Int J Comput Vis (2010) 89: 40-55
DOI 10.1007/s11263-010-0321-2

Dinkelbach NCUT: An Efficient Framework for Solving
Normalized Cuts Problems with Priors and Convex Constraints

Bernard Ghanem - Narendra Ahuja

Received: 16 February 2009 / Accepted: 1 February 2010 / Published online: 25 February 2010

© Springer Science+Business Media, LLC 2010

Abstract In this paper, we propose a novel framework,
called Dinkelbach NCUT (DNCUT), which efficiently
solves the normalized graph cut (NCUT) problem under
general, convex constraints, as well as, under given priors
on the nodes of the graph. Current NCUT methods use gen-
eralized eigen-decomposition, which poses computational
issues especially for large graphs, and can only handle lin-
ear equality constraints. By using an augmented graph and
the iterative Dinkelbach method for fractional programming
(FP), we formulate the DNCUT framework to efficiently
solve the NCUT problem under general convex constraints
and given data priors. In this framework, the initial prob-
lem is converted into a sequence of simpler sub-problems
(i.e. convex, quadratic programs (QP’s) subject to convex
constraints). The complexity of finding a global solution for
each sub-problem depends on the complexity of the con-
straints, the convexity of the cost function, and the chosen
initialization. However, we derive an initialization, which
guarantees that each sub-problem is a convex QP that can be
solved by available convex programming techniques. We ap-
ply this framework to the special case of linear constraints,
where the solution is obtained by solving a sequence of
sparse linear systems using the conjugate gradient method.
We validate DNCUT by performing binary segmentation
on real images both with and without linear/nonlinear con-
straints, as well as, multi-class segmentation. When possi-

B. Ghanem (X) - N. Ahuja

Beckman Institute for Advanced Science and Technology,
Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA

e-mail: bghanem2 @vision.ai.uiuc.edu

N. Ahuja
e-mail: ahuja@vision.ai.uiuc.edu

ble, we compare DNCUT to other NCUT methods, in terms
of segmentation performance and computational efficiency.
Even though the new formulation is applied to the problem
of spectral graph-based, low-level image segmentation, it
can be directly applied to other applications (e.g. clustering).

Keywords Normalized graph cuts - Graph theory - Graph
cuts - Interactive segmentation - Graph-based image
segmentation - Dinkelbach method for fractional
programming - Quadratic programming - Conjugate
gradient method - Eigen-decomposition - Multi-way
segmentation

1 Introduction

This paper is about extending normalized graph cuts so the
result satisfies general, convex constraints under given pri-
ors on the graph. The new formulation is applied to and pre-
sented in terms of low level image segmentation using spec-
tral graph theory, a problem that has received extensive at-
tention recently. However, this framework can be applied to
general data clustering problems, where the aforementioned
segmentation problem is a special case. In this problem, an
image is represented by an undirected graph, wherein nodes
correspond to image pixels or regions, and edges connect
pairs of nodes. An edge has a weight proportional to the sim-
ilarity of the properties of the connected nodes (e.g. pixel in-
tensities). Given such a graph representation, image segmen-
tation becomes equivalent to partitioning the nodes of the
graph into disjoint sets, or segments, which optimize a given
cost function. Such a partition is denoted as a graph cut. Tra-
ditionally, the cost of a cut between two segments is the sum
of weights corresponding to the graph edges that need to be
severed to produce this segmentation. However, other graph

@ Springer

mailto:bghanem2@vision.ai.uiuc.edu
mailto:ahuja@vision.ai.uiuc.edu

Int J Comput Vis (2010) 89: 40-55

41

cut formulations exist, so graph cut methods are categorized
by the global cost function they optimize. If the objective
is to minimize the cost of a cut between two or more seg-
ments, then the problem can be formulated as a min-cut and
efficiently solved as a max-flow problem (Greig et al. 1989;
Boykov and Funka-Lea 2006; Paragios et al. 2006; Boykov
et al. 2001). This cost can include node priors by introduc-
ing artificial nodes corresponding to the number of desired
segments. The edge weights from these nodes to the rest of
the graph embed the node priors. In what follows, we will
use the label unnormalized graph cuts to denote this graph
cut problem.

Despite the merits of the unnormalized graph cut formu-
lation and its proposed algorithms, it is biased towards pro-
ducing cuts that contain a small number of nodes. Conse-
quently, a normalized version of this cost function has been
proposed, in which the cost of the normalized cut (NCUT)
incorporates the association cost of each segment (i.e. the
sum of edge weights connecting nodes of this segment to
all other nodes in the graph), thus, suppressing the appear-
ance of small cuts (Shi and Malik 2000). For a detailed com-
parison of these two formulations, refer to Weiss (1999).
Minimizing the resulting NCUT objective function is an NP
hard discrete optimization problem, so it is relaxed to take
on real values. The popularity of this method can be par-
tially attributed to its closed form approximation of the op-
timal solution, using generalized eigen-decomposition. Un-
constrained NCUT has been used extensively for image seg-
mentation and data clustering. In Yu and Shi (2004), the
authors constrain the NCUT problem by incorporating ad-
ditional grouping constraints, in the form of linear homo-
geneous equalities. This is extended to the case of non-
homogeneous equalities in Eriksson et al. (2007).

In all the above NCUT methods (Shi and Malik 2000;
Yu and Shi 2004; Eriksson et al. 2007), the NCUT so-
lution is obtained from either a single generalized eigen-
decomposition or a sequence of such decompositions. Even
though these methods offer certain advantages, their follow-
ing shortcomings need to be addressed. (1) These meth-
ods only allow for linear equality constraints. This is due
to their underlying use of eigen decomposition to minimize
the Rayleigh quotient. For example, Cour and Shi (2007)
showed that it is NP-hard, in general, to solve for eigenvec-
tors under linear inequalities. This suggests that if a unify-
ing framework for such constrained NCUT problems is de-
sired, it should avoid using this quotient formulation. (2) Un-
like unnormalized graph cut techniques, these methods do
not embed any unary terms (i.e. priors on individual graph
nodes) in the NCUT cost function, which is equivalent to
assuming a zero prior for all nodes. (3) Since these meth-
ods compute generalized eigenvectors of large matrices and
form null spaces of highly rank deficient matrices, their
computational complexity remains a practical issue, despite

the special measures that were considered for complexity
reduction.

Contributions In this paper, we present a first step in the
direction of formulating a unifying framework for con-
vexly constrained NCUT problems, which addresses the
aforementioned limitations. The contributions of this frame-
work are threefold. (i) It allows the efficient solution of the
NCUT problem under general convex constraints. It uses
the Dinkelbach method to transform the initial fractional
problem into a sequence of convexly constrained, quadratic
programming (QP) problems, whose convexity is ensured
by a suitable initialization that we construct. More impor-
tantly, the global solutions of these problems converge su-
perlinearly to the required solution of the fractional prob-
lem. Since the Dinkelbach method is central to our frame-
work, we denote our proposed method as Dinkelbach NCUT
(DNCUT). In fact, the Dinkelbach method was recently used
in the context of parametric max-flow algorithms in Kol-
mogorov et al. (2007). However, the energy function to be
minimized was unconstrained and hence no effort was made
to construct a valid initialization that allows efficient es-
timation of the global solution for each Dinkelbach itera-
tion. (ii) Our framework can incorporate prior knowledge of
nodes belonging to different segments, which is equivalent
to the unary term present in the energy function minimized
by unnormalized graph cut algorithms. This case arises in
various supervised problems including interactive segmen-
tation and supervised clustering. These problems can not
be solved using the current NCUT algorithms. (iii) Guar-
anteeing the convexity of each Dinkelbach sub-problem al-
lows this framework to handle general convex constraints,
due to the availability of efficient convex optimization tech-
niques. Therefore, our proposed algorithm refrains from
eigen-decomposition and, in the case of linear constraints,
it degenerates into solving a set of sparse linear systems us-
ing conjugate gradients.

Mathematical Notation Before proceeding with the details
of the paper, we summarize the mathematical notations used
in the remainder of the paper. In what follows, a matrix is
denoted by a bold, uppercase letter (e.g. W). A vector is
denoted by a bold, lowercase letter with an arrow above it
(e.g. X). A scalar is denoted by a normal lowercase letter.
Elements of vectors and matrices are indexed using paren-
theses. For example, x(i) represents the ith element of X,
while W(i, j) represents the element of W at the ith row and
the jth column. Furthermore, a parenthesized superscript is
added to a variable to denote its value at a given iteration.
For example, X®) represents the value of X at the kth iter-
ation. Also, every optimization problem has a solution ap-
pended with a superscript * (e.g. X*) and constraints (if any)
listed underneath the cost function prefixed by s.t., the ab-
breviation of such that.

@ Springer

40

Int J Comput Vis (2010) 89: 40-55

We separate the discussion of applying hard and other
general convex constraints to the NCUT problem. This is
done because hard constraints have direct impact on the
cost function itself, while the other constraints do not. In
Sect. 2, we consider the problem of applying hard con-
straints (e.g. placed by the user via interactive placement
of constraints, which we call here interactive NCUT). In
Sect. 3, we describe the augmented graph structure used
in formulating and solving the NCUT problem. In Sect. 4,
we use the Dinkelbach approach (Dinkelbach 1967) to for-
mulate a unifying framework for solving the convexly con-
strained NCUT problem. We also describe an algorithm to
solve this problem with linear constraints. Finally, we test
the algorithm by applying it to low-level segmentation of
real images in Sect. 5.

2 Hard Constraints

In this section, we consider the NCUT problem under the
first type of convex constraints, namely hard constraints.
To put this problem into context, we visit the unnormalized
graph cut problem, which will also help us introduce the in-
teractive version of the NCUT problem. Due to the nature of
the two different cost functions optimized in the unnormal-
ized graph cut problem and its corresponding NCUT prob-
lem, the analysis/solution of these two problems is quite dif-
ferent. However, we still make use of two general concepts
used in the unnormalized graph cut context: the augmented
graph structure and the notion that hard constraints directly
affect the graph’s weight matrix. We will elaborate on these
two points in what follows. Next, we introduce the termi-
nology to be used and give a brief description of the unnor-
malized graph cut and interactive unnormalized graph cut
problems.

2.1 Unnormalized Graph Cuts and Hard Constraints

Let G = (P, £) be an undirected graph, where P denotes
the set of nodes contained in G, and £ the set of corre-
sponding edges. Let W denote the edge weight matrix of G,
where W(i, j) is a non-negative weight associated with the
edge connecting nodes i and j in P. This non-negativity
is the only restriction on W, whereby the computation of
pairwise edge weight values is application-dependent. When
applied to low-level spectral graph image segmentation, an
edge weight between two pixel nodes is commonly based
on the similarity in color and/or image gradient between
these two pixels. A graph cut X is a binary segmentation
of the nodes in P, where Vk = 1,...,|P|, x(k) = 1 if
the kth node belongs to segment A and x(k) = 0 if it be-
longs to segment B (refer to Fig. 1). The aim of a graph
cuts algorithm is to find X that minimizes a given cost

@ Springer

Fig. 1 (Color online) Example of a graph cut (X), which separates
nodes 1,2, 3 (labeled as A) from 4, 5, 6 (labeled as B). The cost of X
is the sum of the edge weights that have to be cut to produce the final
labeling. Note that the regional costs are represented by the perforated
blue lines, while the solid green lines represent the boundary costs

function. In Greig et al. (1989), the cost function was de-
fined as Ez(A, B) = AR(X) + S(X). The regional cost term,
R(X) = ZieP R; (x(i)), is the sum of costs incurred by as-
signing each node i to its label x(i). The boundary (cut)
term, S(X) = cut(A, B) = ;4 jep WG, j), is the cost of
the cut resulting in segments A and B. Numerous efficient
algorithms have been developed to find the global minimizer
of E3(A, B) (Boykov et al. 2001).

The interactive unnormalized graph cuts problem is an
extension of the aforementioned problem with the addi-
tion that some hard constraints are applied to the nodes
of P (i.e. labels of some nodes are known beforehand).
These constraints can originate from direct user interac-
tion or domain specific knowledge. Many recent works
have addressed this problem under different forms of user
interaction (Boykov and Jolly 2001; Rother et al. 2004;
Liet al. 2004). We denote S4 and Sp to be the sets of nodes
satisfying the hard constraints (i.e. whose labels are known
beforehand to be 1 or 0, respectively). Under these con-
straints, the minimization problem becomes more difficult to
solve. However, Boykov and Jolly (2001) proved that there
is no need to explicitly solve this new problem. They show
that it is equivalent to an unconstrained unnormalized graph
cut problem on G with the edge weights appropriately mod-
ified to implicitly reflect the hard constraints. While such
an equivalence exists for the interactive unnormalized graph
cut problem, it does not transfer to the corresponding NCUT
problem, which we will appropriately call the interactive
NCUT problem. Next, we show how these hard constraints
are explicitly applied to this NCUT problem. We study this
case independently, since it will have direct influence on the
cost function to be minimized.

2.2 NCUT and Hard Constraints

A normalized cut of G into segments A and B has the fol-

lowing cost: NCUT3(A,B) = % +
i€A,je .

Int J Comput Vis (2010) 89: 40-55

43

Fig. 2 (Color online) Example
of a graph with hard constraints
colored in red. Here,

N4 = N_ =2, where two pixel
nodes are already labeled as A
and B. The perforated blue
edges are designated weights
that embed prior knowledge of
the unknown nodes. The bold
red edges have weights of K.
Bold green edges represent the
similarity between the unknown
nodes they connect

cut(A,B)
2ie,jer WGEJ)’
sociation cost of each segment. The NCUT formulation de-
fined in Shi and Malik (2000) is:

where the cut cost is normalized by the as-

y (D - W)y
y'Dy

y(@) € {1, —b},
y'D1=0

YNCUT = arg min

Vi=1,...,|Pl

ey

where D is the degree matrix of G (i.e. D = diag(Wi)) and
p = Zx=0PED)
2xiy<o DG
nected (similar) each segment is to the rest of the graph.
A large value of b (>1) means that the nodes of segment
A have stronger connections to the rest of the graph than
those of segment B. Since the value of b is dependent on
the final labeling, solving this problem exactly becomes in-
feasible. In general, the optimization problem in (1) is NP
hard, so it is relaxed to render a real solution. This vector is
discretized as a post processing step, which does not incor-
porate the value of b. In Shi and Malik (2000), the authors
show that the solution to the relaxed problem can be ob-
tained in closed form by solving a generalized eigenvalue
problem (i.e. eig(D — W, D)). This is a direct conclusion
from the fact that this relaxed problem is in the form of a
Rayleigh quotient. In fact, yncut is computed as the gen-
eralized eigenvector corresponding to the second smallest
eigenvalue. In Shi and Malik (2000), the NCUT framework
was applied to low-level image segmentation and the edge
weight between each pair of nodes/pixels was computed us-
ing intervening contours (Malik et al. 2001).

Now, let us extend (1) to include some hard constraints,
rendering the interactive NCUT problem. To the best of our
knowledge, the interactive NCUT problem has not been ad-
dressed previously in the literature. To solve this problem,
we cannot use the same graph used in the traditional NCUT
formulation. This graph is composed solely of pixel nodes
originating from the image itself. To this graph, we add
two artificial nodes A and B to represent the two segments,
thus, differentiating them from the pixel nodes. This aug-
mented graph will allow us to incorporate hard constraints

Here, we note that b quantifies how con-

@ hard labels @ priors W unknown

and include prior knowledge. We decompose the labeling
vector ¥ into three disjoint parts: (1) ¥ (of size N» = [Sal),
which corresponds to the pre-labeled nodes of Sa, (2) y—
(of size N_ = |Sg|), which corresponds to the pre-labeled
nodes of Sp, and (3) y, (of size N,), which designates
the unknown labels of the rest of the nodes in the graph.
We use the augmented graph in Fig. 2 to illustrate an ex-
ample. We update W and D to include the hard labels, as
shown below. The nodes corresponding to y . are listed first,
followed by those of y_, and then y,. Similar to the in-
teractive unnormalized graph cut problem seen before, we
embed the hard constraints into the edge weights by set-
ting W(i, j) = W(', j) =K, W(,i") = W(j, j) =0 for
every node pair (i, j) € Sq4 x S4 and (i’, j') € Sp x Sp.
This means that nodes belonging to the same segment are
maximally similar, where the similarity value is a constant
denoted by K. For now, K and b are left unknown. In
Sect. 4.2.2, we show how they are computed. Similarly, the
nodes belonging to different segments are minimally similar.
Furthermore, we set W(i, j) = p;f(i) and W(, j') =p, (i)
for every i & S4 U Sp, j € Sa, and j' € Sp. Here, prior
knowledge can be incorporated. The edge weight between
an unknown node and the hard constraints (i.e. the pre-
labeled nodes) can be viewed as the likelihood of that un-
known node belonging to either segment. So, if a likeli-
hood node model (e.g. a Gaussian_l\)/lixture_) Model (GMM))

is available, it is used to evaluate p; and p;, . In our experi-
ments, given hard constraints, we assume the Nearest Neigh-
bor model, so we set p;} (i) and p;, (i) to the maximum edge
weight between node i and nodes of S4 and Sp respectively.
In the absence of prior knowledge, these edge weights are
set to the same constant. In our experiments and in the ab-
sence of hard constraints, we set pi (i) = p, (i) = %, since
all edge weights (based on intervening contours Malik et al.
2001) take values in [0, 1] for the case of low-level image
segmentation. Consequently, the updated W and D matrices
are:

K1 0 P}
W=| 0 K1 P, |;
P op;T W,

@ Springer

44

Int J Comput Vis (2010) 89: 40-55

(a): original image . (b): DNCUT

Fig. 3 (Color online) For the image in (a), the unconstrained binary
DNCUT segmentation is provided in (b). This segmentation is ob-
tained when all unknown nodes have equally likely prior probabilities
of belonging to S4 and Sp (i.e. p; @) =p, ()= %). However, (d) rep-
resents the DNCUT solution when nonuniform prior probabilities are

r

Fig. 4 For the image in (a), the
traditional NCUT solution to the
unconstrained NCUT problem is
illustrated in (b) and the
DNCUT solution in (c). Note
that similar pixel nodes (i.e. sky)
are assigned to different
segments in (b) and to the same
segment in (c)

(a): original image

- —>
(KN4 +1TpHI 0 0
D= T2
0 (KN_ +1Tp I 0
0 0 D, +Pp

— — N
where Pp = diag(N.1p; + N_p,), P} = 1(p;)7, and

- —>
P, =1(p;)T (refer to Fig. 2).

3 DNCUT Graph Structure

As opposed to the traditional NCUT formulation that only
uses pixel nodes to construct the graph, we adopt the aug-
mented graph structure used in the unnormalized graph cut
problem. As illustrated before in Fig. 2, the augmented
graph adds artificial nodes to the original graph. These
added nodes correspond to the “sink” and “source” termi-
nals in Paragios et al. (2006). This augmented graph struc-
ture allows for two major benefits.

1. It inherently incorporates prior knowledge. We desig-
— —

nate p;” and p, to be the vectors of edge weights con-
necting the unknown nodes to the nodes in segments
S4 and Sp respectively. In fact, they correspond to the
unary, regional cost terms included in the unnormalized
graph cut formulation. They can also be viewed as the
likelihoods that the unknown nodes belong to each of
the two segments. As such, the traditional NCUT prob-
lem becomes a special case of the DNCUT framework,

@ Springer

‘V

e

(c): prior (d): DNCUT with prior

used. These probabilities are based on how similar the unknown nodes
are to the nodes delineated by the green (S4) and red (Sp) strokes.
We used a simple GMM (two Gaussians) likelihood model. Note how
the incorporation of prior knowledge rendered the binary DNCUT seg-
mentation more meaningful

(b): traditional NCUT

- - >
when p,” = p, — 0 (i.e. zero priors) and K — 0. Fig-
ure 3 shows an example of how prior knowledge on the
nodes of the augmented graph can improve segmenta-
tion/labelling results. Figure 3(b) is the binary DNCUT
segmentation, if uniform prior knowledge is assumed on
the nodes of this graph. The prior knowledge in Fig. 3(c)
depicts how nodes belonging to class S4 and Sp should
look like in the image. Note the significant difference in
segmentation when comparing Fig. 3(b) to Fig. 3(d). Tra-
ditional NCUT methods cannot incorporate prior knowl-
edge on the nodes of the graph.

2. It supports an indirect connection between every pair of
pixel nodes in the graph, while preserving the sparsity
of W. In the case of image segmentation and due to mem-
ory restrictions, W is made sparse by setting the edge
weights between far pixels to 0. For the traditional NCUT
problem, this can yield pairs of nodes that have high sim-
ilarity but are neither directly nor indirectly connected in
the graph. This biases the segmentation to assign such
nodes to different segments. This usually occurs due to
occlusions. On the other hand, the DNCUT framework
ensures an indirect connection between these nodes, via
the nodes in S4 and Sp, thus, alleviating the previous
segmentation bias. In Fig. 4, we show an example of the
traditional NCUT and the DNCUT solutions to the un-
constrained NCUT problem described in Sect. 2.2 (Shi
and Malik 2000). Note that these solutions are binary so-
Iutions obtained by discretizing the real solutions to the
unconstrained NCUT problem.

Int J Comput Vis (2010) 89: 40-55

4 DNCUT Framework Under Hard & Convex
Constraints

In this section, we highlight the details of our proposed
DNCUT framework. We consider the convexly constrained
NCUT problem, where hard and/or other convex constraints
are applied. Given sets S4 and Sp and the updated weight
matrix W, we formally define the problem as a fractional
quadratic program (FQP) with convex constraints, as shown
in (2). Note that the following setup is the same even if no
hard constraints exist. For this special case, S4 and Sp only
contain a single node each (i.e. Ny = N_ =1).

S;Z;QS;M + ﬁ:ng'u + (a - C)
S;Z;Rg'u +a

y! = argmin

yu(@) €{1,=b}, Vi=1,...,Ny,
=T o
Rl+¢g=0,

s.t. Yu B 1 @)
Q;(y,) <0, Vi=1,...,[1,
U(y,)=0, Vj=1,...,|E|,

where

Q:(Du_wu)+PD=Lu+PDv Q€S+u’
. — —=
m=2(bN_p, — Nyp;).

e —> o —>
a=Ny(KNy +17py) + b N_(KN- +17p,),
c=K[(N4)? + (bN-)?],

R=D,+Pp, ReS},

_>T—> " _.T—>
q=Ni (KN, +1"p;) —bN_(KN_+1"p,),
®;(X) and W (X) are convex

Vi=1,...,1l,j=1,...,|E.

3

We define the Laplacian matrix corresponding to the un-
known nodes as L,, which is known to belong to S;u =
(X e RVe*Ne : X =XT| X > 0} (i.e. the set of symmetric
positive semi-definite matrices of size N, x N,) (Pothen et
al. 1990). For image segmentation, W, and Q are sparse, in
general. ®;(y,) and W (y,) are general convex constraints
that can be linear (e.g. partial groupings Yu and Shi 2004)
or non-linear (e.g. upper bounds on ||y, [|?).

We keep b and K as scalar variables. Consequently, m,
a, ¢, and g are variables too. Note that the value of b de-
pends on y? itself and that the problem in (2) is still an
NP hard discrete optimization problem, so we propose two
forms of relaxation: (1) we relax y, to take on real val-
ues and (2) we assume b takes on a constant value by. In
Sect. 4.2.2, we show how K and by are computed in the
DNCUT framework. The relaxed problem becomes the FQP
defined in (4).

45
. i - F(¥u)
Y =argmm[H(yM) =5 @“)
u
=T - e =
. yquu +m'y, +(a—rc)
= argmin TR
yM yM +(1
§TR1+4 =0,
st. 1 ®;(y,) <0, Vi=1,...,]1, 4)

Wi(y,)=0, Vj=1,...,|E|

Equation (4) is no longer a Rayleigh quotient, solvable
by general eigen-decomposition, as compared to the tra-
ditional unconstrained NCUT formulation. As such, there
is no closed form solution for this problem. In particular,
Cour and Shi (2007) showed that it is NP-hard, in gen-
eral, to solve for general eigenvectors under linear inequali-
ties. So, we propose an iterative algorithm to find the global
minimum of this optimization problem using Dinkelbach’s
method for fractional programming (FP) (Dinkelbach 1967;
Rodenas et al. 1999). To make the paper self-contained, we
give a brief description of this algorithm next.

4.1 Dinkelbach Algorithm for Fractional Programming

Given two continuous functions f : R* — R and g :
R" — R defined on a compact set S € R” such that
g(X) >0VX €S, the fractional programming problem is
to find the global minimizer, X*, of A(X) = %- Ac-
cording to the parametric approach of Dinkelbach (1967),
X* minimizes this problem if and only if F(X*, A*) =
mingcs[f(X) — A*g(X)], where A* = h(x*). Dinkelbach
proved that F (X, 1) is monotonically decreasing in A. This
equivalence was extended to prove that A* can be reached
iteratively. In fact, he proposed an algorithm that produces
a sequence of monotonically decreasing values of 1) =
h(x¥), which converges superlinearly to A*.

The Dinkelbach algorithm was extended by Rodenas et
al. (1999) to provide a general framework for FP’s, summa-
rized below as Algorithm 1. A* is the global minimum value
of the objective function. Here, we emphasize that the super-
linear convergence property is only regarding the iterations
needed to achieve A* and not the convergence of each iter-
ation. Note that each iteration involves solving a different
optimization problem, which might be an NP hard problem
in its own right! Consequently, choosing the initial guess
x(© is not a trivial task, since setting it to an arbitrary value
might lead to a sequence of NP hard problems. However, we
choose X to reduce the computational complexity of each
iteration and the total number of iterations required.

4.2 Applying the Dinkelbach Algorithm to (4)

Equation (4) fits the form required to apply the Dinkelbach
algorithm, where S = {y,, : Y/ R1+¢ =0, ®;(y,) <0Vi =

@ Springer

46

Int J Comput Vis (2010) 89: 40-55

Algorithm 1: Dinkelbach

Input : S, f, g,i(o)eS ¢
Output: N, {1 (’)} <, X*, and A*

1 begin
- K0y
» Initialization: . = h(&) = ((,’ffof)) i =0
8(i) <003 Ne = 1; A% =2 ©
while § (i) > € do
Solve X* = arg ming.g[f (X)

3
4 —2Dg®)]
5 8+ 1)=& —rDgE)|

6 Ne < N+ 1,i <—i+1

7 If5(i +1) <e: A*¥ = h(X*), break

8 else A0+ = p(x*)

9 end

10 end

11 end

S W) =0,Vj=1,...,[E]}, f=F,¢g=G,and
7 — %O The resulting optimization problem to be solved
in each iteration of Dinkelbach(S, F, G, iff,), €) is a QP sub-
ject to convex constraints. Equation (5) shows the problem

to be solved at iteration i.

y; = argmin[y, (Q A(’)R)y +m’y, +(1—k(’))a—c]
st. y,eS. (5)

The computational cost of each iteration is highly dependent
on the nature of the matrix M®) = Q — A®OR. If M® > 0,
the problem becomes a convex QP, whose global minimum
can be found efficiently depending on the nature of S. How-
ever, if M) has at least one negative eigenvalue, then find-
ing the global minimum of (5) becomes NP hard (Pardalos
and Vavasis 2004). Therefore, it is essential that we study the
existence/uniqueness of an initial guess 375,0) that guarantees
the convexity of each Dinkelbach iteration or equivalently
the positive semi-definiteness of each M.

4.2.1 Dinkelbach Initialization for (4): 20

In what follows, we will determine an « bound on A© that
ensures M® = 0 Vi =0, ..., N, thus, making (5) convex
for every iteration (refer to Theorem 1). Furthermore, we
show how to construct a valid S'f,(,) that satisfies this o bound.

Theorem 1 (¢ Bound on A©) If 2@ <o, M® >0 Vi =
— —

_ min(N4p, +N_p;) . ..
0,...,Nc. Here, o = W is a non-trivial, up-

per bound computed without eigen-decomposition.

Proof We propose to select 1@ in order to guarantee
M® >0 Vi=0,. ¢. Actually, this is equivalent to

@ Springer

ensuring M@ > 0, since there exists a recursive relation-
ship between M) and MO: MO = MO 4 (O _1O)R,
Notice that R > 0 and A©@ > 1@ vi =1,..., N, (refer to
Sect. 4.1). To do this, we study the relationship between the
eigenvalues of MO, Pp, R, and Q, which are matrices in
RN«xNu Here, we use the eigenvalue notation pi (B) to de-
note the kth largest eigenvalue of matrix B. Using the results
of Bhatia (1997), Thompson and Freede (1970), we bound
the eigenvalues of M as follows:

on, (Q) < p; M) +2 @0, (R) < p1(Q) Vj=1,...,N,.

Since Q,Pp € S’ , we can bound the eigenvalues of Q in
a similar manner to give: pn,(Q) = pn,(Pp) + pn, (Ly).
Here, we use the fact that the smallest eigenvalue of a Lapla-
cian matrix is zero (Shi and Malik 2000) (i.e. oy, (Ly) = 0).
This step is performed to avoid calculating py, (Q), which
is computationally expensive. But, it also loosens the bound
on A9, which may lead to slower convergence. However,
even with this step, our experiments show that merely 1-3
Dinkelbach iterations are needed for convergence.
Combining the above results, we find that p; (M(O)) >
min(diag(Pp)) — A QR(j, j). This simplification is possible
because Pp is a diagonal matrix and its eigenvalues are its
diagonal elements themselves. For M©® > 0, we require that
0j MMy >o0vj=1,. This can be achieved when:

mm(N+pu +N—pu) |:|

1@ < o, where @ = max(R)

4.2.2 Dinkelbach Initialization for (4): y(o)

Theorem 1 proved the existence of a non-trivial upper bound
for (9; however, it did not show how to find a particular
value of y(o) that satisfies this bound (if one exists). Here,
we construct such a ?,(,O), by setting by and K to appropri-
ate values. From A9 = H 6;;0)) < a, we obtain a quadratic
feasibility problem with convex constraints, as shown in (6),

with (Q — aR) > 0.
@ ¥OTQ-aRF + My + (1 —a)a —c <0,
an: d’yP +4=0 (d=RI),
am: o3 <0, W) =0,
Vi=1,...,]Il, Vj=1,...,|E|.
(6)

We define

B1 = —a[(N+)? + (bN-)2],
- —> o —>
Bo=(1—a)N+(1Tp)) +b*N_1Tp,)]1,

B3 =[(N4+)? — b(N-)2],

- o —>
Bs=I[N+(1Tp) —bN_(ATp)],
(1—-a)a—c=p1K + B2,
q=B3K + Ba.

Int J Comput Vis (2010) 89: 40-55

47

Replaci I VR .
eplacing (I) (i.e. K = _T) in (I) and enforcing
that K > 0, we obtain an equivalent feasibility problem,
where r(b) = % — B2, as shown in (7). Now, all three con-
straints are dependent on the value of b alone.

(I): *W(Q R + (m —

)
. YM +/34
an: Lhtb <
an: o) <0, v, =0,

Vi=1,...,[0, ¥j=1,...,|E.

BLayTy <rb),

)

By setting b to by = argmax,,.r(b), we maximize the up-
per bound on (I). In fact, it ‘can be shown (refer to Ap-
pendix A) that this bound can be made arbitrarily large, if
by = K(%)Z, where k is chosen in the following manner.

| o | e>0, &—0,
k=1—¢g, ift<
k] . - ’ h —_—
{K=1+8, ift>1, where TZN—UTPJ).
N (ATp,)

As stated in Sect. 2.2, b quantifies how connected each seg-
ment is to the rest of the graph. Ideally, the value of b is
dependent on the final solution y. However, subject to the
hard constraints (if any) and prior to computing ¥, by is a
reasonable estimate of b. In the absence of hard constraints
(i.e. Ny = N_=1), bp — 1. In the traditional NCUT for-
mulation (Shi and Malik 2000), no attempts were made to
approximate b.

Therefore, by setting b = by, we can construct a feasi-
ble solution to (7) by solving the convex QP shown in (8).
Due to the convexity of the cost function and the constraints
in (8), we are guaranteed that a solution exists. This solution
can be obtained by using a suitable QP solver (e.g. methods
based on trust regions, active sets, etc.) to find the global
minimum. Moreover, the sparsity of (Q — «R) should be
exploited to reduce the overall computational complexity.

5;1(40) _ argfnin[iT (Q—-aR)X+ <m — %d) ;{|

3

aTi+ﬂ4 <0
st 1w =0 (®)
®;(x) <0, Vj(x) =

4.3 Proposed DNCUT Algorithm

In Algorithm 2, we show the steps required to solve a
convexly constrained NCUT problem, under the DNCUT
framework. This algorithm reiterates how b, K, and y(o) are
computed to ensure that M®) > 0 in every iteration of the
Dinkelbach algorithm. Notice that the global minima of (5)
and (8) are computed using the same convex QP solver. We

Algorithm 2: DNCUT

— —
Input : S, W,,p;,p,, N+, N_,e,and ¢
Output: y; and 1*

1 begin

Use ¢ to compute b = by = Ic(%)2

3 Store Pp, Q, R, m, and d

4 Compute «, B1, B2, B3, and Ba

5 Solve (8) = y,(,()) [QP Solver]

0)
6 Compute K = _%

2O = H ")

7 (Ne, {W}, “o» Y&, A*) = Dinkelbach(S, F (¥.),
G(Fu). i €) [QP Solver]

8 Discretise: y* = [17 —b17 y:nr

[

,a,c,q,and

9 end

gain significant speed up by initializing the solution of each
Dinkelbach iteration with the solution of the previous one.
In the discretization step, we cluster the values of the re-
laxed solution ¥ to obtain the binary solution. Any cluster-
ing algorithm can be used here (e.g. k-means clustering with
k=2).

Beyond Binary Segmentation: DNCUT can be extended to
multi-class (C > 3) segmentation in a recursive fashion,
similar to what was done in Shi and Malik (2000), Ma-
lik et al. (2001). We first construct an over-segmentation of
the image by clustering the values of ¥7 into k > C clus-
ters. No particular choice of clustering algorithm is required
here. In our experiments, we used both k-means clustering
and mean shift clustering (Georgescu et al. 2003). Then, the
k segments are greedily merged until only C segments re-
main. At each step, two clusters are merged, if the NCUT
cost between them is the largest among all other pairs of
clusters. This guarantees that the merged segments are the
“most similar”. Each resulting segment does not need to be
spatially connected (i.e. spatially fragmented labels might
occur). In our experiments, this simple merging method pro-
duced meaningful results; however, more elaborate merging
schemes can be employed.

4.4 Special Case: DNCUT Under Linear Constraints

In this section, we describe how to efficiently apply the
DNCUT framework under linear in/equality constraints.
The reason we give this type of constraint special attention is
twofold. (1) Linear constraints encode important first-order
relationships between graph nodes, such as partial groupings
(Yu and Shi 2004) or area constraints (Eriksson et al. 2007).
However, current methods are restricted to linear equality
constraints. In what follows, we show that DNCUT readily

@ Springer

48

Int J Comput Vis (2010) 89: 40-55

incorporates linear inequalities. (2) There exist efficient it-
erative methods that solve the underlying convex QP (e.g.
interior point or active set methods).

As emphasized earlier, we need a single QP solver to find
the global minima of the convex QPs in (8) and (5). We use
a basic active set solver for the QP in (9).

min X' AX+b’x

Cx<d,
s.t. L - ©)]
Ex=f,

where A € Sf, . C e RN E ¢ RIBHDXN: b ¢ RN,
d e R/, and f e RUEHD Also, for our implementation pur-
poses, we assume that C and E are sparse matrices (e.g.
case of partial groupings). This assumption highly reduces
the complexity of the active set method, whose fundamental
step employs solving a large, sparse linear system with con-
jugate gradients. When [I| = 0, there exists a closed form so-
lution, which requires solving a pair of linear systems. Also,
if |E| = 1 and no hard constraints exist, the problem degen-
erates to the unconstrained NCUT problem. When hard con-
straints are applied, the problem becomes equivalent to in-
teractive NCUT. More details of the optimization technique
can be found in Appendix B.

5 Experimental Results

We conducted a set of image segmentation experiments
to verify the correctness of our formulation and the pro-
posed DNCUT algorithm. Using the NCUT criterion for im-
age segmentation was chosen to only validate the DNCUT
framework and to compare it against other NCUT algo-
rithms. The segmentation performs only as well as the un-
derlying NCUT formulation (i.e. our objective is only a
more general NCUT framework and algorithm). The results
demonstrate that our algorithm can accept hard or other lin-
ear constraints and efficiently derive a solution.

One problem that any image-as-a-graph approach must
face is the need for large memory, to accommodate the large
graphs created by the large number of pixels in any reason-
ably sized image. In particular, forming the weight matrix
W, is the memory bottle-neck for our DNCUT algorithm,
as it is for the original NCUT implementation (Shi and Ma-
lik 2000). This problem may be partly addressed by a multi-
scale, coarse-to-fine implementation of DNCUT, similar to
Cour et al. (2005); however, its extension to the DNCUT
framework is left to future work. In our experiments, there
was no need for down-sampling images, since the number
of pixels in each image did not exceed the maximum allow-
able number of nodes. The edge weights between neighbor-
ing nodes are computed using intervening contours (Malik

@ Springer

et al. 2001), applied to the grayscale version of the image.
We use the default parameters (e.g. scale) that are available
in the implementation of Malik et al. (2001). These weights
take on values ranging from 0 to 1. W, is made sparse by
setting the weights between nodes lying farther than a cer-
tain distance (i.e. 10 pixels) from each other to zero. For
an unknown node i, pu+ (i) and p, (i) are heuristically set
to the maximum similarity between node i and all nodes of
S4 and Sp respectively. In the absence of hard constraints
(i.e. Ny = N_ = 1), we set p} (i) = p, (i) = p. In fact,
the DNCUT solution becomes equivalent to the traditional
NCUT solution when p — 0. For our experiments, we set
p= L Here, we note that if a probabilistic model exists for
the graph nodes, p; (i) and p, (i) can be set to the likelihood
that node i belongs to A and B, respectively. The tolerance
values are: € = 1073 and ¢ = 1077,

In what follows, we give the complexity of the DNCUT
algorithm (Sect. 5.1), compare the performance of DNCUT
to two other NCUT algorithms when applied to the un-
constrained binary NCUT problem (Sect. 5.2), and show
segmentation results of DNCUT when applied to the lin-
early and nonlinearly constrained binary NCUT problem
(Sect. 5.4) and to the unconstrained multi-class segmenta-
tion problem (Sect. 5.5).

5.1 Complexity

All our image segmentation experiments were executed us-
ing MATLAB 7.6 on a 2.4 GHz, 4 GB RAM PC. With hard
and linear constraints, our algorithm required 1-3 Dinkel-
bach iterations to converge. In general, the worst case com-
plexity of our algorithm is O(upua N,f/z), where N, is the
total number of unknown nodes in G and C’)(N,f/ 2) is the
worst case complexity of solving a sparse linear system with
N, variables using conjugate gradients. u p is the maximum
number of Dinkelbach iterations required for convergence
and @4 is the maximum number of active set iterations
needed for one Dinkelbach iteration to converge. When the
constraints are linear equalities, uq = 1.

5.2 Validation

Here, we demonstrate the correctness of DNCUT by com-
paring it to two previous NCUT implementations (Shi and
Malik 2000; Cour et al. 2005) applied to the same image.
This is done quantitatively for the case of unconstrained
NCUT (.e. |E| = |I| = 0), where the global solution to the
relaxed NCUT problem is known to be the second smallest
generalized eigenvector (i.e. eig,(D — W,D)). In this case,
Ny = N_ =1 (i.e. “source” and “sink” are only included).
For all three algorithms, we explicitly apply the hard con-
straints by setting yy =1 and y_ = —by.

Int J Comput Vis (2010) 89: 40-55 49

e o Ori.ginal NCUT | 0% 107 Multiscale NCUT 7‘6)(10'9 _DNCUTI
141 | 15 255
1.105- — —
n 7 S 1o g _
= 11 = = 7S I
: b : | L
1.095 T i
11_. 7.45]
1,09/ o ’
1.085; 10 20 e a0 0 o 10 20 30 W 50 % 10 20) W 50

time (seconds) time (seconds) time (seconds)
Fig. 5 (Color online) NCUT costs for the three NCUT algorithms are plotted versus run-time. The unconstrained NCUT problem is addressed

here. The red values are averaged over all the images in the Berkeley segmentation dataset. The standard deviations are also plotted as blue bars

The NCUT methods we compare against are the original
algorithm described in Shi and Malik (2000) and its mul-
tiscale version described in Cour et al. (2005). These algo-
rithms use implicitly restarted Arnoldi/Lanczos methods for
sparse matrices to perform eigen-decomposition in an itera-
tive fashion (Lehoucq and Sorensen 1996). The run-time of
this iterative decomposition is determined by the relative tol-
erance €ejg. The iterations are terminated when the relative
change in eigen solutions at the current and previous iter-
ations is less than €gjo. On the other hand, DNCUT solves
the unconstrained problem by solving a pair of sparse linear
systems. In fact, this pair of systems can be solved simulta-
neously, using the iterative conjugate gradient method. This
is true since the conjugate directions for one of the systems
can be used for the other. The run-time of DNCUT is de-
termined by the relative tolerance ecg, which defines the
stopping criterion for the conjugate gradient method. When
the relative change in the solution to the linear system is less
than ecg, the algorithm terminates. For all three algorithms,
the run-times do not include the time needed to construct the
weight matrix W,,.

In Fig. 5, we show comparative results for the three afore-
mentioned algorithms when applied to images in the Berke-
ley segmentation dataset (Martin et al. 2001). Each image
in this dataset has ~155000 pixels/nodes. We aim to show
how the NCUT cost (as defined in (4)) varies for each algo-
rithm and for different run-times (i.e. for different stopping
criteria). On each image in the dataset, we ran the three al-
gorithms with varying stopping criteria and registered their
corresponding NCUT costs. H(O), H(M), and H(D) de-
note the costs of the original NCUT (Shi and Malik 2000),
multiscale NCUT (Cour et al. 2005), and DNCUT algo-
rithms respectively. A total of 20 stopping criteria were used
for each algorithm. Figure 5 plots the three NCUT costs at
each run-time ¢. This cost is averaged over all images in the
dataset. We also show the standard deviations of these mea-
surements. Here, we used linear interpolation to complete
the plots. It is obvious that as the run-time of an algorithm
increases, its NCUT cost decreases till it reaches a stable

value. All three algorithms exhibit this variation. From the
plots, we conclude that the original algorithm outperforms
the multiscale one by 10.9 dB, while the DNCUT algorithm
outperforms the original one by 3.7 dB. This points to the
obvious fact that solving (4) directly (i.e. NCUT on the aug-
mented graph) is not equivalent to solving the NCUT prob-
lem on the pixel nodes alone. Moreover, as p — 0, the orig-
inal NCUT solution will approximate the DNCUT one and
H(D) — H(O). Ideally, the comparison should not be a
relative comparison between the three methods, but instead
a comparison of each method with the global minimum of
the original NCUT problem in (2). Since this problem is NP
hard, obtaining its global minimum for non-trivially sized
problems is infeasible.

We also provide four qualitative examples in Fig. 6.
Columns (b)—(d) show the relaxed solutions (i.e. prior to any
discretization) produced by the original, the multiscale, and
the DNCUT algorithms on sample images in column (a),
respectively. These solutions were obtained after the sta-
ble NCUT value for each algorithm was reached. Compar-
ing the segmentation results, we see that the DNCUT so-
lution is more detailed, which facilitates segmentation. If
we consider the bird image in the second row, we see that
the DNCUT solution plays the role of a soft labeling, where
pixels with similar values are grouped together. So, the sky
pixels are much darker than the foreground. This is not the
case for the other two algorithms, as they do not utilize the
augmented graph.

5.3 Computational Analysis

Here, we focus on a computational analysis of the three
NCUT methods, when applied to the problem of uncon-
strained NCUT for the images in the Berkeley dataset.
We study the relative change of the NCUT solution with
run-time. At every run-time ¢, we calculate the relative
solution change as: Ae = W This change is av-
eraged over all the images in the dataset. In Fig. 7, we

plot Ae, as a percentage, for each algorithm. All three

@ Springer

50

Int J Comput Vis (2010) 89: 40-55

Fig. 6 Columns (b)—(d) show
the stable NCUT solutions
yielded by the three methods
respectively, when applied to the
images in column (a). The
unconstrained NCUT problem is
addressed here

dolbe

(a): original image (b): original NCUT): multiscale NCUT (d): DNCUT
. Original NCUT 8 Muttiscale NCUT DNCUT
H H 707 15 T T T
40 80 125
50!
=30 [= 10
= =0 =
Q 7.5
%} 20 < 30! 3
20 5
10
10 23
q2 Zb 36 4‘0 5‘0 60 Tb B.O 80 100 UU ‘\IU 2‘0 3‘0 40 5‘0 SIU TIU 80 o 10 20 30 40 50 50 70 80 S0 100

t (seconds)

Fig. 7 Relative change of the NCUT solution with run-time

algorithms show the same type of variation. The initial
monotonic increase in Ae is followed by a monotonic de-
crease till a stable solution is achieved. Moreover, DNCUT
converges to a stable solution much quicker than the other
two algorithms. For a 5% change, the original NCUT al-
gorithm requires 65 seconds on average to stabilize, while
the multiscale algorithm requires about 35 seconds. On
the other hand, DNCUT requires about 11 seconds to
reach a stable solution. The disparity between the three
algorithms is due to the inherent computational nature of
each algorithm. From these empirical results, we conclude
that DNCUT (or equivalently the conjugate gradient algo-
rithm) has significantly better convergence/stability prop-
erties than the original or multiscale NCUT algorithms
(or equivalently the Arnoldi/Lanczos method for eigen-
decomposition).

@ Springer

t (seconds)

t (seconds)

5.4 Interactive, Linearly Constrained, and Nonlinearly
Constrained NCUT

Here, we conducted three experiments, whereby a dif-
ferent type of constraint on the nodes of the augmented
graph is applied in each experiment. The first experiment
addresses the problem of interactive NCUT. In Fig. 8,
we consider the case of interactive NCUT, where a user
marks the hard constraints on the displayed image in col-
umn (b) with green strokes defining S4 and red strokes
defining Sp. Columns (c) and (d) show the segmentation
results produced by DNCUT, with and without the hard
constraints respectively. Column (e) shows the correspond-
ing segmentations produced by the original NCUT algo-
rithm without the hard constraints (i.e. unconstrained bi-
nary segmentation). It is evident that with additional (user-

Int J Comput Vis (2010) 89: 40-55

51

(a): original image

Fig. 8 (Color online) Shows examples of interactive NCUT, as com-
pared to unconstrained NCUT and unconstrained DNCUT. The origi-
nal images are shown in column (a). In column (b), we show the hard
constraints of S4 (green) and Sp (red), as marked by a user. Using
these hard constraints, column (c) shows the interactive segmentations

(a): original image (b): hard constraints

Fig. 9 (Color online) Shows examples of linearly constrained NCUT,
as compared to unconstrained NCUT and unconstrained DNCUT. Two
types of linear constraints are applied: partial pixel groupings and a box
constraint on the values of the DNCUT solution (i.e. —bol <y, <1).
Partial groupings are marked by users in red and green strokes, as

defined) constraints, the resulting binary (i.e foreground vs.
background) segmentations become more perceptually rele-
vant.

The second experiment addresses the problem of linearly
constrained NCUT and shows some results in Fig. 9. In
this experiment, we apply two types of linear Constralnts
(1) partial pixel groupings and (2) —bol <y < 1to pro-
duce binary segmentations shown in column (c). The box

(b): hard constraints (c): interactive NCUT (d): uncon. DNCUT

(c): con. DNCUT

' H
(e): uncon. NCUT

produced by DNCUT. Columns (d) and (e) display the binary, uncon-
strained NCUT segmentations, produced by DNCUT and the original
NCUT algorithm respectively. These last two columns are shown for
comparison with the interactive DNCUT results

(d): uncon. DNCUT (e): uncon. NCUT

shown in column (b). Column (c¢) shows the binary DNCUT solu-
tions to the linearly constrained NCUT problem. For visual compar-
ison, columns (d) and (e) show the binary, unconstrained NCUT seg-
mentations, produced by DNCUT and the original NCUT algorithm
respectively

constraint (2) is a linear relaxation of the original discrete
constraint in (2). Such linear inequalities cannot be handled
by other NCUT algorithms. Unconstrained binary segmen-
tations produced by DNCUT and the original NCUT algo-
rithm are presented in columns (d) and (e) respectively. The
partial groupings are determined by user defined strokes in
column (b). The same colored pixels define nodes of the
graph that should belong to the same segment.

@ Springer

52

Int J Comput Vis (2010) 89: 40-55

(a): original image (b): constraints

Fig. 10 (Color online) Shows examples of nonlinearly constrained
NCUT, as compared to unconstrained NCUT and unconstrained
DNCUT. Two types of constraints are applied: partial pixel group-
ings and a ball constraint on the values of the DNCUT solution (i.e.
Ny, — (%)i”% <N, (%)2). Partial groupings are marked by users

As in the second experiment, the third one also addresses
the problem of partial groupings on the nodes of the aug-
mented graph. However, in this version of the partial group-
ing problem, the box constraint on ¥, is replaced by a
ball constraint (i.e. [§. — (5213 < N, (2520)2). This
ball constraint is a relaxation on the box constraint, since
it does not implicitly guarantee that y, (i) € [—bo, 1] Vi =
1, ..., N,. This is an example of how a nonlinear (quadratic)
convex constraint can be applied to the DNCUT frame-
work. We use an interior point (barrier) method to solve
the DNCUT problem under these two constraints. Since
there is a single nonlinear constraint, solving this version of
the partial grouping problem is more efficient than the ver-
sion in the previous experiment. Figure 10 shows some seg-
mentation results on real images. The constrained DNCUT
solutions (after discretization) are shown in column (c),
while the unconstrained binary segmentations produced by
DNCUT and the original NCUT algorithm are presented in
columns (d) and (e) for comparison. The partial groupings
are determined by user defined strokes in column (b). The
same colored pixels define nodes of the graph that should
belong to the same segment.

5.5 Multi-Class Segmentation

Figure 11 shows examples of unconstrained multi-class seg-
mentation where C = 2, 3, 4. (b) shows the DNCUT solu-
tion to the unconstrained problem. The clustering and merg-
ing algorithm in Sect. 4.3 is used to produce the segmenta-
tions in (d), (f), and (h), where the corresponding boundaries
are drawn in (c), (e) and (g). Even though this multi-class

@ Springer

(c): con. DNCUT

(d): uncon. DNCUT

(e): uncon. NCUT

in red and green strokes, as shown in column (b). Column (c) shows the
binary DNCUT solutions to the nonlinearly constrained NCUT prob-
lem. For visual comparison, columns (d) and (e) show the binary, un-
constrained NCUT segmentations, produced by DNCUT and the orig-
inal NCUT algorithm respectively

segmentation algorithm is suboptimal, it results in reason-
able segmentations. However, its performance is correlated
with the quality/detail of pixel groupings in the DNCUT so-
lution. For example, in the FLOWERS case, the flowers are
significantly delineated in the DNCUT solution; however,
the lady bugs on the flower petals and the blades of grass in
the out-of-focus background are not. This is primarily due
to the nature of the weight matrix used. In fact, our exper-
iments used intervening contours at a single scale and no
color information was exploited. Incorporating more visual
cues (e.g. color) into the edge weights and finding efficient
ways to combine results at multiple scales are left for future
work.

Next, we show how the low-level, multi-class segmen-
tation results for the three algorithms relate to human seg-
mentation results. Here, we use the Berkeley segmentation
dataset, which contains multiple benchmark (human) seg-
mentations for each image in the dataset. To each image,
we applied the three multi-class algorithms, where the num-
ber of classes was set to the number of segments labeled
in the benchmark segmentations corresponding to this im-
age. Then, the resulting (binary) segment boundaries are av-
eraged over all the benchmark segmentations. We used the
evaluation kit of Martin et al. (2001) to plot the precision-
recall curves shown in Fig. 12. The three algorithms yield
very similar F-scores, which are higher than random perfor-
mance (0.41) and significantly less than human performance
(0.79). They rank low on the list of state-of-the-art seg-
mentation algorithms. More importantly, comparing these
NCUT algorithms together, we see that the multiscale one
has the worst F-score (0.46), while the original one has the

Int J Comput Vis (2010) 89: 40-55

53

FLOWERS

PR

0 b

Fig. 11 Examples of unconstrained multi-class segmentation with
C = 2,3,4, when applied to three images: TIGER, OWLS, and
FLOWERS. (b) Shows the DNCUT solution to the unconstrained
problem. (c), (e), and (g) Show the boundaries of the labeled seg-

0.75
c
s o e
S 0.5 %
o
(a1
025 b~ F=0.54 original NCUT | |
’ —— F=0.46 multiscale NCUT
— F=0.52 DNCUT
% 025 05 075 1
Recall

Fig. 12 Precision-Recall curves for the three NCUT algorithms, when
applied to the Berkeley human segmentation dataset

best F-score (0.54). DNCUT registers an F-score (0.52) that
is very similar to the original algorithm. This is the case,
even though DNCUT was shown (in Sect. 5.2) to yield a
smaller NCUT cost than the other algorithms. This discrep-
ancy points to the fact that the NCUT formulation for image
segmentation does not correlate well with human segmenta-
tion.

6 Conclusions and Future Work
We have presented a unifying DNCUT framework for solv-

ing convexly constrained NCUT problems with data priors
on the augmented graph nodes. We avoid using traditional

(b): DNCUT (b): DNCUT

.=
»®

(h): C =4 (h):C =4

ments in (d), (f), and (h) respectively. We refer the readers to
vision.ai.uiuc.edu/~bghanem2/Shared/DNCUT/supplementary.zip for
all the segmentation results

eigen-decomposition, due to its restrictions on the types of
constraints it can handle and its computational complexity.
In this framework, any convexly constrained NCUT problem
can be converted into a sequence of convex QP’s. In the case
of linear constraints, we propose an algorithm to efficiently
find the global solution of each QP. To validate the correct-
ness of DNCUT, we compare it to state-of-the-art NCUT
algorithms. As compared to these algorithms, DNCUT pro-
vides a better and more computationally efficient solution.
We also show results of binary segmentation under hard and
linear constraints, in addition to multi-class segmentation re-
sults. In the future, we plan to develop a multiscale version
of this framework to handle larger graphs and to incorpo-
rate grouping information from weight matrices computed at
different scales. Furthermore, we plan to improve the multi-
class segmentation extension.

Acknowledgement The support of the Office of Naval Research un-
der grant N00014-09-1-0017 and the National Science Foundation un-
der grant IIS 08-12188 are gratefully acknowledged.

Appendix A: Dinkelbach Initialization for (4) (Sect. 4.2)

In this part, we will give a more detailed description of
bo = argmax,.,r(b). We expand r(b) as in (10), where

@ Springer

http://vision.ai.uiuc.edu/~bghanem2/Shared/DNCUT/supplementary.zip

54

Int J Comput Vis (2010) 89: 40-55

- =
N_(1Tp;)
T=—>=".
N.(ATp,)

—a[(N+)? + (BN IIN+ (ATpF) — bN_(ATpo)]

b =
r®) [(N4)2 — b(N_)?]

— o)V, (i7p)) + 0PN (i,)]

T2 A2
ablb+ 1[0 1 — 1)

(F5)2—b
~ [N (70)) + 22N (70y)] (10

—r—
Since «, b, lTpu_, N4, N_, and T are non-negative numbers,
we deduce that r(b) can be arbitrarily large by setting b =
bg = K(%)Z, where « is chosen such that,

>0,
k=1—¢,
k=1+4¢,

. e—0,

ifr <1, h R
whnere 7

= N

Ny(17p;)

ift>1,

Appendix B: Solving a Convex QP with Linear
Constraints (Sect. 4.4)

In the next three parts, we will describe how to solve a
convex quadratic programming problem with general linear
constraints, of the following form:

min X! AX+b’x

o, {Cfffl’ (11)
Ex=Hf.

Next, we consider the case when only a single equality con-

straint exists (e.g. in the case of unconstrained or interac-

tive NCUT). Then, we consider the case of multiple equal-

ity constraints followed by general linear constraints (i.e.

in/equalities).

Solving a Convex QP with a Single Linear Equality
Constraint

Here, we will provide the closed form solution (Xx*) to the
following convex QP problem.
min [XTAX +b7%]

T (12)
st. e'x+ f=0.

We derive the Lagrangian dual of (12), £(X, v), and deter-
mine the primal-dual solution, X* and v*, in closed form.
Equations (14), (15) evaluate these optimal solutions. Note,
that the closed form solution of the primal problem is valid,

@ Springer

since £(X, v) is convex in X. Also, the form of v* directly
follows from the concavity of £(X*, v). The optimal primal
and dual solutions can be obtained efficiently by solving a
pair of linear systems: AX = b and AX = &, using precondi-
tioned conjugate gradients.

L&, v) =x"A% + B+ v&) X+ . (13)
Primal Solution:
- - 1 - o
X* =argmin L(X, v) = —EA_l[b + v¥el. (14)
X
Dual Solution:
R 2f—¢TA" b
* = ﬁ *’ = — 5 15
v argll)nax (x*, v) TATG (15)

Solving a Convex QP with Multiple Linear Equality
Constraints

Here, we will provide the closed form solution (X*) to the
following convex QP problem.

min [X” AX +b7X]

st. Ex+f=0.

Similar to the previous part, we solve the primal dual
problems by solving the linear system in (16). However, in
this case, the primal and dual variables are coupled in the
same linear system.

[ZA ET][?(} [B]
S =2, (16)
E 0 p* f

Solving a Convex QP with General Linear Constraints

Here, we will discuss an active set based method that iter-
atively solves the following convex quadratic programming
problem. Let I be the set of inequality constraints.

min x'AX+bTx

We present the main steps involved in applying the active
set method.

1. Initialize a counter k = 0. Choose a feasible initial guess
%™ which satisfies a certain set Sg‘) of the constraints
with equality, including all the equality constraints and a
subset of the inequality constraints. These constraints are
referred to as active constraints. They correspond to the
following set of linear equalities: G*)x = h®.

2. Compute a step direction FHOX by solving a convex QP
with linear equality constraints corresponding to those of

Int J Comput Vis (2010) 89: 40-55

55

Sg(). This is done using the method outlined in the previ-
ous part.

5® = argminz” A7 + (b + 2A§(k))T2
st. GWz=0.

3. 180 = 6, then check the Lagrangian multipliers corre-
sponding to the active inequality constraints. If they are
all positive, then the final solution has been obtained; oth-
erwise, remove the constraints corresponding to the neg-
ative multipliers from Sg{). On the other hand, if 5K * 6
take a step from the previous solution along s® (i.e.
X0 = x*+D 4 ¢5E)) The step size is computed as
follows, where Ql(k) is the ith row of G® and h(i)® is
the ith element of h®.

(k)T -
o® _min<1 h(p)® — g X(k)>
= ’ S(OT3
g; sk

where p = argmin
ieS(Ek)ﬁl
g7 500

. ~ ()T =

[h(z)(k) — gE) x(k):|
(T3 :
g5

This step value guarantees that the current solution lies
on the set of active constraints. If «® < 1, then add the
pth constraint to ng)_ Increment k.

4. Tterate through steps 2—3 until convergence.

References

Bhatia, R. (1997). Matrix analysis. Berlin: Springer.

Boykov, Y. Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal
boundary & region segmentation of objects in n-d images. In In-
ternational conference on computer vision (Vol. 1, pp. 105-112).

Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient n-d
image segmentation. International Journal of Computer Vision,
70(2), 109-131.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy
minimization via graph cuts. Transactions on Pattern Analysis
and Machine Intelligence, 23(11), 1222-1239.

Cour, T., & Shi, J. (2007). Solving Markov random fields with spectral
relaxation. In International conference on artificial intelligence
and statistics (Vol. 11).

Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with mul-
tiscale graph decomposition. In International conference on com-
puter vision and pattern recognition (pp. 1124-1131).

Dinkelbach, W. (1967). On nonlinear fractional programming. Man-
agement Science, 13, 492-498.

Eriksson, A. P., Olsson, C., & Kabhl, F. (2007). Normalized cuts revis-
ited: a reformulation for segmentation with linear grouping con-
straints. In International conference on computer vision.

Georgescu, B., Shimshoni, 1., & Meer, P. (2003). Mean shift based
clustering in high dimensions: a texture classification example.
In International conference on computer vision (Vol. 1, pp. 456—
463).

Greig, D., Porteous, B., & Seheult, A. (1989). Exact maximum a poste-
riori estimation for binary images. Journal of the Royal Statistical
Society, 51,271-279.

Kolmogorov, V., Boykov, Y., & Rother, C. (2007). Applications of
parametric maxflow in computer vision. In International confer-
ence on computer Vvision.

Lehoucq, R. B., & Sorensen, D. C. (1996). Deflation techniques for
an implicitly restarted Arnoldi iteration. SIAM Journal on Matrix
Analysis and Applications, 17, 789-821.

Li, Y., Sun, J., Tang, C. K., & Shum, H. Y. (2004). Lazy snapping. In
SIGGRAPH’04: ACM SIGGRAPH 2004 papers, New York, NY,
USA (pp. 303-308). New York: ACM.

Malik, J., Belongie, S., Leung, T. K., & Shi, J. (2001). Contour and
texture analysis for image segmentation. International Journal of
Computer Vision, 43(1), 7-27.

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of
human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics. In
International conference on computer vision (pp. 416—423).

Paragios, N., Chen, Y., & Faugeras, O. (2006). The handbook of
mathematical models in computer vision (pp. 100-119). Berlin:
Springer.

Pardalos, P. M., & Vavasis, S. A. (2004). Quadratic programming with
one negative eigenvalue is NP-hard. Journal of Global Optimiza-
tion, 1(1), 15-22.

Pothen, A., Simon, H. D., & Liou, K. P. (1990). Partitioning sparse
matrices with eigenvectors of graphs. SIAM Journal on Matrix
Analysis and Applications, 11, 430-452.

Rodenas, R., Lopez, M., & Verastegui, D. (1999). Extensions of
Dinkelbach’s algorithm for solving non-linear fractional program-
ming problems. TOP: Journal of the Spanish Society of Statistics
and Operations Research, 7(1), 33-70.

Rother, C., Kolmogorov, V., & Blake, A. (2004). “GrabCut”: interac-
tive foreground extraction using iterated graph cuts. ACM Trans-
actions on Graphics, 23(3), 309-314.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
Transactions on Pattern Analysis and Machine Intelligence, 22,
888-905.

Thompson, R. C., & Freede, L. J. (1970). Eigenvalues of partitioned
hermitian matrices. Bulletin of the Australian Mathematical Soci-
ety, 3,23-317.

Weiss, Y. (1999). Segmentation using eigenvectors: a unifying view. In
International conference on computer vision (pp. 975-982).

Yu, S., & Shi, J. (2004). Segmentation given partial grouping con-
straints. Transactions on Pattern Analysis and Machine Intelli-
gence, 2(26), 173-183.

@ Springer

	Dinkelbach NCUT: An Efficient Framework for Solving Normalized Cuts Problems with Priors and Convex Constraints
	Abstract
	Introduction
	Contributions
	Mathematical Notation

	Hard Constraints
	Unnormalized Graph Cuts and Hard Constraints
	NCUT and Hard Constraints

	DNCUT Graph Structure
	DNCUT Framework Under Hard & Convex Constraints
	Dinkelbach Algorithm for Fractional Programming
	Applying the Dinkelbach Algorithm to (4)
	Dinkelbach Initialization for (4): lambda(0)
	Dinkelbach Initialization for (4): yu(0)

	Proposed DNCUT Algorithm
	Special Case: DNCUT Under Linear Constraints

	Experimental Results
	Complexity
	Validation
	Computational Analysis
	Interactive, Linearly Constrained, and Nonlinearly Constrained NCUT
	Multi-Class Segmentation

	Conclusions and Future Work
	Acknowledgement
	Appendix A: Dinkelbach Initialization for (4) (Sect. 4.2)
	Appendix B: Solving a Convex QP with Linear Constraints (Sect. 4.4)
	Solving a Convex QP with a Single Linear Equality Constraint
	Solving a Convex QP with Multiple Linear Equality Constraints
	Solving a Convex QP with General Linear Constraints

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

