t0,,) V>0, Ym=1,....L  (7)
6., = arg min Z[@(z| 9y — z )

For DT synthesis, we choose ®(t|f,,) to be a cubic
spline (i.e. piecewise cubic polynomials), which is sampled
at equal intervals. Continuity and smoothness constraints
(e.g. consecutive cubic pieces must have equal 1% and 27¢
order derivatives where they meet) must be incorporated in
estimating @,L. Figure 4 illustrates the trajectory of a PDPP
feature component modelled as a cubic spline.
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Figure 4. Temporal variation of a PDPP feature component mod-
elled by a cubic spline.

4. Experimental Results

In this section, we will illustrate the performance of the
PDPP model with respect to DT synthesis and recognition.

The probabilistic and component-wise models are used in
synthesis, while only the former is used in DT recognition.
We will compare our results with those of LDS.

4.1. DT Synthesis

Numerous techniques have been proposed for DT syn-
thesis. Some model the physical process underlying the DT
(e.g. formation of ocean waves) [11]. Despite their high
visual quality, the specificity of these models prevents them
from being generalized to other DT’s. As an alternative to
physical models, purely image-based approaches have also
been developed. In this category, we distinguish between
two main groups: the first does not formulate a model of
the DT but instead it reuses real frames from various lo-
cations in the sequence to extend the original sequence,
while maintaining smooth frame-to-frame transition [21].
The other group of methods synthesizes frames based on
a learned model of the DT [15, 3, 22, 23]. Among the few
such model-based techniques that have been proposed, LDS
has received the most attention in recent work. Despite its
succinct representation, its main assumptions (e.g. second
order stationarity, linearity in the spatial domain, and sub-
optimal temporal modelling) limit the visual quality of syn-
thesized DT sequences, especially non-stationary ones (e.g.
fire). For such DT sequences, the visual quality of the syn-
thetics frames deteriorates over time.

To evaluate PDPP based synthesis, we compiled a
database of DT sequences from various online sources in-
cluding the recent DynTex database [17]. MATLAB imple-
mentations for both of our PDPP methods were developed.
For the MAP-based method, only two consecutive MAP
weights were set to nonzero values. For the cubic spline
method, we used equal length sampling intervals. Figure 5
shows some images randomly sampled from synthetic se-
quences produced by both PDPP models. Samples frames
and full videos of additional DT’s are provided in the sup-
plementary material.

Evaluation: We compare the quality of our MAP synthe-
sis with that of LDS for the same DT sequence. The dimen-
sionality of the LDS model was set to be the same as that
of our PDPP model. In Figure 5, we show an example of
DT synthesis for a flame sequence. The quality of the syn-
thetic frames appears to be more “natural” for PDPP than
for LDS, since PDPP better preserves DT boundaries com-
pared to LDS, which tends to blur them. Note that PDPP
maintains smooth frame-to-frame transition, while under-
going global dynamics that resemble the original sequence.

Following observations can be made about the synthesis
quality of PDPP and LDS. (1) Frames synthesized by LDS
tend to be blurred (e.g. (c)) caused by LDS’ underlying
linear, spatial model. PDPP does not suffer from this prob-
lem; however, some synthetic frames contain spatially pe-



Flgure 5. Sample synthetlc 1mages produced by the Cublc Spline (top two rows) and MAP (bottom two rows) synthes1s methods Vldeos

of these sequences can be seen in the supplementary material.

riodic noise due to residual spectral leakage. (2) For some
DT sequences, LDS produces synthetic frames whose vi-
sual quality degrades with time. For PDPP, the temporal
quality degradation is considerably less. (3) As the order of
the PDPP or LDS model decreases, the visual quality (i.e.
appearance and global dynamics) of the synthesized frames
degrades for both; however, the LDS frames tend to dis-
play significantly less temporal variation than PDPP. This
follows from the fact that an n < F' dimensional PCA basis
captures the maximum variance, among all n dimensional
bases, of the same set of data points.

(a) (b) ()
Figure 6. Images (a), (b), and (c) are respectively a frame from the
original sequence, a MAP synthetic frame, and a synthetic LDS
frame.

4.2. DT Recognition

DT recognition involves the use of both image appear-
ance and temporal changes in appearance. For an overview
of recent techniques developed for DT recognition, we refer
to [7]. In [19], Doretto et al. use the LDS model parame-
ters of each DT to recognize them. Fujita et al. use im-
pulse responses of state variables as alternative features for
recognition using the LDS model [12]. In [18], Peteri et al.
propose a DT recognition algorithm based on six transla-
tion invariant features (i.e. normal optical flow and texture
regularity to describe DT dynamics and appearance respec-
tively). Recent work by Zhao et al. proposes local binary
patterns (LBP) and volume local binary patterns (VLBP) as
the underlying features to be used in recognizing DT se-
quences [25, 24]. The latter two methods are based on local
descriptors, which do not incorporate the global dynamics
that characterize a dynamic texture. All the above algo-
rithms have been evaluated on subsequences or sub-blocks
of the initial sequences on which the model was trained. It
is unclear how they will perform on test DT sequences not
already used in training. Since LDS is the model that has
been used the most and seems to have the best performance
among image-based models, in what follows, we compare
the performance of our MAP-Based recognition method to
that of LDS and evaluate its generalization performance.



Evaluation: =~ We constructed a database of color DT
sequences from the DynTex database and online sources.
These sequences portray natural scenes including different
bodies of water (rivers, oceans, waterfalls, etc. as in Figure
5), fire, foliage, clouds, and smoke. These DT’s possess a
variety of appearance and dynamics characteristics, which
is a significantly richer and more challenging environment
for testing our recognition algorithm as compared to the
MIT temporal texture database [1]. In our database, simi-
lar looking textures (e.g. fire) may have different dynamics,
while some different looking textures (e.g. smoke, water,
and fire) may have similar dynamics. These DT’s have dif-
ferent sizes and number of frames (40 — 250). To expedite
FFT, images in each sequence are resized to 128x128 pix-
els and converted to gray scale format. However, no crop-
ping is performed. We formed two groups of DT subse-
quences for this purpose: the first group contains a sub-
sequence of the frames of these formatted sequences for
training the PDPP model, while the second group contains
subsequences formed by randomly choosing I’ consecutive
frames that were not used for training and do not overlap.
The latter subsequences form our test set.

In our experiments, we vary either: F' (number of frames
used to train the PDPP model) or T' (number of frames in
the test subsequence). In each case, PDPP performance is
compared to that of LDS, based on the implementation of
[19]. Because of space restriction, we only show the results
of one of these experiments, where 147 test subsequences
were formed from C' = 17 different DT classes from the
database. F is equal to the first half of the C original se-
quences and T' = 20 frames. Figure 7 shows portions of the
confusion matrices for both PDPP and LDS. The columns
represent the labelled test subsequences, while the rows rep-
resent the corresponding recognition results. The recogni-
tion is deemed correct if the recognized class is among the
types shaded in gray. For example, of the 9 “flame” test sub-
sequences, LDS recognizes 6 as “flame” and 2 as “fire;”,
while PDPP recognizes them all as “flame”. We obtained
overall recognition rates of 95.2% and 46.3% for PDPP
vs. LDS. This shows the greater discriminating power of
PDPP. Note that if we were to accept only diagonal entries
as correct recognition, then the performance disparity be-
tween PDPP and LDS would be greater.

Based on the results of these experiments, we draw the
following conclusions. (1) The recognition performance of
LDS improves as 1" becomes comparable to F'. In our ex-
periments, T' < F, as compared to [19] where T’ = F' =
75. This follows from the nature of the distance metric used
(Martin distance [14]), which requires that the orders of the
training and test LDS models be the same, so the test LDS
model has to be expanded to the same size as the training
model, as described in [9]. On the other hand, PDPP natu-
rally accommodates any sized test sequence. (2) The recog-

nition performance of both methods is directly proportional
to F'. However, the performance change is more signifi-
cant for LDS, which means that LDS, in general, requires
a larger training set than PDPP for comparable recognition
rates. (3) The presence of a static background in the training
and/or test sequences decreases the recognition rate for LDS
considerably, since the LDS model does not distinguish be-
tween DT and background properties. This follows from its
direct modelling of pixel intensities in the spatial domain.
(4) A major drawback of the LDS model is its memory us-
age and computational complexity. In fact, all our experi-
ments required 7' < 30 frames in order to run on a Pentium
IV (2GB RAM) PC and keep the running time of the LDS
algorithm less than 3 minutes per test sequence; otherwise,
the recognition process ran out of memory. PDPP does not
face this problem. For T' = 30 frames, LDS runs in ap-
proximately 3 minutes, while our algorithm runs in about
30 seconds for the same test sequence.

Unlike the DT recognition methods we referred to ear-
lier, we tested the generalization performance of PDPP with
C = 4 classes (i.e. smoke, fire, water, and grass). The
experiment was set up as follows: one sequence was used
to learn the “smoke” class, two for “fire”, five for “water”,
and one for “grass”. A total of 141 test subsequences were
formed from 7 new DT sequences, which did not participate
in the training stage. Table 1 summarizes the recognition
results. We conclude that the PDPP model achieves better
generalization performance than LDS.

DT LDS (%) PDPP (%)
Smoke 100 100
Fire 87.5 100
Water 77 81
Grass 44 4 100
Weighted Average 61 87

Table 1. Recognition rates for LDS vs. PDPP

5. Conclusion

In this paper, we have presented a novel spatiotemporal
model (PDPP) for dynamic textures, which is based on the
variation of phase content. PDPP compactly and efficiently
represents both the appearance and dynamics of a DT, thus,
establishing a framework for higher-level applications. We
have validated the significance of our method by applying
it to DT synthesis and recognition, while also comparing
it to the LDS model. In the future, we plan to develop a
PDPP-based algorithm for DT segmentation.
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