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This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS
as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements)
whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are sim-
ilar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals
and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic
model that learns both the spatial layout of swarm elements (based on low-level image segmentation)
and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neigh-
borhood is associated with each swarm element, in which local stationarity is enforced both spatially and
temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both
space and time. Embedding this model in a MAP framework, we iterate between learning the spatial lay-
out of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates
between estimating these transformations and updating their distribution in the spatiotemporal neigh-
borhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic
video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability
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of our model to real world data.
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1. Introduction

This paper is about modeling video sequences of a dense collec-
tion of moving objects which we will call swarms. Examples of dy-
namic swarms (DSs) in nature abound: a colony of ants, a herd of
animals, people in a crowd, a flock of birds, a school of fish, a
swarm of honeybees, trees in a storm, and snowfall. In artificial set-
tings, dynamic swarms are illustrated by: fireworks, a caravan of
vehicles, sailboats on a lake, and robot swarms. A DS is character-
ized by the following properties. (1) All swarm elements belong to
the same category. This means that the appearances (i.e. geometric
and photometric properties) of the elements are similar although
not identical. For example, each element may be a sample from
the same underlying probability density function (pdf) of appear-
ance parameters. (2) The swarm elements occur in a dense spatial
configuration. Thus, their spatial placement, although not regular,
is statistically uniform, e.g., determined by a certain pdf. (3) Ele-
ment motions are statistically similar. (4) The motions of the
swarm elements are globally independent. In other words, the mo-
tions of two elements that are sufficiently well separated are inde-
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pendent. However, this is not strictly true on a local scale because
if they are located too close compared to the extents of their dis-
placements, then their motions must be interdependent to pre-
serve separation. Thus, the motion parameters of each element
vs. the other elements can be considered as being chosen from a
mutually conditional pdf. Occasional variations in these swarm
properties are also possible, e.g. elements may belong to multiple
categories such as different types of vehicles in traffic. Fig. 1 shows
some examples of DS.

This definition of DS is reminiscent of dynamic textures (DT).
Indeed, a DS is analogous to a DT of complex nonpoint objects.
The introduction of complex nonpoint objects introduces signifi-
cant complexity: (1) Extraction of nonpoint objects becomes nec-
essary, whose added complexity is evident from, e.g., the
algorithm of [1]. (2) Motion for nonpoint objects is richer than
point objects, e.g., rotation and nonrigid transformations become
feasible. Since most work on DTs has focused on textures formed
of pixel or subpixel objects, DS is a relatively unexplored problem.
Tools for DS analysis should be useful for general problems such as
dynamic scene recognition, dynamic scene synthesis, and anomaly
detection, as well as, specific problems such as the motion analysis
of animal herds or flocks of birds. In this paper, we present an ap-
proach to derive the model of a DS from its video, and demonstrate
its efficacy through example applications. Before we do this, we
first review the work most related to DS, namely, that on DT.
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Fig. 1. Examples of swarms.

1.1. Related work

A DT sequence captures a random spatiotemporal phenomenon
which may be the result of a variety of physical processes, e.g.,
involving objects that are small (smoke particles) or large (snow-
flakes), or rigid (flag) or nonrigid (cloud, fire), moving in 2D or
3D, etc. Even though the overall global motion of a DT may be per-
ceived by humans as being simple and coherent, the underlying lo-
cal motion is governed by a complex stochastic model. Irrespective
of the nature of the physical phenomena, the objective of DT mod-
eling in computer vision and graphics is to capture the nondeter-
ministic, spatial and temporal variation in images.

As discussed earlier, although the basic notion of DTs allows
that both spatial and temporal variations be complex, the limited
work done on DT’s has focused on moving objects (texels) that
have little spatial complexity, even as they exhibit complex mo-
tion. The texels are of negligible size (e.g. smoke particles), whose
movement appears as a continuous photometric variation in the
image, rather than as a sparser arrangement of finite (nonzero) size
texels. Consequently, the DT model must mainly capture the mo-
tion and less is needed to represent the spatial structure.

Statistical modeling of spatiotemporal interdependence among
DT images serves as being closest to the work we present here. This
work includes the spatiotemporal auto-regressive (STAR) model by
Szummer and Picard [2] and multi-resolution analysis (MRA) trees
by Bar-Joseph et al. [3]. The DT model of Soatto et al. [4] uses a sta-
ble linear dynamical system (LDS). LDS mixture models have been
developed in [5] and applied to DT clustering and segmentation. A
bag-of-LDS model is proposed in [6] to account for view-invariance
in DT recognition. Furthermore, the basic LDS model is extended to
represent the incidence of multiple co-occurring DTs in the same
video sequence, thus, leading to a layered LDS model for video
[7,8]. In [9], a mixture of globally coordinated PPCA models is em-
ployed to model a DT. Moreover, a DT can be represented as a dis-
tribution of responses to spatiotemporal filters encoding oriented
structures, which are shown to be discriminative of different DT
classes [10]. Recently, the spatiotemporal variations in a DT has
been described using dynamic fractal analysis, which in turn has
shown great success in DT classification [11].

Along with their merits, the previously proposed models also
suffer from certain shortcomings. (i) These models make restrictive
assumptions about the DT sequences. Most of them assume that
there is a single DT covering each frame in the sequence, while

the others that consider multiple DT’s are usually limited to parti-
cle textures (e.g. water and smoke). Consequently, these models
cannot be easily extended to dynamic swarms. Even if the texels
were known beforehand, learning a separate model for each texel
does not guarantee the underlying spatiotemporal stationarity of
DS. (ii) They do not make a clear separation between the appear-
ance and dynamical models of the DT. The approach proposed in
[12] explicitly aims at this separation, but it is limited to fluid
DT’s only.

Another body of work that is related to our swarm motion mod-
els a DT as a set of dynamic textons (or motons) whose motion is
governed by a Markov chain model [13,14]. This generative model
is limited to sequences of particle objects (e.g. snowflakes) or ob-
jects imaged at large distances. The texton dynamics are con-
strained by the underlying assumptions of the model, which
state that all textons have the same frame-to-frame transforma-
tion, that this transformation is constant over time, and that the
dynamics of spatially neighboring textons are independent. While
this work does involve moving objects containing more than one
pixel per object as well as some interpixel spacing, its modeling
power still does not match the needs of properties (1-4) of a DS gi-
ven above.

In the rest of this paper, we refer to the objects forming a swarm
as swarm elements. We propose a probabilistic model that learns
both the spatial layout of the swarm elements and their joint
dynamics, modeled as linear transformations, which allow for a
clear separation between the appearance and dynamics of these
elements. This joint representation takes into account the interde-
pendence in the properties of elements that are neighbors in space
and time. This is done by enforcing stationarity only within spatio-
temporal neighborhoods. This local stationarity constraint allows
us to model DS sequences that not only exhibit globally uniform
dynamics (to which previous methods are limited), but also se-
quences whose element properties and dynamics gradually
change, in space and time.

1.2. Overview of proposed model

Given a DS sequence in which swarm elements undergo locally
stationary transformations, we iterate between learning the spatial
layout of these elements (their binary alpha mattes and frame-to-
frame correspondences) and their dynamics. We estimate swarm
dynamics such that they follow a probabilistic model that enforces
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local stationarity within a spatiotemporal neighborhood of each
element. In regards to spatial layout, we assume that each swarm
element consists of one or more homogenous segments that also
possess these spatiotemporal stationarity properties.

We model the frame-to-frame motion of each individual ele-
ment as a linear transformation, which reconstructs the element’s
features in a given frame from its features in the previous one.
These features can describe local or global properties. In our frame-
work, we do not restrict the choice of these features, since they can
be application dependent. These linear transformations are chosen
to capture a wide variety of possible changes especially rotation,
scaling, and shear. Moreover, a spatiotemporal neighborhood is
associated with each element, in which local stationarity is en-
forced. Spatially, this is done by assuming that the dynamics of ele-
ments in a given neighborhood are samples from the same
distribution corrupted by i.i.d. Gaussian noise. Temporally, these
dynamics are governed by an autoregressive (AR) model. We learn
swarm dynamics by estimating the transformations that maximize
the a posteriori probability or equivalently that (i) minimize the
reconstruction error and (ii) enforce stationarity in each element’s
neighborhood.

Contributions: (1) We present an approach that learns the
dynamics of swarm elements jointly. This is done by modeling
their frame-to-frame linear transformations instead of directly
modeling their features. Using these transformations, our model
is able to handle more complex swarm motions and allows for a
clear separation between the appearance and dynamics of a
swarm. (2) Based on our assumption of local spatiotemporal sta-
tionarity, the proposed probabilistic model allows for interdepen-
dence between swarm elements both in time and space. This is
done locally, so as not to limit the types of DS sequences that
can be modeled, which is a shortcoming of most other methods.
(3) The proposed model and learning algorithm estimate the spa-
tial layout of swarm elements by enforcing temporal coherence
in determining their frame-to-frame correspondences and the spa-
tial stationarity of their dynamics.

The paper is organized as follows. In Section 2, we give a de-
tailed description of our proposed probabilistic model and the
learning algorithm that estimates its optimal parameters. Section
3 evaluates the performance of our model on synthetic and real
world data with applications to action recognition and motion
segmentation.

2. Proposed spatiotemporal model

In this section, we give a detailed description of our spatiotem-
poral model for the spatial layout and dynamics of a DS. We con-
sider sequences whose fundamental spatial elements are opaque
objects. The changes these elements undergo are stationary, both
spatially and temporally. We also assume that each swarm ele-
ment consists of one or more homogenous segments that also pos-
sess these spatiotemporal stationarity properties. To learn the
spatial layout of a swarm, we refrain from using texel extraction
algorithms (e.g [1]) from the literature because they do not make
complete use of the spatiotemporal relationship inherent to swarm
elements. We also avoid the use of popular multiple object trackers
in the literature (e.g. [15]), since they require either manual initial-
ization or class-specific information. If prior information on the DS
elements in the scene is known, it can be incorporated into our
proposed framework to facilitate the learning of the DS spatial lay-
out. We revisit the video segmentation algorithm of [16], which
has some interesting properties that we exploit to learn spatial lay-
out. Since no explicit tracking is performed on the swarm ele-
ments, occlusion handling remains a problem and is left for
future work. To enforce stationarity, we assume that the dynamics

of the swarm elements are distributed according to an MRF in both
space and time. In our model, the dynamics of each swarm element
is influenced by its spatial and temporal neighbors, within its spa-
tiotemporal neighborhood. Unlike other dynamical models (e.g.
[4,14]) that assume spatial independence between texture ele-
ments, we maintain spatiotemporal dependence among swarm
elements to render a more constrained model. In what follows,
we give a clear mathematical formulation of our problem.

2.1. Overview of the DS framework

We are given F frames of size M x N constituting a swarm se-
quence. Frame t in this sequence contains K; swarm elements. This
allows elements to disappear and re-appear at different time in-
stances. We define a swarm element as similar-looking objects that
also have similar dynamics. In the absence of a general object seg-
mentation algorithm, a swarm element is modeled in our DS
framework as one or more adjacent low-level image segments that
have share similar dynamical properties. Although any low-level
segmentation algorithm can ideally be used here, we choose the
algorithm in [17] due to the reasons stated in Section 2.1.1. Section
2.1.2 summarizes the mathematical notation used in the rest of
this paper. In the following sections, we show how we iterate be-
tween learning the spatial layout of the swarm elements and their
dynamics. At a given iteration, we fix element dynamics and up-
date the swarm elements by clustering segments to enforce spatio-
temporal stationarity. Then, we update the dynamics of the new
swarm elements.

2.1.1. Hierarchical low-level image segmentation

In general, low-level image segmentation partitions a given im-
age into regions which are characterized by some low-level prop-
erties of their constituent pixels, where the term “low-level”
refers to local and intrinsic properties of pixels such as gray-level
intensity (or color), contrast, and gradient. To represent dynamic
swarm elements, we use hierarchical low-level image segmenta-
tion, namely the low-level multi-scale (LLMS) segmentation algo-
rithm proposed in [17]. Note that if a reliable object
segmentation method is available, it can be used in lieu of LLMS.

Since the mechanism used by the human visual system (HVS) to
produce perceptual groupings of objects in video remains un-
known, we do not claim that LLMS (or any other low-level segmen-
tation algorithm) is capable of reliably generating segmentations of
objects in video. However, we do assume that LLMS can produce a
hierarchy, whose constituents may play an important role in form-
ing dynamic objects. In fact, there is evidence that the HVS initially
forms groupings of pixels that have a certain degree of interior
homogeneity and a discontinuity with their surroundings, thus,
stressing the significance of contrast. It is this low-level intensity
contrast that LLMS uses to define and detect image segments. In
the LLMS approach, a segment is modeled as a connected set of
pixels whose interior variation is inferior to the magnitude of the
discontinuity with their surroundings. The fact that a segment
can have an arbitrary shape and size precludes the use of any prior
model about its geometry. Moreover, since it is unclear what de-
gree (s) of interior homogeneity are acceptable for object forma-
tion, multiscale analysis is necessary. LLMS guarantees a strict
photometric hierarchy with recursive containment relations. The
levels of the hierarchy are chosen from the range of possible con-
trast levels allowed for grouping connected pixels. The main rea-
sons for choosing LLMS over other low-level algorithms are that
it does not require significant user parameters and it outperforms
popularly used methods on a low-level human segmentation
benchmark [17]. In our experiments, the dynamic segments'

1 We do not consider segments that remain static for elongated periods of time.
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produced by the LLMS hierarchy tend to correspond to object parts
or entire objects. In this work, we use dynamic segments as the rep-
resentative building blocks for swarm elements. Estimating the spa-
tial layout of an element in a given frame is equivalent to
determining the subset of these dynamic segments that constitute
the element in this frame. This estimation will be described in detail
in the following sections.

2.1.2. Mathematical notation

Let us denote the swarm elements by their spatial layouts (i.e.
binary alpha mattes) {T" : t =1,...,F;i=1,...,K,}, where T is
the manifestation or spatial layout® of the i" element in frame t
and T, = {Tf) :i=1,...,K;} is the set of swarm elements in frame
t. Swarm element Tﬁi’ is represented by its d-dimensional feature
vector ﬁ”, which can describe its appearance, shape, and spatial lay-
out. To model local swarm dynamics, we define a linear transforma-
tion A" that transforms f\ into fﬂl. Due to its general form, it can
encompass commonly used transformations (e.g. rotation and scal-
ing) as well as more specific ones (e.g. any orthogonal or orthonor-
mal transformation). We use A, = {A” :i=1,...,K,} to denote the
set of transformations for the K elements in frame t and
Fr = {fﬁ“ :i=1,...,K;} to denote the set of features.

By using frame-to-frame transformations to characterize swarm
dynamics instead of their corresponding features, we emphasize
the separation between swarm appearance and dynamics. This is
usually ignored in other models. This explicit separation allows
distinction between and independent control of elements’ appear-
ance and motion. That is, we can pair any swarm elements with
any dynamics. The goals of modeling these linear transformations
are twofold.

[G1] We desire accurate frame-to-frame reconstruction of the
feature vectors, which determines how well our model fits
the underlying data.

[G2] We need to impose spatial and temporal stationarity on the
transformations within a local spatiotemporal neighbor-
hood. In the absence of [G2], our model is ill-posed and
too general for any practical use. Consequently, [G2] ensures
that our model conforms to the underlying process that gen-
erates the swarm elements’ dynamics.In what follows, Sec-
tion 2.2 gives a detailed description of how a swarm
element’s spatiotemporal neighborhood is formed. In Sec-
tion 2.4, we learn the spatial layout and the linear transfor-
mations in a probabilistic MAP framework.

2.2. Spatiotemporal neighborhood in a DS

Our dynamical model assumes spatial and temporal stationarity
for each swarm element within its spatiotemporal neighborhood.
Let #={NY:t=1,...,F;i=1,...,K} be the set of all spatiotem-
poral neighborhoods in the sequence. Nﬁ” is the set of elements in-
cluded in the neighborhood of T. We define I'(t, i) to be the set of
index pairs (u,v) that represent T{”) in NE”. For simplicity, we
decompose I'(t,i) into two disjoint sets of indices, I's(t,i) and
I'r(t,i), where Ts(t,i) = {(t,j) : TY e N} and Tyr(t,i) = {(s,i) : TV
€ NP1, T's(t, i) defines the spatial neighbors of T, while T'(t, i) de-
fines its temporal neighbors.

2.2.1. Spatial neighborhood
The elements, indexed by I's(t, i), are determined by the gener-
alized Voronoi regions [18] corresponding to the elements present

2 The spatial layout of an element is the union of the pixels comprising its
constituent low-level segments.

in the ™ frame. We also weigh the “neighborness” of every pair of
spatial neighbors. w,(i,j) is the corresponding weight of the ele-

ments pair (Tﬁ”,Tﬁ”). It is equal to the ratio of the length of the

common boundary between the Voronoi regions of the neighbor-
ing elements, to the average distance of these elements to the com-
mon boundary. For elements that are not spatial neighbors, this
weight is set to zero. Local spatial stationarity is enforced by
assuming that transformations of neighboring elements are drawn
from the same distribution, corrupted by Gaussian i.i.d. noise.
Therefore, we have

Y(t,j) € Ts(t,i) : AY =AY +E, such that

2
E(u, y)N,,/v(o,.“i?)\m, v=1,....d (1)
we(i,j) + &

2.2.2. Temporal neighborhood

The elements, indexed by I'r(t, i), are the manifestations of the
ith element in a temporal window consisting of the Wy previous
frames. The limits of this window are truncated to remain within
the limits of the video sequence itself. This is done to resolve
exceptions occurring at the first W frames in the sequence. We
enforce temporal stationarity by applying an AR model of order
Wi to the sequence of transformations in this temporal window.
In fact, the AR model has often been used to model features over
time [13], but here, we use it to model the temporal variations of
these features (i.e. the dynamics themselves). Therefore, we have

) i P .
VNEI) cC: A(t1> — ZO(JAEQ] + E7 such that

j=1
E(u,v) ~ 4°(0,0%) and p, = min(Wr,t - 1) 2)

For simplicity, the AR coefficients (& € R"7), are assumed to be time
invariant and constant for all swarm elements. In Fig. 2, we show an
example of the spatiotemporal neighborhood of T!" with Wy = 2.
Note that the number of spatial neighbors and the “neighborness”
weights can change from frame-to-frame.

2.3. Model of swarm dynamics and spatial layout

Here, we present the probabilistic model that governs the
dynamics of swarm elements and their spatial layout in a DS. We
model the joint probability of the spatial layout of the swarm ele-
ments, their features, and their dynamics. This is done by decom-
posing the joint into the prior over the transformations and the
spatial layout, in addition, to the likelihood of the features given
the swarm layout and dynamics as in (3). In what follows, we
model the three terms to ensure [G1] and [G2].

PR (BN T) = 22025 3)
where

2 =p({FYLHANLL {TIL),

2r =p({THLIHALD ), and 2, =p({al])

2.3.1. Likelihood model (&)
Since we assume a linear relationship between consecutive fea-
ture vectors, we can decompose the likelihood probability as:

2 T T (R AP, 1), where p(E0, £, A7, 1) = -+
(Aﬁ“fﬁ”, y?ld> and p, = p([H {AE {Tt}f:]) is a constant with re-

spect to the transformations. Consequently, we can write the
negative log likelihood as in (4).
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frame: (t-2)

frame: (t-1)

frame: (t)

Fig. 2. Spatial neighbors are connected by solid black lines, while temporal neighbors are connected by dashed black lines. Here, T\" has two spatial neighbors (T’ and T*)
and two temporal neighbors (T."; and T.",) comprising its spatiotemporal neighborhood.

CL(dk 1SN F0 a0
—In(2) = Tt In(y2) +— Hfﬁj] —AVfY ’2> —In(p,)
=1 i
dln (2m) &=L
+TZIQ (4)

2.3.2. Prior of swarm spatial layout (#+)

As stated before, each swarm element consists of one or more
homogenous segments that are produced by the algorithm of
[17]. The spatial layout of these elements and their frame-to-frame
correspondences must ensure that the swarm elements’ features
are reconstructed faithfully and that spatial stationarity of their
dynamics is enforced. The frame-to-frame correspondences of a
swarm element are equivalent to many-to-many correspondences
between segments from the two frames. To formalize this problem,
we denote the frame-to-frame correspondence between T and
T.), as n., which is a node in the graph of all frame-to-frame cor-
respondences in the swarm sequence. Two nodes n; and n;, are

considered neighbors in the graph, if any pair of (T(') T ) and

t+1

<T§’ ,Tg’“) are spatially adjacent (i.e. share boundaries). We show
an example in Fig. 3.

Here, we can define a self-similarity function for each node,
s1(n;), that quantifies the quality of frame-to-frame feature
reconstruction. Also, we define a pairwise similarity function for
each pair of neighboring nodes, s, (n(t,,) s J)) that evaluates how
similar their frame-to-frame transformatlons are. This setup is
similar to the one used in [16]. Actually, we shall see later that
we use a similar method to update the spatial layout. We use
normalized correlation to define s;(.) and s,(.), where s; (n(m) =

FOTADFD trace A(”TA(’
Hfﬁ‘if f\;\\;\?)[fi”uz (e Mis) = HA('>(\IFHAU Tlr :
tional to the self and pairwise similarities of all neighboring nodes
in the graph.

and s, (n . The prior 2+ is propor-

2.3.3. Prior of Swarm Dynamics (2?x)

As ¥ was modeled to guarantee [G1], [G2] is accounted for by
modeling 2, as a product of potential functions defined on the
set of all spatiotemporal neighborhoods. This decomposition is
widely used to model priors on maximum cliques defined on an
undirected graph. We define the potential function for each clique
as the product of a spatial potential ¥s(.) and a temporal potential
¥1(.), which guarantee spatial and temporal stationarity in swarm

-

(2)

et

Fig. 3. Two neighboring nodes of swarm elements in frames t and t + 1. Note that
the n; consists of two regions.

dynamics, respectively. So, we have 2, =1[] 67[‘!’5<N)

Y (N@)], where

w(N) =TI

{(ti) ()} cTs (g

= or({A" TV eN})

s (A@ , A?’)) and Y7 (N§">>

¢s(.) and ¢r(.) are potentials that evaluate how spatially and
temporally stationary the swarm transformations are. For simplic-

ity, we set ¢5(AY AV)) = p(AY|AY)) and ¥ (N) = p(A! YAY Y.
Using (1) and (2), we can express the negative log prior as in (5).
Note that p2 is a constant function of the “neighbomess" weights,
Cs = EN“)eV 5 ‘rs(t l)l y and CT = ZN(' ) e 2 |F1(t l)l
sume that the normalizing factor Z is constant with respect to the
swarm dynamics, the noise variances, and the AR coefficients. This
simplifying assumption is commonly made in approaches that
make use of graph potentials.

Also, we as-

—In(24) =In(Z) +1n(p,) + CsIn (6%) + CrIn (0%)

igzz

es \{(td).(t)}cTs(tg=

we(j,J) || A

Pt (i 2
1
Z%At j

1
—zZ
T)
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2.4. Learning swarm layout and dynamics

After establishing our probabilistic model, we proceed to learn-

ing its parameters, {T:}"_,, {A;}/-}, the noise variances a5, o7, and

Y (ie. {y,:t=1,...,F—1}), as well as the AR coefficients @ (i.e.
{0 :j=1,...,Wr}). To do this, we embed our model into a MAP
framework. We assume that the prior of the features and the prior
of the noise variances are uniform. Replacing (4) and (5) in (3), we
formulate the MAP problem as a nonlinear and non-convex mini-
mization problem.

min (-In¥ —-In2, —In2y) (6)
(T (A0 05,0173
Due to the complex form of (6), we learn the spatial layout of the DS
and its dynamics in an alternating fashion. At each iteration, we
either fix the dynamics and update the spatial layout or vice versa.
In what follows, we show the steps involved in updating the spatial
layout and the dynamics at the gth iteration. The estimate of each
parameter at the gth iteration is indexed with a [q] suffix.

2.4.1. Spatial layout update [qth iteration of (6)]

We employ a method similar to the one used for video object
segmentation in [16] to update {T.[q — 1]};. We will only high-
light the main aspects of this method and how it applies to model-
ing DS’s. We create a graph whose nodes are all candidates for
frame-to-frame correspondences between {T.[q — 1]}}_, and indi-
vidual segments of these frames. In other words, a segment or
swarm element in frame t corresponds to a segment or swarm ele-
ment in the next frame, if the projection of the former into frame
t+ 1 (according to its optical flow) overlaps with the latter. This
graph allows for the clustering of similar and neighboring nodes,
thus, enabling many-to-many correspondences between consecu-
tive frames. Once this graph is created, the attributes of each node
and the edge weights between neighboring nodes are determined
by si(.) and s3(.), as defined in Section 2.4. For segments that do
not belong to {T.[q — 1]}F_,, we use identity for their transforma-
tion. Given this weighted undirected graph, we cluster its nodes
into valid and invalid correspondences. This binary clustering is
done using graph cuts, instead of relaxation labeling. Then, the
resulting valid correspondences are broken down into individual
connected components, where connectedness is over time and
space. This yields {T([q]}f:]. As pointed out in [16], this method
tends to cluster adjacent/occluding swarm elements with similar
dynamics. For initialization, we set {T,[0]}/_, to all segments in
the sequence with non-zero optical flow.

2.4.2. Dynamics update [qth iteration of (6)]

Given {T.[j]}[_,, we solve (6) iteratively using Iterated Condi-
tional Modes (ICMs) [19], which guarantees a local minimum.
ICM minimizes (6) through a sequence of alternating optimization
steps, where a set of variables is updated while all others remain
fixed. This yields a sequence of update rules that we show next.
Here, we note that we refrained from using a complete EM formu-
lation because it adds considerable computational expense with
limited performance improvement. For better readability, we will
omit in what follows the [q] suffix from all the parameters being
estimated in the gth iteration of (6). Furthermore, we index the
model parameters with [k] to denote their estimates in the kth
ICM iteration.

2.4.2.1 Updating variances. In the kth ICM iteration, the variances
are updated to their ML estimates as follows.

GBS S DS

NO e \{(E)(E))ers(L)

we(i. )|k — A9 | @)

2
1 i SN
otk == > |A"K - > oAl (K (8)
TNg“ew Jj=1 F
2 2 <o AUl
7l = g || — (AVIR)EY (9)
i=1

2.4.2.2. Updating. of We update the AR coefficients & by taking the
gradient of (6) with respect to & and setting it to zero. This yields

the linear system of equations in (10), where & = vec(A([i)) is
the vectorized version of A",
0\ go | 5 M) 30
> (Bt ) B [d=>" (Bt ) a, such that
N£i>e‘n/ Ngi)e((»’
B = [a, ][, (10)

2.4.2.3. Updating transformations. Updating each AE") [k] requires the
minimization of a convex quadratic, matrix problem. At the kth
ICM iteration, we fix all of them except for X = A" [k]. Here, we iso-
late the dependence of (6) on X and minimize the convex-qua-
dratic matrix problem in (11).

) 2es(X) | er(X)
mn&X) =22 ok T oRik] ()

where eg(.) and es(.) represent the reconstruction and spatial sta-
tionarity residuals, respectively. er(.) represents the temporal sta-
tionarity residual corresponding to the frames preceding frame t.
Clearly, optimal swarm element dynamics depends on a data-dri-
ven tradeoff between frame-to-frame reconstruction of features,
spatial stationarity, and temporal stationarity. Minimizing g(X) is
a convex quadratic matrix program that admits a global minimum
X". It can be obtained using gradient descent where the rate of des-
cent 77[k] is determined by a line search. A closed form solution for 1
can be derived. Till now, X has been an unconstrained linear trans-
formation; however, certain applications require that it belong to a
feasible set S, (e.g. rotation or symmetric matrices). To do this, we
project the intermediate solution at each descent step unto S,. In
some cases, this projection is trivial. For example, if

Sy = {X eR™ . X = XT} (i.e. space of symmetric matrices), the

projection of X is Ps,(X) :%<X+XT>. Using differential matrix
identities, we can express the gradient of g(X) in a computationally
efficient form: Vg = (Cld + 55T>X — D where B, b, and D are func-
tions of ff’,fﬂl, and the current estimates of the transformations
and &. We can initialize X in the following two ways.

1. Set X() equal to the transformation obtained from the previous
ICM iteration (i.e. X(o) = Al [k — 1]).

2. If X is constrained to be in Sq, we set X(o) by projecting the solu-
tion to the unconstrained version of (11), denoted as X{jyc, unto
Sq. Setting Vg = 04 and using the matrix inversion lemma, we

« 1 BT
get Xone = ¢ <ld c+uEu§>D

In our experiments, both initialization schemes have similar rates of
convergence; however, (1) tends to be more numerically stable than
(2) when p is small. For the first ICM iteration (k = 0), we initialize
every AP [0] = 04. Numerically, we avoid division by zero by setting
05[0] = 07[0] = 7,[0] = 1. We summarize the optimization steps of
(11) in Algorithm 1. For more details, we refer the reader to A.
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Algorithm 1. Gradient Descent (GD)

Input: X, € Sy, 5,b,D, €

1 Initialization: 6 < oo; ¢ =0
2 while § > € do

3 p,=arg min,,>0g<x(z) - W(Vg)|xu))
4 Xy =X —m(Ve)l,

5 Xui1y =Ps, {X(é %)} (optional)

6 o=eproln r—rt1

7 end

Overall Learning Algorithm Algorithm 2 combines all the above
update equations together to solve (6), which learns the swarm
spatial layout and dynamics jointly. The worst case complexity of
this algorithm is ©(Fd®), since it is defined by the complexity of
Algorithm 1 that has a linear convergence rate.

Algorithm 2. Learn Swarm Layout and Dynamics

Input: {F¢, T¢[0], Ac[0]}r_;, Wr, €, jmax, Kmax
1 forj — 0 TO j,. do

2 // update spatial layout

3 e get {Telj + 1]}y from {Telj), Aclil}r_s
4fort—1TOF;i— 1TOK, do

5 o find generalized Voronoi regions of Tﬁ”
6 e compute we(t, i)
7 end

8 // update noise variances and transformations
9 Initialization: § « co; k =

10 while (6 > €) AND (k < kmax)do

11 e compute as[k], ar[k], k], &[K]

12 fort — 1 TO F;i — 1 TO K; do

13 e compute ﬁ,I;,D,X((,)

14 o’ [k + 1]GD (X0}, f,b, D,
15 end
_ A R 1) AD K g
16 6 = max AL Ek=k+1
17 oAl[j] =Bk + 1]vt,i
18 end
19 end

3. Experimental results

To validate our model and evaluate the performance of our
algorithm, we conducted experiments on synthetic sequences
(Section 3.1) and real sequences (Section 3.2). The synthetic se-
quences help provide quantitative evaluation. Our experiments
show that our DS model can learn the dynamics of swarms, dis-
criminate between different types of swarm motion, and exploit
the learned dynamics/transformations to perform human action
recognition.

3.1. Synthetic sequences

We construct a synthetic DS sequence of F =25 frames and
K = 8 elements (4 leaves and 4 squares with a simple textured
interior). Fig. 4a shows a sample frame of this sequence, where
the boundaries of the generalized Voronoi regions are drawn in
green. The motion of the swarm elements is synthesized by apply-

ing a globally 51mllar rotation Jﬂm Specifically, for each element in
every frame, 60 is sampled' from a Gaussian distribution
N (O =2 ,00 = ). Noise is added to evaluate the robustness of
our model and learning algorithm.

3.1.1. Model learning

The features fﬁ” we used were based on a polar coordinate sys-
tem centered at the centroid of each element, where each angular
bin had a width of % rad. For each angular bin, we extracted two
shape features (1<urt0515 and skew), the mean centroidal distance
of the element boundary, and the mean intensity value. This yields
a feature vector of size d = 160 that was further reduced to d = 40
using PCA. Setting € = 1073, kmax = 50 and Wy =3, we applied
Algorithm 2 to learn the swarm dynamics. Running MATLAB on a
24 GHz PC, our algorithm converged in 40 ICM iterations
(~10s). Fig. 4b shows a sample transformation matrix after con-
vergence. We evaluate our model fitting performance by using
three measures: the reconstruction residual error {;(t) defined in
(12), the spatial residual error {s(t) defined in (13), and the tempo-
ral residual error {;(t) defined in (14).

Galt) = l(g": ”fl H ex (A (12)
_1 £ ()
S OB |A<">|\F s )
|
TR e AT, t,1||\A PV "

These residuals quantify the average normalized error incurred in
reconstructing the data and enforcing stationarity in the spatiotem-
poral neighborhood of each swarm element. Clearly, the smaller
these measures are, the better our model fits the data. Fig. 4c plots
these measures for all frames in the sequence. All three measures
show a stable variation with time. {5 and {; are consistently larger
than {; due to the added noise corrupting each transformation. In
fact, as 0 — 0,{s and {; both get closer to {;. Furthermore, {; is
consistently larger than {s because temporal neighborhoods only ex-
tend Wr =3 frames from each swarm element. In fact, as
Wr — (F — 1),{; gets closer to (s, since temporal stationarity is en-
forced on a larger number of frames. Here, we point out that although
the leaf and square elements are significantly different in appearance,
their dynamics are the same. This reinforces the fact that our method
successfully separates between swarm appearance and dynamics. In
Fig. 4d, we plot the average residuals as a function of increasing noise
level. The error residuals increase with the noise level in a super-
linear fashion, thus, providing empirical evidence that our fitting
algorithm is relatively stable under transformational noise.

3.1.2. Motion discrimination

Here, we demonstrate that the learned transformations can
discriminate between different types of motion. Another syn-
thetic DS sequence is constructed in the same manner as before,
but with the leaf and square elements now rotating in opposite
directions. Leaf elements undergo 2, while square elements un-
dergo 270[.‘ After learning the swarm dynamics, we compute all
the distances (i.e. Frobenius norm of the difference) between
pairs of learned transformations. We show the resulting distance
matrix in Fig. 5a. We see that the transformations corresponding
to the leaf elements are close to each other and far from those
corresponding to the square elements. For visualization purposes,
we perform MDS on these pairwise distances to embed the trans-
formations in R3. In this space, the leaf and square dynamics are
easily separable. Moreover, these transformations can be perfectly
clustered using spectral clustering (K = 2) [20]. This result rein-
forces the fact that our method can successfully learn and dis-
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Fig. 4. (a) Is a frame in the synthetic sequence, (b) shows transformation A%), after convergence, (c) plots the spatiotemporal residual errors for all frames at a single noise
level g, while (d) plots the average residuals with increasing noise. All video results are provided in Supplementary material.

MDS of Texel Transformations

LEAF
© SQUARE

d(E+)
(»“@)p

d(#,€)
(aca)p

(a) distance matrix (b) MDS of swarm dynamics

Fig. 5. (a) Shows the distances between the swarm dynamics in the synthetic sequence. Note that brighter values designate larger distances. (b) Projects the transformations
onto R* using MDS.

criminate between different motions occurring within a single DS 3.2. Real sequences

sequence. This conclusion is valid as long as the “neighborness”

weights associated with swarm elements undergoing similar In this section, we present experimental results produced when
dynamics are reasonably higher than those undergoing different Algorithm 2 is applied to real sequences where single or multiple
dynamics. elements are undergoing an underlying dynamic swarm motion.
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Fig. 6. (a) Plots the recognition performance of a NN classifier vs. the number of training samples used per action type. (b) Shows the confusion matrix when eight samples
are used for training on the Weizmann action recognition dataset. Darker squares indicate higher percentages.

O

Fig. 7. “Birds”, “geese”, “robot”, and “pedestrian” swarms.

3.2.1. Single swarm element sequences

Here, we apply our algorithm to human action recognition,
where we consider the human as a single texel. There is no need
to determine the spatial neighborhoods of the texels. The action se-
quences were obtained from the Weizmann classification data-
base,®> which contains 10 human actions. We use background
subtraction to extract the texels. In addition to the features used ear-
lier, we use the height and the width of the texel masks at each
frame.

After learning the texel transformations, we use a nearest
neighbor (NN) classifier to recognize a test action sequence, given
a set of training sequences. We define the dissimilarity between
two sequences (1 and ) as the dynamic time warping (DTW)
cost [21] needed to warp the transformations of .#; into those of
%>, where the dissimilarity between transformations X; and X,

is defined as: d(X;,X;) =1 —%. Such a warping is crucial,
since %1 and %> might have different cardinalities (i.e. swarm ele-
ments do not have to appear in the same number of frames). The
DTW cost is efficiently computed using dynamic programming.
Fig. 6a plots the variation of the average recognition rate vs. the
number of sequences (per action class) used for training. For each
training sample size, we randomly choose a set of such size from
each action class and perform classification. We repeat this multi-
ple times and average the recognition rate to obtain the plotted
values. Obviously, the performance improves as the number of
training samples increases. More importantly, we note that a sim-
ple classifier using only one training sample achieves a 62% recog-

3 These sequences are publicly available at www.wisdom.weizmann.ac.il/vision/
SpaceTimeActions.html.

Table 1

Average normalized residual error (as %). The percentage values in parentheses are
the average errors normalized by the error incurred when the swarm dynamics are
not updated.

“Birds” “Geese” “Robot” “Pedestrian”

(R 8.2 103 35 12.9

(s 12.5 6.5 11.6 15.8

{r 18.0 14.1 16.4 231

L 5.4% 4.9% 4.2% 9.5%

Tr(lg)

s 6.8% 5.8% 5.5% 11.6%

)

i 4.1% 7.7% 4.4% 18.3%

nition rate, where random chance is 10%. Furthermore, Fig. 6b
shows the average confusion matrix. Note the high diagonal values.
Here, we point out that confusion occurred between similar actions
especially for the (“jump”, “skip”) and (“run”, “walk™) pairs.
Although the performance of our DS method on this dataset is
not better than state-of-the-art approaches that make use of spe-
cialized features, improved performance is expected, when texels
are extracted more reliably and features are more discriminative
of human appearance/motion.

3.2.2. Multiple swarm element sequences

We apply our algorithm to swarm video sequences compiled
from online sources. We perform model learning and motion
discrimination on four sequences: “birds” [14], “geese”, “robot

swarm”,* and “pedestrian” [5].

4 These sequences are publicly available at http://people.csail.mit.edu/jamesm/
swarm.php/videos.
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Fig. 8. Shows the “birds” swarm example containing a “bird-flapping” and “bird-gliding” motion. The pairwise distances between the learned transformations are shown on

the right.

e o o o

Fig. 9. Shows a pedestrian example containing three types of motion. The extracted swarm elements are color-coded. The pairwise distances between the learned
transformations are shown on the right. Brighter squares indicate larger distances. Refer to the Supplementary material for these and other video results.

3.2.2.1. Model learning. Here, the features we used were the same
as in Section 3.2.1. Setting €=102j .. =5, knx =50 and
Wr =5, we applied Algorithm 2 to learn the spatial layout and
dynamics of each swarm sequence. To evaluate the performance
of our method, we conducted a leave-N-out experiment, where
we learn the swarm dynamics using all the frames except for N.
In this experiment, we set N = WLT The transformations and fea-
tures of the elements in the left out frames are reconstructed using
the AR model. We repeated this experiment and reported the aver-
age normalized residual errors in Table 1, for the four sequences.
These results show that our DS model represents the ground truth
data well. Here, we note that the error was the highest for the “pe-
destrian” sequence due to the variability in the swarm dynamics
and appearance. Also, we compared these residual errors to the
case when identity is used instead of the learned transformations
(i.e. no dynamics update). The ratio of these two errors are shown
in parenthesis (in %). Clearly, our learned dynamics enable reliable
model fitting (see Fig. 7).

3.2.3Motion discrimination

Here, we demonstrate that our method can discriminate be-
tween different motions (i.e. sequences of transformations) within
the same video sequence. After learning the swarm dynamics, we

compute the dissimilarity in dynamics between every pair of
swarm elements. We use DTW to compute the dissimilarity
between two sequences of swarm element transformations and
use the DTW costs in a spectral clustering setting to cluster the
swarm elements’ dynamics, as in Section 3.2.1.

The “birds” and “pedestrian” sequences contain more than one
distinguishable motion. Fig. 8 illustrates the clustering results
obtained for the “birds” sequence. The extracted swarm elements
are color-coded in the frames according to their distinct motions.
In this sequence, two types of motion co-exist: (i) a “bird-flapping”
motion where wings oscillate up and down and (ii) a “bird-gliding”
motion where the wings remain relatively still. On the right, Fig. 8
shows the DTW distances computed between all pairs of swarm
element dynamics. We clearly see that type (i) elements undergo
quite different transformations than those of type (ii). Our approach
was able to simultaneously learn the different dynamics in the se-
quence and discriminate them. This cannot be done by DT models
such as [14].

We also apply our algorithm to “pedestrian” video sequences,
where humans or groups of humans are considered swarm ele-
ments. These sequences were obtained from the UCSD pedestrian
traffic database [5]. Fig. 9 illustrates the results obtained for a
single pedestrian sequence that exhibits dense swarm activity.
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The extracted swarm elements are color-coded in the frames
according to their distinctive dynamics. In this sequence, three
types of motion co-exist. (i) Elements (some of which are groups
of pedestrians) move/walk from the top right corner to the bottom
left corner. (ii) Other elements moves in the opposite direction. (iii)
One element represents a person crossing the grass instead of
walking along the diagonal path. On the right, Fig. 9 shows the
DTW distances computed between all pairs of swarm elements.
We see that the elements of (i) undergo much more similar trans-
formations than those of (ii)-(iii), which, in turn, have significantly
different dynamics. Some pedestrian segments were not part of the
spatial layout since they were indistinguishable from the
background.

4. Conclusion

This paper proposes a spatiotemporal model for learning the
spatial layout and dynamics of elements in swarm sequences. It
represents a swarm element’s motion as a sequence of linear trans-
formations that reproduce its properties subject to local stationa-
rity constraints. We conducted experiments on real sequences to
demonstrate our approach’s merit in representing swarm dynam-
ics and discriminating between different dynamics. Our future goal
is to apply this method to motion synthesis and recognition.
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Appendix A. Optimization details of (11)

The cost function g(X) in (11) is convex quadratic in X = A" [k],>
since it is a non-negative linear combination of three error terms
(er,es, and er), which are convex quadratic in their own right. We
express these terms and their gradients with respect to X as
follows.

= 5 2

= [0 —xe | (A1)
" 2

= 3 wiii)[x-A"K| (A2)
(ti)eTg(ti) F

Pr 0
, minWrEoen) o z‘[k]:;“fAt ilK]
erX)=X-ZiKF+ > [uX-SP K] where o (A3)
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Next, we find an explicit expression for the gradient of g(X) using
the gradients of the three residual terms above.

Ver = —28"E] + 2(FF )X (A4)
Ves=-2 > w(i,)AVK+2| 3 wiii)|X (A5)
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+2(1+ > )X (A.6)

=

5 Note that this problem is being solved at the kth ICM iteration.
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Setting the gradient to zero and using the matric inversion lemma,
we obtain a closed form expression of the global minimum for the
unconstrained version of (11), as stated in (A.10). This solution is
referred to in Section 2.4.2.

bb’
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¢+ |[blf3
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2012.09.002.
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