
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. I I . NO. 2. FEBRUARY 1989 137

Generating Octrees from Object Silhouettes in
Orthographic Views

NARENDRA AHUJA, SENIOR MEMBER, IEEE, AND JACK VEENSTRA

Abstract-Octrees are used in many 3-D representation problems be-
cause they provide a compact data structure, allow rapid access to oc-
cupancy information, and implement many geometric manipulation al-
gorithms efficiently. The initial acquisition of the 3-D information,
however, is a common problem. This paper describes an algorithm to
construct the octree representation of a 3-D object from silhouette im-
ages of the object. The images must be obtained from any subset of
thirteen viewing directions corresponding to the three “face” views,
six “edge” views, and four “corner” views of an upright cube. These
views were chosen because they provide a simple relationship between
pixels in the image and the octant labels in the octree, thus replacing
the computation of detecting intersections between the octree space and
the objects by a table lookup operation. The average ratio of the object
volume to the octree volume is found to be greater than 90 percent.
The sequential use made of the chosen viewing directions results in a
coarse-to-fine acquisition of occupancy information. The number and
order of the viewpoints used provides a mechanism for trading accu-
racy of the representation against the computational effort needed to
obtain the representation.

Index Terms-Computational efficiency, occupancy map, octree,
performance analysis, robotics, silhouette images, three-dimensional
representation.

I. INTRODUCTION
HREE-dimensional object representation is of crucial T importance to robot vision. Part of the task lies in the

generation and maintenance of a spatial occupancy map
of the environment. The occupancy map describes the
space occupied by objects. Some of the uses of such a
representation include robot navigation and manipulation
of objects on an assembly line. This paper is concerned
with the construction of one such representation, namely,
the octree representation, of an object from its silhouette
images.

An octree [I] , [7], [12] is a tree data structure. Starting
with an upright cubical region of space that contains the
object, one recursively decomposes the space into eight
smaller cubes called octants which are labeled 0-7 (see
Fig. I) . If an octant is completely inside the object, the
corresponding node in the octree is marked black; if com-
pletely outside the object, the node is marked white. If

Manuscript received June 12, 1986; revised October 5 . 1987. This work
was supported by the National Science Foundation under Grant ECS 83-
52408 and by AT&T Information Systems.

N . Ahuja is with the Coordinated Science Laboratory, University of
Illinois, 1101 W. Springfield Avenue, Urbana, IL 61801.

J . Veenstra was with the Coordinated Science Laboratory, University
of Illinois, 1101 W. Springfield Avenue, Urbana. 1L 61801. He is now
with AT&T Communications and Information Systems, Naperville, IL
60566.

IEEE Log Number 8824653.

Fig. 1 . A cube and its decomposition into octants

the octant is partially contained in the object, the octant
is decomposed into eight suboctants each of which is again
tested to determine if it is completely inside or completely
outside the object. The decomposition continues until all
octants are either inside or outside the object or until a
desired level of resolution is reached. Those octants at the
finest level of resolution that are only partially contained
in the object are approximated as occupied or unoccupied
by some criteria.

We call the starting cubical region the “universe cube.”
The recursive subdivision of the universe cube in the
manner described above allows a tree description of the
occupancy of the space (see Fig. 2). Each octant corre-
sponds to a node in the octree and the node is assigned
the label of the octant. Fig. 2(a) shows a simple object.
Fig. 2(b) shows the same object enclosed in the universe
cube and Fig. 2(c) shows the corresponding octree. The
children nodes are arranged in increasing order of label
values from left to right. The black nodes are shown as
dark ovals and the white and gray nodes are shown as
empty ovals. In practice, of course, the white nodes need
not be stored.

This paper addresses the following problem: given a
sequence of sihouette views of an object, construct the
octree representing the object which gave rise to those
views. A given silhouette constrains the object to lie in a
cone (for perspective projection) or a cylinder (for ortho-
graphic projection) whose cross section is defined by the
shape of the silhouette. In this paper, we will consider
orthographic projection of an object onto a plane perpen-
dicular to a viewing direction. We will call “extended
silhouette” the solid region of space defined by sweeping
the silhouette along a line parallel to the viewing direction

0162-8828/89/0200-0137$01 .OO 0 1989 IEEE

138 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL I I . NO. 2. FEBRUARY IY89

0 1 2 3 4 5 6 7

(C)
Fig 2 (a) A simple object (b) Recursive subdivision of space superim-

posed on the Object in (a) to obtain its representation (c) Octree for the
object in (a), r denotes the root node Black (white) leaves are indicated
by ddrkened (empty) circles

used in obtaining the silhouette. The object is constrained
to lie in the intersection of all extended silhouettes. As
the number of silhouettes processed increases, the fit of
volume of intersection of the cylinders to the object vol-
ume becomes tighter. In our algorithm, we do not perform
the intersection explicitly, but infer the octree nodes from
silhouette images according to a predetermined table that
pairs image regions with their corresponding octree nodes.

An alternate approach, due to Shneier et al. [5], [12],
to the problem of constructing the octree from silhouettes
explicitly tests for the intersection between an octree node
and the extended silhouette by projecting the nodes of the
tree onto the silhouette image. Consequently, their algo-
rithm can process silhouettes obtained from any view-
point. Our algorithm restricts viewing direction in order
to make the intersection detection process more efficient.
Further, their algorithm allows perspective views,
whereas our algorithm requires orthographic views. The
two algorithms are compared in Section 111. Chien and
Agganval [4] describe an efficient method for construct-
ing an octree for an object from silhouettes of its three
orthogonal views. Our method is similar to theirs except
that their algorithm provides coarser results since they
only use three axial views. The accuracy of the octree
describing the object is improved if, in addition to the
three orthogonal views, information from other views of
the object is also used. Of course, the challenge lies in
containing the amount of computation while improving
accuracy.

During the development of our image-to-octree algo-
rithm, we felt the need for an octree-to-image display al-
gorithm to visually monitor the accuracy of the octree as
it evolves by assimilating object information present in
successive silhouette views. We developed an algorithm
for this octree-to-object transformation, which is the re-
verse transformation of constructing the octree from the
object discussed in the first part of the paper. The octree-
to-image algorithm displays an object represented by a

given octree as a line drawing in perspective with hidden
lines removed. The line drawing can be displayed corre-
sponding to any arbitrary viewpoint. We do not give de-
tails of the display algorithm in this paper, but we use this
algorithm to display line drawings of the octrees derived
by the octree generation algorithm. A visual comparison
of the original objects with those depicted by the line
drawing algorithm then serves as a useful test of the cor-
rectness of octree generation algorithm.

We also present results on more precise evaluation of
the performance of our octree generation algorithm. The
performance measure used is the ratio of the true volume
of the object to the volume represented by the octree gen-
erated. The variation of the accuracy of representation
with changes in object orientation, object complexity, and
allowed computation time are studied.

The algorithm reported in this paper is part of a three-
dimensional representation, manipulation, and navigation
system that we are developing. The common theme
through the various components of the system is the use
of octree repesentation. The problem addressed in this pa-
per is that of initial acquisition of the occupancy infor-
mation and construction of octree representation from or-
thographic views. Elsewhere, we have examined the
problems of generating octrees from perspective views
[13], updating octrees as objects in the scene move [1],
[1 11, [141, and using octress for path planning [6].

In Section I1 we describe our octree generation algo-
rithm. Section 111 discusses the performance of the algo-
rithm. Section IV presents experimental results as line
drawings of the objects represented by the generated oc-
trees. Section V presents concluding remarks.

11. OCTREE GENERATION ALGORITHM

The algorithm presented in this section provides a
method of octree generation which avoids computations
of projections and intersections. The viewing directions
are defined with reference to the universe cube and are
restricted to be those providing one of the six “face”
views, one of the twelve “edge” views, or one of the
eight “comer” views of the universe cube. Although this
allows only thirteen useful views (since views from any
two opposite directions provide the same silhouette), the
viewpoints are distributed widely in space and together
provide significant information to construct a good ap-
proximation of the object. All thirteen views are not es-
sential for the algorithm to work. Any subset of the thir-
teen viewing directions can be used resulting in a cost and
accuracy tradeoff discussed in Section 111.

Restricting the viewpoints in this manner allows us to
find correspondences between the pixels in the two-di-
mensional silhouette image and the octants in the three-
dimensional space that define the octree. The relationship
between pixels and octants for an orthographic face view
is easily derived so it is described first. Then the relation-
ships between pixels and octants for orthographic edge
and comer views are presented. Similar relationships
would be difficult to obtain for an arbitrary viewpoint.

AHUJA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES 139

A . Face View
A “face view” is the view obtained when the line of

sight is perpendicular to one of the faces of the universe
cube and passes through the center of the cube. Thus a
face x view is the orthographic projection of the object
onto the yz plane. A digitized silhouette image would be
represented in the computer as a square array of pixels.
Pixels having a value of 1 denote the region onto which
the object projects. Pixels having a value of 0 represent
the projection of free space.

The projection of the cube in Fig. 1 along the x direc-
tion results in pairs of octants projecting onto the same
region in the image. For example, octants 5 and 4 project
onto the upper left quadrant, octants 7 and 6 project onto
the upper right quadrant, and so on. (See Figs. 1, 3(a).)
This simple relationship between octants and their projec-
tions allows the construction of the octree directly from
the pixels in a digitized silhouette image.

Given a square array of pixels representing a face x sil-
houette image, its contribution to the octree can be ob-
tained using the decomposition scheme shown in Fig.
3(a). The quadrants of the silhouette image are processed
as if a quadtree were being constructed. A quadrant is
recursively decomposed until it is either all ones or all
zeros. But instead of adding to the tree only one node per
quadrant during recursive decomposition, as is the case
with quadtrees, two nodes are added, as in Fig. 3(a).
Thus, when a quadrant of the silhouette is further decom-
posed, each subquadrant could add up to four nodes to the
octree instead of one. Fig. 3(b) shows the nodes assigned
to the subquadrants.

A similar procedure is used for the other two face views,
the only difference being in the labeling scheme for the
image quadrants. For example, the labels for the upper
left quadrant for the face y view are 7, 5 , and for the face
z view are 4, 0 (see Fig. 4).

B. Edge View
An “edge view” of a cube is the view obtained when

the line of sight bisects an edge of the universe cube and
passes through the center of the cube. An edge view is
labeled with the two adjacent octants of the universe cube
each of which contains one-half of the bisected edge. The
octants of the cube in Fig. 1 viewed from edge 3-7 would
appear as shown in Fig. 5 . Since the octree generation
algorithm requires a square array, the elongated image
from an edge view must be compressed into a square ar-
ray. This is accomplished by resampling the digitized im-
age with smaller density along the horizontal direction.

The recursive procedure for constructing an octree from
a square array of pixels representing an edge view is sim-
ilar to procedures for constructing a quadtree. If the square
array is all ones or all zeros, then it is marked black or
white, respectively. Otherwise it contains some ones and
some zeros and it is decomposed recursively in two dif-
ferent ways.

1) It is decomposed into the usual four quadrants, each
with one label. The labels depend on which edge is being

5,4 7 , 6
I 175, 74 177.76 5, 4 I65.64i67.66i

71 70 13.72
61.60 b3. 62

I I 1

(a) (b)
Fig. 3. The labeling scheme for quadrants for the face x view. Each quad-

rant is assigned two labels (a) instead of one. Each time a quadrant is
subdivided, the subquadrants have twice as many labels (b).

4, 0 6, 2 7-
5 , 1 I 7, 3

Fig. 4. The labeling scheme for quadrants for the face y view (a), and face
z view (b).

I I I I

Fig. 5. The cube in Fig. 1 view from edge 3-7

I l l 2 / I 1 3 ~ 0 1 I
U U

(a) (b)
Fig. 6 . The decomposition of the image array for the edge 3-7 view into

4 quadrants (a) and 2 center squares (b).

viewed. For example, the labels for the four quadrants for
the edge 3-7 view are given in Fig. 6(a). If a quadrant
contains both zeros and ones then it is recursively decom-
posed.

2) It is decomposed into two center squares and two
margins [see Fig. 6(b)]. The center squares are the same
size as the quadrants in the first decomposition step. The
margins are half the width of the squares and are not used.
Each center square has two labels. These are treated in a
manner similar to the way the quadrants with two labels
for the face view are treated. Whenever a node with one
of the two labels is added to the octree, another node with
the other label is also added, If a center square contains
both zeros and ones, then it is recursively decomposed.

Each time a quadrant or a center square is decomposed,
both methods of decomposition described above are used,
unless it is a 2 x 2 square in which case only the first
method is used. At each recursive decomposition step the

140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 1 1 . NO. 2. FEBRUARY 1989

dimension of the quadrants examined is half that at the
previous step. When the dimension of a quadrant is 2, it
can only be decomposed according to the first method
above (otherwise an image pixel would have to be split in
half). To prevent the introduction of nonexistent “holes”
in the octree during this process, a center square of a 2 x
2 array is marked black if either one of the two quadrants
intersecting with it is marked black. For example, if a
silhouette image taken from edge 3-7 is decomposed down
to a 2 X 2 square and the upper right quadrant (whose
label is 6) is black, then, in addition to octant 6, octants
7 and 4, corresponding to the upper central square, will
also be marked black.

Fig. 7(a) shows the center squares decomposed into four
quadrants (each quadrant inherits two labels from the par-
ent square) and Fig. 7(b) shows quadrant 6 decomposed
into two center squares.

C. Corner View
A “comer view” is the view obtained when the line of

sight intersects a comer of the universe cube and passes
through the center of the cube. Each comer view is la-
beled according to the comer octant which is closest to
the viewer. The silhouette of a cube viewed from one of
its comers is a regular hexagon [see Figure 8(a)]. Because
the geometry of the comer view silhouette does not cor-
respond naturally with the rectangular image plane, pro-
cessing a comer view is somewhat more complicated than
processing face or edge views where the silhouette of the
universe cube is a rectangle.

The silhouettes of the different octants of a cube are all
regular hexagons whose regions of intersection are com-
posed of equilateral triangles (see Fig. 9). The silhouette
of any octant is a union of subset of these triangles. Thus,
the occupancy of an octant can be inferred from the oc-
cupancy of an appropriate set of triangles. The occupancy
of the universe cube can be inferred from the occupancy
of the six major triangular cells [Figure 8(a)]. To generate
nodes at lower levels in the octree, the triangles of interest
are the result of recursive triangular decomposition [see
Fig. 8(b) and 8(c)] of the six major triangles. Therefore,
the processing of a corner view is done in two phases.
First, six quadtrees are generated from the digitized im-
age in such a way that each quadtree represents one of the
six triangular sections of the regular hexagon silhouette
of the universe cube. Second, the octree is constructed
from the six quadtrees. The quadtrees and octree are con-
structed recursively.

To construct the quadtrees, the universe hexagon is di-
vided into six triangles labeled 0-5 as shown in Fig. 8(a).
Each triangle is recursively subdivided and its nodes are
labeled 0-3 according to one of the two schemes shown
in Fig. 8(b) and (c). The orientation of the triangle deter-
mines which labeling scheme is used. In both labeling
schemes, quadtree node 0 is in the center and node 2 is in
the lower comer. The recursive subdivision of a triangle
into four subtriangles continues until the distance between

35. 36.
0 5 06

3 1 . 32.
01 0 2

(a) (b)
Fig. 7. Further decomposition of center squares into quadrants (a), and of

the upper right quadrant into center squares (b).

(a) (b) (C)
Fig. 8. The division of the universe hexagon into six triangular sections

(a). Each section is represented by a triangular quadtree. The labels of
the quadtree nodes for each of the two orientations of a triangle (b), (c).

Fig. 9. The projection of octant 5 (shown in bold lines) which overlaps
triangular quadtrees 0 and 1.

the distance between pixels in the digitized image. The
image pixel nearest the center of the triangle at the lowest
level in the quadtree determines whether the correspond-
ing quadtree node is black or white. The color of a quad-
tree node above the lowest level is determined by the
colors of its children. If the children of a quadtree node
are all white or all black, then the parent node is assigned
the same color as its children, and the children are re-
moved from the tree. Otherwise, some children are white
and some are black so the parent is assigned the color
gray. Each quadtree is given the label (0-5) of the major
triangle it represents. Once the six quadtrees are con-
structed, the raw silhouette image data are no longer
needed. The octree is generated directly from the quad-
trees; quadtrees are used only as an intermediate step in
the octree construction.

The octree construction is best explained by showing
the centers of adjacent triangles is less than or equal to how the color of a particular octant is determined. Fig. 9

AHUJA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES 14 1

shows the projection of octant 5 in relation to the projec-
tion of the universe cube viewed from octant 7. Octant 5
also projects as a hexagon and overlaps triangular quad-
trees 0 and 1. Octant 5 is labeled white if the nodes of
quadtrees 0 and 1 covered by the projection of octant 5
are all white. In this case the relevant nodes that need to
be examined are: nodes 0, 1, 3 of quadtree 0 immediately
below the root level, and nodes 0, 1, 2 of quadtree 1 im-
mediately below the root level. If these nodes are not all
white nor all black and the predetermined maximum depth
for the octree has not been exceeded, then octant 5 is re-
cursively subdivided and the appropriate children of these
nodes in the quadtree at the next lower level are exam-
ined. This process continues until all nodes are labeled
black or white. The same procedure is used for the other
octants, the only difference being in the set of quadtree
children which needs to be examined. The details for the
actual procedures used can be found in [2].

D. Octree Intersection
One octree is generated from the silhouette obtained

from each viewpoint. The resulting octrees are intersected
a pair at a time to find the global intersection octree. We
experimented with other algorithms where the already
generated octree is used to guide the search of the next
silhouette image, to reduce the number of generated nodes
in constructing the updated octree. However, we found
that the savings obtained were marginal on an average,
and generally independent generation of octrees leads to
a simpler method with comparable performance.

111. PERFORMANCE OF THE OCTREE GENERATION
ALGORITHM

In this section, we will discuss some issues regarding
the performance of our octree generation algorithm de-
scribed in the previous section. First and foremost is the
issue of the accuracy of the object shape captured by the
octree generated. Next is the question whether any trade-
off is possible between the accuracy of the representation
obtained and the complexity of the computation per-
formed to obtain it. Another aspect of the algorithm con-
cerns the execution time, i.e., the efficiency with which
the algorithm implements the necessary computations.

A. Dejining Accuracy
An algorithm of the kind described in this paper that

attempts to reconstruct an object shape from its silhouette
views suffers some inherent limitations. First, the algo-
rithm cannot detect those three-dimensional features of
the object that are lost during the projection process. For
example, no surface concavities are registered. Thus, at
its very best the algorithm suffers from such detection er-
rors that occur during the data acquisition phase; the al-
gorithm can provide a representation of only a bounding
volume of the object. Then, there are the inaccuracies
arising from the limitations of the representation itself. In
our case, the octree of a given depth will have an asso-
ciated error due to the 3-D spatial quantization. An in-

crease in the allowed depth (resolution) of the octree will
reduce the error, possible to zero. Finally, there is the
usual 2-D digitization error in obtaining the image. This
error can also be reduced by using higher resolution im-
ages.

Beyond these general sources of inaccuracy is the re-
striction of the viewing directions used specifically by our
algorithm. This limits the amount of available informa-
tion about the object, leading to differences between the
shape of the object captured by the octree and the original
object. This error in shape representation may serve to
measure the accuracy with which an object is approxi-
mated using silhouettes obtained from the given viewing
directions. The approximation, of course, depends on the
shape and orientation of the object viewed.

Thus, one possible measure of accuracy for a set of
viewing directions is the ratio of the volume of the small-
est object which could give rise to a given set of silhou-
ettes to the volume of intersection of the extended silhou-
ettes. This measure is a fraction since the volume of the
intersection of extended silhouettes of an object contains
that object. Even if the object is convex, the volume of
the object is probably smaller than the volume of the in-
tersection. This worst-case definition means that if a given
set of silhouettes has an accuracy measure of 90 percent
then the volume of the actual object can be no less than
90 percent of the computed volume. Some restrictions
must be placed on the object shape (such as requiring it
to be convex) to prevent the smallest object from having
an arbitrarily small volume. Even with restrictions, how-
ever, the accuracy measure can be very low if only a few
views are used. For example, there exist convex objects
smaller than a unit cube which have unit squares as sil-
houettes when viewed along three orthogonal directions.
The projection of a tetrahedron oriented so that its four
vertices coincide with four vertices of the unit cube is a
unit square when viewed along any direction perpendic-
ular to the face of the unit cube. The tetrahedron would
be represented as a cube by the algorithm since the inter-
section of extended silhouettes is a cube. The volume of
the tetrahedron, however, is only one-third the volume of
the cube. Since a tetrahedron inscribed in a unit cube is
the smallest convex object whose three orthogonal silhou-
ettes are unit squares, the accuracy measure for that set
of three silhouettes is 33.3 percent.

The above definition of accuracy may be of only theo-
retical interest; the difficulty of finding the smallest object
for each set of silhouettes makes this definition impracti-
cal. An alternate approach is to empirically measure the
performance of a chosen set of viewing directions on a
suitable set of objects. The measure of accuracy for a
given object is the observed ratio of the volume of the
object to the volume of the intersection of the extended
silhouettes of the object. For example, a sphere would
have an accuracy measure equal to the ratio of its volume
to the volume of the intersection of circular cylinders con-
taining it, where the axes of the cylinders coincide with
the viewing directions. Using this measure of accuracy,

142

I

IEEE TRANSACTlONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. I I . NO. 2, FEBRUARY 1989

Objects Used in Performance Analysis

Defi"LU0n Volume

x . y . r in L-1.11 8.0

three orthogonal views of a sphere would yield an accu-
racy of 88.9 percent. The accuracy of nine face and edge
views is approximately 98.7 percent.

Except for the sphere, the accuracy of a set of viewing
directions for a given object is dependent on the object's
orientation. In one orientation, the tetrahedron yields an
accuracy of 33.3 percent for three orthogonal views; in
another orientation, the accuracy is 100 percent. In fact,
only two orthogonal views of the tetrahedron are neces-
sary to represent it exactly. To obtain the average perfor-
mance of all orientations, a Monte Carlo simulation ex-
periment can be performed to measure the desired ratio of
volumes over a large number of randomly chosen orien-
tations. Then, for a given set of objects, the measurement
of accuracy for a set of viewing directions is the estimated
expected value of the ratio of the object volume to the
constructed volume for a randomly selected object at a
randomly selected orientation.

B. Measuring Accuracy
How should the objects constituting the test set be cho-

sen? One way to resolve this question is to use objects
having shapes used as primitives for three-dimensional
representations, e .g . , generalized cones. A generalized
cone is defined by a space curve spine and a planar cross
section which is swept along the spine according to a
sweeping rule. The sweeping rule determines how the
cross section changes as it is translated along the spine.
Fig. 10 shows a sample of generalized cones used by
Brooks [3] as primitive volume elements.

The measure of accuracy can then be computed as the
average of the results of a large number of executions of
the following three step procedure. First, an arbitrary ob-
ject from the chosen set and a random orientation are se-
lected. Second, the object is projected along each viewing
direction to provide a set of silhouette images. Finally,
the octree is constructed and the corresponding object vol-
ume computed. The ratio of the actual to the computed
volume is the desired result for the chosen object and ori-
entation.

In our experiments, we used the set of geometric ob-
jects shown in Fig. 10 with the following modifications.
In place of 10(f) we used a circular cone; in place of 1O(g)
we used a regular cube; and in place of 10 (i) we used a
regular pyramid. We further added the sphere and a small
cube to the set of objects giving us eleven objects on which
to observe the performance of the octree generation al-
gorithm. These objects were viewed at random orienta-
tions to determine an average accuracy resulting from the
thirteen viewing directions described in this paper. Fig.
11 lists the objects used along with their mathematical
definitions and volumes. The cube is the largest object in
the list and all other objects fit inside it. This was done
so that the silhouettes of all the objects would be guar-
anteed to fit on the simulated image screen.

For each object in the test set, one hundred random ori-
entations were selected. For each orientation, the thirteen
digitized silhouette images in the form of binary-valued

x ' + y ' < l ,

x ' + s ' < m,
and 1 in 1-1. 11

4
and z in [-1, 11

x ' + y ' t z ' < 1

y in [+ 2 5 . 0 251
x , 1 in [- I . 11

and

2 < (2 -IF x .-.
y' 6 H,

and y' 6 H.

and i zn 1-1. 11

2 < (:-I)* x .-.

and z LS [0 .0.8]

x . y . 2 in I-1.11.

Fig. 10. A selection of generalized cones taken from [3] . A rectangular
prism (a), an octagonal prism (b), a wedge (c), an arc (d), a cylinder (e) ,
a truncated cone (f), a rectangular solid (g), a slice (h), and a truncated
pyramid (i).

6 2832

2.0944

4 1888

2 0

2 6667

0 6293

6 6274

, i 6 - I 6 x 6 1 then .-Ji6 y c - x + J i
and i l - & + I < x < &-I then -1 < y < 1.

I I - 1 <.x < - & + I then - z - A 6 y < x + 6

x in IO. 11.
and Y . i in 1-1. 11.

Name
Cube

Cylinder

Cone

Sphere

Slice

Pyramid

Wedge

Octagonal
PrlSm

Rectangular
PrlSm

Arc

Small Cube

2 0

x , y , i i n [- 0 1 2 5 . 0 1 2 5] 00156

~ . -
and 2 y - 1 6 r \ < 2 y t l

x , y > o . 1 0 2 9 4 5
and 0 2 5 < x ' t v Z 6 1 I

Fig. 1 1 . List of primitive objects used to test the accuracy of the octree
generation algorithm.

square arrays were computed assuming that the object is
placed with its center at the origin. The octree was then
constructed from the thirteen silhouettes and the ratio of
the object volume to the octree volume was computed.

The silhouettes were generated on the computer from
mathematical definitions of the test objects and a simu-
lated 128 X 128 digitized image was created. To deter-
mine the value of an image pixel, a line was constructed
perpendicular to the image plane and passing through the
center of the image pixel. If this line intersected the test
object the pixel value was set to 1, else it was set to 0.
This process was repeated for each of the 16,384 pixels
to generate a digitized silhouette image.

Since the octree constructed from extended silhouettes
represents an object larger than or equal to the actual ob-
ject, the ratio of the object volume to the octree volume
should always have a value less than or equal to 1. Due
to digitization error, sometimes a pixel on the border of a
silhouette is marked empty (set to zero) when it is actually
partially covered by the silhouette. This can lead to lost

AHUJA A N D VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES

~

143

E 1 . 5 -1
1.0

0 . 5

B. B _ _
CUGE CYLINDER CONE SPHERE SLICE PYRRMID

NUMEER OF
UIEUS PROCESSED

3 UIEUS 9 UIEUS 13 UIEUS

M E 1 . 0 l ’ s ;
E

R
R
T
I 0 . 5
0
s

a a - . -
UEDGE OCTRGONAL RECTRNGULRR RRC SMRLL RUERRGE

PRISM PRISM CUGE

NUMEER OF
UIEUS PROCESSED

3 UIEUS 9 UIEUS 13 UIEUS

Fig. 12. Ratios of the volume of a randomly oriented object to the volume
represented by the octree generated from the object’s silhouettes. For
each object the left bar corresponds to the case of no preprocessing of
silhouettes and the right bar corresponds to preprocessing.

volume in the object represented by the octree since the
method of taking intersections of extended silhouettes al-
ways yields a smaller (or possibly the same size) octree
as each new silhouette is processed. Once an octant is
removed from the octree, it is never returned. Similarly,
when a pixel partially covered by the silhouette is marked
full, it may add extra volume to the final octree. Specific
applications may assume complete occupancy or no oc-
cupancy for partially occupied pixels to minimize the ef-
fect of digitization error. Thus, when visibility of scene
features is to be predicted, and missing visible features
has a high cost, it is safer to mark the partially occupied
pixels as empty. On the other hand, in collision avoidance
applications, it is safer to assume that the partially full
pixels represent completely occupied space. Alternately,
some measure of the partial occupancy may be stored at
the leaf nodes of the octree, which can then be interpreted
in a way chosen by the application algorithm.

This impact of digitization error is more pronounced for

smaller objects since the removal of a fixed chunk of the
object represents a larger portion of its volume. To illus-
trate the effect of digitization error, we consider here both
the original silhouette as well as expanded silhouette, i.e.,
we “grow” the silhouette by locating every pixel with
value 1 and setting its neighbors (in all eight directions)
to 1. This guarantees that the octree will not represent an
object smaller than the actual object as desired by path
planning algorithms. We have included a small cube,
1 / 5 12 of the volume of the universe cube, in the set of
test objects to assess the impact of silhouette expansion
on accuracy.

Fig. 12 shows the average accuracies over a sample of
one hundred random orientations for each object. The re-
sults for both the original silhouettes and the expanded
silhouettes, after preprocessing, are shown for compari-
son. Above each object’s name are shown two bars. The
left bar depicts the accuracy using silhouettes with no pre-
processing, and the right bar depicts the accuracy using

144 IEEE TRANSACTIONS ON PATTERN ANALYSIS A N D MACHINE INTELLIGENCE. VOL 1 1 . NO 2 . FEBRUARY 1989

expanded silhouettes. The average accuracy for the entire
set of test objects with no silhouette preprocessing 93.7
percent and with silhouette expansion is 76.5 percent.

C. Accuracy-Computation Tradeoff
In many cases it may suffice to have occupancy infor-

mation which is even less detailed than that provided by
the 13 directions. Of greater importance may be the speed
at which the octree is generated. Under such conditions it
is of interest to know how the accuracy degrades with a
decrease in the number of directions. In Fig. 12 we have
indicated the ratios of actual volumes to the octree vol-
umes corresponding to 1) only face views (3 directions),
2) face and edge views (9 directions), and 3) face, edge,
and corner views (13 directions). The successive incre-
ments in bar heights represent the additional accuracy
contributed by the additional silhouettes. The graphs show
that for all the objects tested, the additional six edge views
contribute a significant amount of new information. The
addition of the four comer views to the nine face and edge
views, however, increases the accuracy only slightly.

1) Parallel Versus Serial Computation: For any algo-
rithm that constructs a volumetric description from object
silhouettes, the silhouette information from multiple
viewpoints may be acquired either using one camera and
changing viewpoints with time, or by using multiple cam-
eras located at fixed viewpoints and acquiring the multiple
silhouette data in parallel. The former leads to necessarily
serial computation since the input data arrives as the cam-
era moves. The frequency with which successive silhou-
ette views may be acquired is determined by the relative
magnitudes of the processing time T for a single view,
and the camera velocity. If T is small then closely sepa-
rated viewpoints may be used to eventually obtain a rel-
atively accurate octree representation, and the overall oc-
tree generation time is determined by the time taken by
the camera to traverse viewpoints. If T i s large, then the
overall computation time is proportional to the number of
silhouettes acquired by one camera.

An algorithm that allows arbitrary viewpoints is useful
when accuracy of the representation is important and the
time delay due to camera motion is insignificant. In such
cases, one can use partial knowledge of the object shape
to make a judicious choice of next viewpoint so as to best
reveal the hitherto unknown part of the object shape. An
algorithm such as that of Shneier et al. would be very
useful under such conditions. On the other hand, if the
goal is to generate the octree representation fast, albeit
less accurately, then this can be achieved by using mul-
tiple cameras at different viewpoints. This eliminates any
delays due to camera movement, and opens up the pos-
sibility of parallel processing of silhouette data. Our al-
gorithm uses a fixed set of viewpoints, suitably chosen so
as to make the construction of octrees from images effi-
cient. Thus, our algorithm is more appropriate for this
second scenario.

2) Coarse-to-Fine Computation: When the computa-
tion time per silhouette view is larger than the time taken

by the camera to move to the next viewpoint, or when the
time taken for the intersection of multiple silhouette data
in a multiple camera setup can be reduced by reducing the
number of silhouettes, it may be desirable to have a mech-
anism of tradeoff between the accuracy of the constructed
octree and the time taken to construct i t . Both our algo-
rithm, and an algorithm that accepts general viewpoints
[5] would benefit from availability of such a mechanism.

The choice and order of the viewing directions used in
our algorithm constitute a coarse-to-fine mechanism of
acquisition of occupancy information. The face views act
as coarse sensors of occupancy. Their spatial orthogonal-
ity contributes to independence of the information they
provide. The additional edge views are well separated and
reveal occupancy of the space halfway between the face
viewing directions. Thus, they provide finer grain occu-
pancy information. The corner views further increase the
density of viewing directions fairly isotropically since the
corner viewing directions are located far away from the
face and edge viewing directions. Using the three sets of
viewing directions in different orders results in different,
near optimal ways of acquiring the silhouette information
in a coarse-to-fine manner. For example, if the order
(face, edge, comer) is used, then one can stop after using
3, 3 + 6 = 9 , or 3 + 6 + 4 = 13 directions: if the order
(edge, face, corner) is used, then one can stop after 6, 9,
or 13 directions. For certain numbers of allowed viewing
directions, e.g., 8, not all directions in a given subset may
be used, thus, making information acquisition less iso-
tropic.
D. Stability

The measure used in the performance analysis of the
derived octree representation is an average computed over
a large number of random orientations of the objects.
Thus, the results correspond to the expected fraction of
the volume represented by the octree that is actually oc-
cupied by the object. In practice, we may derive the oc-
tree for a given single orientation of the object, which
may be random. The question then arises as to how reli-
able the resulting representation is. In other words, how
stable is the representation from orientation to orientation
even though we know how the representation performs on
an average over many orientations. Fig. 13 shows the ob-
served maximum and minimum values of the measure over
all 100 observations for each object and for the case of no
preprocessing. Also shown are the average values and the
standard deviations of the values. Clearly, the smaller the
standard deviation, and the smaller the differences among
the maximum, minimum, and the average values, the bet-
ter the stability of the derived octree representation. The
improvement in the stability of the representation with an
increasing number of views can be seen in Fig. 13. Figs.
16(a)-(h) show a graphic display of the objects repre-
sented by the constructed octrees.

E. Complex Objects
An inadequacy of the above performance analysis is the

simplicity of the objects analyzed. Originally, these ob-

AHUJA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES 145

1 . 4

1.1

1.0 _-

0.1

0 . 6

0 . 5 ::.I 0.2

0.1

U U

0.0 I
ccm C > I I \ I) L R co\t S P H E R E CLlCI P I R X\111>

1.4

1.3 4
1.1 4 nn

U

0.1 1:1: 0.0 W E M X o c T \ G O \ *I RFCT.A\(;LL.AR .4RC SUALI. f X B I AVER \(:r

PRISM PRIS\I

Fig. 13. Stability characteristics of the algorithm. For each object the three
bars correspond, respectively, to 3 , 9, and 13 views, with no silhouette
preprocessing. Each bar extends from the minimum to the maximum ob-
served measure value over the 100 observations made. The band in the
bar is centered at the observed average value and has a thickness of the
observed standard deviation.

jects were chosen because they are diverse and fairly
powerful to serve as geometrical primitives to construct
arbitrary objects. However, the construction entails
simultaneous presence of these objects in the octree space,
as components of the larger object whose octree represen-
tation is to be derived. Their relative configuration is de-
termined by the complexity of the object to be con-
structed. For example, consider the object shown in Fig.
14 consisting of the volumetric primitives of Fig. 10. The
spatial configuration of the components leads to their mu-
tual occlusion when the object is viewed from an arbitrary
direction. Thus, the already incomplete information in the
silhouettes about the object is further confounded by self-
occlusion. Of course, unlike surface concavities, the in-

formation about occupancy of regions self-occluded from
a viewpoint may be recovered if other, allowed directions
are more revealing. The availability of a large number of
viewing directions assumes increased importance in this
context.

To test the performance of our algorithm over more
complex objects than shown in Fig. 10, we conducted ex-
periments with the object shown in Fig. 14. Fig. 15 shows
the results analogous to Fig. 13. Fig. 16(j) shows a
graphic display of the self-occluding object in Fig. 14 as
represented by the constructed octree. The upright rect-
angular solids have reproduced well without any staircase
effect because these are oriented with their faces parallel
to the faces of the universe cube. Parts of the curved sur-

146 IEEE TRANSACTIONS ON PATTERN AN

1.4 -
1.3 -
1.2 -
1.1 -
1.0 -
0.3 -
0.8 -
0 . 7 -
0.6 -
0.5 -
0 . 4 -
0.3 -

0.2 -

0.1 -

ALYSIS AND MACHINE INTELLIGENCE. VOL. I I , NO. 2, FEBRUARY 1989

Fig. 14. A self-occluding object used in testing the octree generation al-
gorithm.

!”-
0.0 I

N‘ITIIOLI V. IT11
Sll.llOL Fn-1. SILHOL 1iTTl

P R E P H (K E S I \ G PWEPHCCESM\G

Fig. 15. Graphical depiction of the stability characteristics of the self-oc-
cluding object shown in Fig. 14. The three bars correspond to the 3, 9,
and 13 views. Each bar extends from the minimum to the maximum
observed value over the 100 observations made. The band in the bar is
centered at the observed average value and has a thickness of the ob-
served standard deviation. The three bars on the left show the results
with no silhouette preprocessing and the three bars on the right show the
results with silhouette preprocessing.

faces of the circular cylinders are lost since these parts
were occluded by the rectangular solids in all the silhou-
ette views used.

F. Experimental Details
The algorithms were implemented in C on a VAX 11/

780 computer (see [2] for details). Some simple modifi-
cations were made to the edge view algorithm to improve
its efficiency. The C programs were timed using test data
in the form of 64 x 64 arrays representing binary images
of varying complexity. The average CPU time spent in
the octree generation procedures was recorded for face
and edge views and was found to increase linearly with
the number of nodes in the octree for a fixed image size.

The accuracy of the octree increases as its depth in-

creases. Whenever the image resolution is finer than the
maximum allowed tree depth, then octants at the lowest
level in the tree represent square regions of image pixels
instead of individual pixels. As discussed in Section III-
B, when a square region is not of uniform value, its de-
gree of nonuniformity may be used to determine the color
of the representative octree node. In applications such as
path planning among obstacles, it is safer to overestimate
the object sizes rather than underestimate them. In our
case, we chose to label the node black if at least 1 / 4 of
the pixels were black. This resulted in a good approxi-
mation without being too conservative. The depth of the
generated octree in our experiments is determined by a
parameter under user control. We set the tree depth so that
the deepest node corresponds to a pixel in the face views.
Before closing, we would like to mention that the current
implementation suffers from the problem that nodes in a
newly created set of siblings may have identical color in
which case they may have to be deleted. This results in
wasted space and time.

IV. VISUAL EVALUATION OF PERFORMANCE
During our work on the octree generation algorithm, it

was necessary to monitor the accuracy of the octree rep-
resentation constructed at different stages of develop-
ment. First, we did this by printing each node in the oc-
tree with its associated “black” or “gray” label
(“white” or empty nodes were not stored), and then ver-
ifying by hand that the octree was correct. As the octrees
became larger, however, it became necessary to be able
to view directly the object which the octree represented.
This section describes an algorithm we developed for this
purpose. The algorithm produces a line drawing of an ob-
ject represented by on octree. The object is drawn with
hidden lines removed. An alternative method of display-
ing the object represented by an octree is described by
Meagher [9], [lo]. His algorithm produces a surface dis-
play from octree after hidden surface removal. However,
surface displays depend upon light source positions. In
addition, many output devices cannot draw shaded sur-
faces. A line drawing representation, on the other hand,
captures the essential details of the object structure in the
form of edges since the objects are polyhedral. We there-
fore chose to display the objects represented by the octree
as line drawings which can be easily drawn. We will not
give the details of the display algorithm here; they can be
found in [2], [8].

The octree generation algorithm followed by the line
drawing generation algorithm should provide a display of
the original object. Any differences between an object and
its line drawing represent the approximations and errors
involved in octree generation, and thus serve as a quick
method of evaluating the performance of the octree gen-
eration algorithm.

Figs. 16(a)-(h) show the line drawings generated by
our algorithm for the octrees of the test objects in Fig. 10.
Fig. 16(i) is a line drawing generated from an octree that
was obtained from gray level, silhouette images of a cof-

AHUlA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES

~

147

,

'i

(9 (k)
Fig. 16. Line drawing depictions of octree representations of several ob-

jects derived by the octree generation algorithm. (a) Cylinder. (b) Cone.
(c) Sphere. (d) Pyramid. (e) Wedge. (f) Octagonal prism. (g) Rectan-
gular prism. (h) Arc. (i) Coffee cup. (j) Self-occluding object. (k) A
diamond shaped object.

148 lEEE TRANSACTIONS ON PATTERN ANALYSIS A N D MACHINE INTELLIGENCE, VOL. 1 1 . NO. 2. FEBRUARY 1989

fee cup. Fig. 16(j) shows the drawing for the octree of
the self-occluding object in Fig. 14. Fig. 16(k) shows an
object whose silhouette is a diamond when viewed from
any face of the universe cube which contains it. The line
drawing algorithm was executed on a VAX and the output
sent to a QMS laser printer.

V. SUMMARY

We have presented an algorithm to generate the octree
representation of an object from silhouette images taken
from a set of thirteen viewing directions. These viewing
directions are parallel to three orthogonal faces, six face-
diagonals, and four long-diagonals of an upright cube.
Each silhouette of an object is first extended into a cyl-
inder parallel to the viewing direction, and the corre-
sponding octree is constructed. An intersection is per-
formed on the octrees generated from the silhouettes to
obtain an octree representing the space occupied by the
object. The octree for each silhouette image is computed
efficiently by a recursive quadtree decomposition of the
image, and identification of the occupied octree nodes
from a table listing corresponding pairs of image windows
and octree nodes. In actual applications, the requirements
of the thirteen images may be met very simply by placing
cameras in fixed positions in a cubical room, namely, at
centers of walls, edges and corners, all pointing at the
room center and talung orthographic images. We have also
run performance tests on the accuracy of the octree and
concluded that thirteen silhouette views can provide
enough information for a good approximation of the ob-
ject. The three sets of viewing directions (face, edge, and
corner) act as coarse-to-fine, information acquisition
probes. Fewer than thirteen directions may be used to re-
duce computation time in exchange for reduced accuracy
of the representation generated.

Although a general view algorithm allows an arbitrary
viewpoint, this generality requires an explicit computa-
tion of the volume of intersection for determining the oc-
tree nodes corresponding to extended silhouettes. The
corresponding intersection tests are more complex and
may require greater computation time than the direct con-
struction of octree nodes from image pixels used in our
approach. Moreover, since silhouette images taken from
viewing directions which are widely spaced yield more
information, in general, than do silhouette images which
are close together, and since the thirteen viewing direc-
tions used in our algorithm are distributed widely about
the entire octree space, it is unlikely that a large amount
of additional information will be obtained using a silhou-
ette taken from a viewpoint which falls at an intermediate
position. The results of our experiments bear out this ex-
pectation, where the accuracy for the thirteen views used
in our algorithm is over 90 percent (with no silhouette
preprocessing). Thus, there may be only a marginal gain
in accuracy by using a general view algorithm, especially
considering the inherent limitations discussed earlier of
any shape-from-silhouette reconstruction algorithm.
Given that the octree representation is useful only as a

coarse occupancy map (for applications such as rough path
planning), and is not intended as a representation of fine
shape details, the accuracy provided by the thirteen view-
ing directions may suffice. This may be particularly im-
portant if the general-view algorithm turns out to be more
expensive than our alogrithm in processing silhouette
views. Our algorithm requires orthographic views in or-
der to make use of the a priori relationships between im-
age space and octree nodes. These relationships do not
directly extend to perspective views.

We have used a display algorithm to produce a line
drawing of an object from its octree. The object is drawn
with cracks and hidden lines removed. The line drawing
produced may be used to check the performance of the
octree generation algorithm by comparing the original and
the represented object.

One of the inherent weaknesses of using silhouette im-
ages to obtain 3-D information is that surface concavities
cannot be identified. A subject worthy of study is the use
of range information, in addition to the silhouettes, to help
identify these concavities. The range information could
be obtained from such sources as sonar devices or laser
range finders.

Several applications of this research suggest them-
selves. One possibility is the construction of a working
system of thirteen cameras to monitor the objects in a
room. The resulting octree representation of the occupied
space in the room might be used to guide a robot. Another
possibility is to point cameras at a spot above a conveyor
belt and as objects pass through the octree space defined
by the camera viewing directions, perform some task
based on the volume or shape of the octree approximated
objects. If cameras are a scarce or precious resource, one
could experiment with using multiple or movable mirrors
(in conjunction with a single camera) to obtain the silhou-
ette images. Finally, one could experiment with mounting
a camera on a moving vehicle to obtain sequential images
of an object or an environment for the purpose of main-
taining a representation of the workspace, planning paths,
and locating objects.

ACKNOWLEDGMENT
Thanks are due to anonymous reviewers who made very

helpful comments on the manuscript.

REFERENCES
[l] N . Ahuja and C. Nash, “Octree representations of moving objects,’’

Comput. Vision, Graphics, Image Processing, vol. 26, pp. 207-216,
1984.

[2] N. Ahuja and J . Veenstra, “Octree generation and display,” Coor-
dinated Sci. Lab., Univ. Illinois, Tech. Rep. UILU-ENG-86-2215,
May 1986.

[3] R. Brooks, “Symbolic reasoning among 3-D models and 2-D im-
ages,” Artijicial Inrell., vol. 17, pp. 285-348, 1981.

[4] C. H. Chien and J . K . Agganval, “Volume surface octrees for the
representation of 3-D objects, ” Compur. Vision, Graphics, Image
Processing, vol. 36, pp, 100-113, 1986.

[5] T. H. Hong and M. Shneier, “Describing a robot’s workspace using
a sequence of views from a moving camera,’’ IEEE Trans. Parrern
Anal. Machine Intell., vol. PAMI-7, pp. 721-726. NOV. 1985.

[6] Y. Hwang and N . Ahuja, “Path planning using a potentlal field rep-
resentation,” Univ. Illinois Coordinated Sci. Lab., Tech. Rep. UILU-
ENG-88-2251, Oct. 1988.

AHUJA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES 149

C. L Jackins and S L. Tanimoto, “Oct-trees and their use in rep-
resenting three-dimensional objects,” Comput. Graphics Image Pro-
cessing, vol. 14, pp 249-270, 1980
J. Veenstra and N Ahuja, “Line drawings of octree-represented ob-
jects,” ACM Trans. Graphics, to be published.
D. Meagher, “Efficient synthetic image generation of arbitrary 3-D
objects,” in Proc. IEEE Conf Pattern Recognition and Image Pro-
cessing, Las Vegas, NV, June 14-17, 1982, p. 473.
- , “Geometric Modeling Using Octree Encoding. ” Comput.
Graphics Image Processing, vol 19, p. 129, 1982.
W. Osse and N. Ahuja, “Efficient octree representation of moving
objects,” in Proc 7th Int Conf Pattern Recognition, Montreal, P Q ,
Canada, July 30-Aug. 2, 1984, pp. 821-823.
M Shneier, E. Kent, and P. Mansbach, “Representing workspace
and model knowledge for a robot with mobile sensors,” in Proc. Sev-
enrh Int Conf Pattern Recognition, Montreal, P.Q , Canada, July
1984, pp. 199-202
S . Srivastava and N. Ahuja, “An algorithm for generating octrees
from object silhouettes in perspective views,” in Proc. IEEE Work-
shop Computer Vision, Miami Beach, FL, Nov 30-Dec 2, 1987,
pp 363-365.
J Weng and N. Ahuja, “Octrees of objects in arbitrary motion‘ Rep-
resentation and efficiency,” Comput. Vision, Graphics, Image Pro-
cessing, pp 167-185, Aug. 1987. cessing machines.

Narendra Ahuja (S’79-M’79-SM’85), for a photograph and biography,
see this issue, p. 136.

Jack E. Veenstra was born in Grand Rapids, MI,
on Apnl 4 , 1961. He received the B.A. degree in
mathematics and computer science from Calvin
College, Grand Rapids, MI, and the M.S. degree
in computer science from the University of 1111-
nois at Urbana-Champaign in 1986.

Since February, 1986, he has been working for
AT&T Communications and Information Systems
in Naperville, IL His current interests include op-
erating systems and languages for parallel pro-

