
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. I I .  NO. 2. FEBRUARY 1989 137 

Generating Octrees from Object Silhouettes in 
Orthographic Views 

NARENDRA AHUJA, SENIOR MEMBER, IEEE, AND JACK VEENSTRA 

Abstract-Octrees are used in many 3-D representation problems be- 
cause they provide a compact data structure, allow rapid access to oc- 
cupancy information, and implement many geometric manipulation al- 
gorithms efficiently. The initial acquisition of the 3-D information, 
however, is a common problem. This paper describes an  algorithm to 
construct the octree representation of a 3-D object from silhouette im- 
ages of the object. The images must be obtained from any subset of 
thirteen viewing directions corresponding to the three “face” views, 
six “edge” views, and four “corner” views of an  upright cube. These 
views were chosen because they provide a simple relationship between 
pixels in the image and the octant labels in the octree, thus replacing 
the computation of detecting intersections between the octree space and 
the objects by a table lookup operation. The average ratio of the object 
volume to the octree volume is found to be greater than 90 percent. 
The sequential use made of the chosen viewing directions results in a 
coarse-to-fine acquisition of occupancy information. The number and 
order of the viewpoints used provides a mechanism for trading accu- 
racy of the representation against the computational effort needed to 
obtain the representation. 

Index Terms-Computational efficiency, occupancy map, octree, 
performance analysis, robotics, silhouette images, three-dimensional 
representation. 

I. INTRODUCTION 
HREE-dimensional object representation is of crucial T importance to robot vision. Part of the task lies in the 

generation and maintenance of a spatial occupancy map 
of the environment. The occupancy map describes the 
space occupied by objects. Some of the uses of such a 
representation include robot navigation and manipulation 
of objects on an assembly line. This paper is concerned 
with the construction of one such representation, namely, 
the octree representation, of an object from its silhouette 
images. 

An octree [I ] ,  [7], [12] is a tree data structure. Starting 
with an upright cubical region of space that contains the 
object, one recursively decomposes the space into eight 
smaller cubes called octants which are labeled 0-7 (see 
Fig. I ) .  If an octant is completely inside the object, the 
corresponding node in the octree is marked black; if com- 
pletely outside the object, the node is marked white. If 
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Fig. 1 .  A cube and its decomposition into octants 

the octant is partially contained in the object, the octant 
is decomposed into eight suboctants each of which is again 
tested to determine if it is completely inside or completely 
outside the object. The decomposition continues until all 
octants are either inside or outside the object or until a 
desired level of resolution is reached. Those octants at the 
finest level of resolution that are only partially contained 
in the object are approximated as occupied or unoccupied 
by some criteria. 

We call the starting cubical region the “universe cube.” 
The recursive subdivision of the universe cube in the 
manner described above allows a tree description of the 
occupancy of the space (see Fig. 2). Each octant corre- 
sponds to a node in the octree and the node is assigned 
the label of the octant. Fig. 2(a) shows a simple object. 
Fig. 2(b) shows the same object enclosed in the universe 
cube and Fig. 2(c) shows the corresponding octree. The 
children nodes are arranged in increasing order of label 
values from left to right. The black nodes are shown as 
dark ovals and the white and gray nodes are shown as 
empty ovals. In practice, of course, the white nodes need 
not be stored. 

This paper addresses the following problem: given a 
sequence of sihouette views of an object, construct the 
octree representing the object which gave rise to those 
views. A given silhouette constrains the object to lie in a 
cone (for perspective projection) or a cylinder (for ortho- 
graphic projection) whose cross section is defined by the 
shape of the silhouette. In this paper, we will consider 
orthographic projection of an object onto a plane perpen- 
dicular to a viewing direction. We will call “extended 
silhouette” the solid region of space defined by sweeping 
the silhouette along a line parallel to the viewing direction 
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(C) 
Fig 2 (a) A simple object (b) Recursive subdivision of space superim- 

posed on the Object in (a) to obtain its representation (c) Octree for the 
object in (a), r denotes the root node Black (white) leaves are indicated 
by ddrkened (empty) circles 

used in obtaining the silhouette. The object is constrained 
to lie in the intersection of all extended silhouettes. As 
the number of silhouettes processed increases, the fit of 
volume of intersection of the cylinders to the object vol- 
ume becomes tighter. In our algorithm, we do not perform 
the intersection explicitly, but infer the octree nodes from 
silhouette images according to a predetermined table that 
pairs image regions with their corresponding octree nodes. 

An alternate approach, due to Shneier et al. [5], [12], 
to the problem of constructing the octree from silhouettes 
explicitly tests for the intersection between an octree node 
and the extended silhouette by projecting the nodes of the 
tree onto the silhouette image. Consequently, their algo- 
rithm can process silhouettes obtained from any view- 
point. Our algorithm restricts viewing direction in order 
to make the intersection detection process more efficient. 
Further, their algorithm allows perspective views, 
whereas our algorithm requires orthographic views. The 
two algorithms are compared in Section 111. Chien and 
Agganval [4] describe an efficient method for construct- 
ing an octree for an object from silhouettes of its three 
orthogonal views. Our method is similar to theirs except 
that their algorithm provides coarser results since they 
only use three axial views. The accuracy of the octree 
describing the object is improved if, in addition to the 
three orthogonal views, information from other views of 
the object is also used. Of course, the challenge lies in 
containing the amount of computation while improving 
accuracy. 

During the development of our image-to-octree algo- 
rithm, we felt the need for an octree-to-image display al- 
gorithm to visually monitor the accuracy of the octree as 
it evolves by assimilating object information present in 
successive silhouette views. We developed an algorithm 
for this octree-to-object transformation, which is the re- 
verse transformation of constructing the octree from the 
object discussed in the first part of the paper. The octree- 
to-image algorithm displays an object represented by a 

given octree as a line drawing in perspective with hidden 
lines removed. The line drawing can be displayed corre- 
sponding to any arbitrary viewpoint. We do not give de- 
tails of the display algorithm in this paper, but we use this 
algorithm to display line drawings of the octrees derived 
by the octree generation algorithm. A visual comparison 
of the original objects with those depicted by the line 
drawing algorithm then serves as a useful test of the cor- 
rectness of octree generation algorithm. 

We also present results on more precise evaluation of 
the performance of our octree generation algorithm. The 
performance measure used is the ratio of the true volume 
of the object to the volume represented by the octree gen- 
erated. The variation of the accuracy of representation 
with changes in object orientation, object complexity, and 
allowed computation time are studied. 

The algorithm reported in this paper is part of a three- 
dimensional representation, manipulation, and navigation 
system that we are developing. The common theme 
through the various components of the system is the use 
of octree repesentation. The problem addressed in this pa- 
per is that of initial acquisition of the occupancy infor- 
mation and construction of octree representation from or- 
thographic views. Elsewhere, we have examined the 
problems of generating octrees from perspective views 
[13], updating octrees as objects in the scene move [1], 
[ 1 11, [ 141, and using octress for path planning [6]. 

In Section I1 we describe our octree generation algo- 
rithm. Section 111 discusses the performance of the algo- 
rithm. Section IV presents experimental results as line 
drawings of the objects represented by the generated oc- 
trees. Section V presents concluding remarks. 

11. OCTREE GENERATION ALGORITHM 

The algorithm presented in this section provides a 
method of octree generation which avoids computations 
of projections and intersections. The viewing directions 
are defined with reference to the universe cube and are 
restricted to be those providing one of the six “face” 
views, one of the twelve “edge” views, or one of the 
eight “comer” views of the universe cube. Although this 
allows only thirteen useful views (since views from any 
two opposite directions provide the same silhouette), the 
viewpoints are distributed widely in space and together 
provide significant information to construct a good ap- 
proximation of the object. All thirteen views are not es- 
sential for the algorithm to work. Any subset of the thir- 
teen viewing directions can be used resulting in a cost and 
accuracy tradeoff discussed in Section 111. 

Restricting the viewpoints in this manner allows us to 
find correspondences between the pixels in the two-di- 
mensional silhouette image and the octants in the three- 
dimensional space that define the octree. The relationship 
between pixels and octants for an orthographic face view 
is easily derived so it is described first. Then the relation- 
ships between pixels and octants for orthographic edge 
and comer views are presented. Similar relationships 
would be difficult to obtain for an arbitrary viewpoint. 
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A .  Face View 
A “face view” is the view obtained when the line of 

sight is perpendicular to one of the faces of the universe 
cube and passes through the center of the cube. Thus a 
face x view is the orthographic projection of the object 
onto the yz  plane. A digitized silhouette image would be 
represented in the computer as a square array of pixels. 
Pixels having a value of 1 denote the region onto which 
the object projects. Pixels having a value of 0 represent 
the projection of free space. 

The projection of the cube in Fig. 1 along the x direc- 
tion results in pairs of octants projecting onto the same 
region in the image. For example, octants 5 and 4 project 
onto the upper left quadrant, octants 7 and 6 project onto 
the upper right quadrant, and so on. (See Figs. 1, 3(a).) 
This simple relationship between octants and their projec- 
tions allows the construction of the octree directly from 
the pixels in a digitized silhouette image. 

Given a square array of pixels representing a face x sil- 
houette image, its contribution to the octree can be ob- 
tained using the decomposition scheme shown in Fig. 
3(a). The quadrants of the silhouette image are processed 
as if a quadtree were being constructed. A quadrant is 
recursively decomposed until it is either all ones or all 
zeros. But instead of adding to the tree only one node per 
quadrant during recursive decomposition, as is the case 
with quadtrees, two nodes are added, as in Fig. 3(a). 
Thus, when a quadrant of the silhouette is further decom- 
posed, each subquadrant could add up to four nodes to the 
octree instead of one. Fig. 3(b) shows the nodes assigned 
to the subquadrants. 

A similar procedure is used for the other two face views, 
the only difference being in the labeling scheme for the 
image quadrants. For example, the labels for the upper 
left quadrant for the face y view are 7, 5 ,  and for the face 
z view are 4, 0 (see Fig. 4). 

B. Edge View 
An “edge view” of a cube is the view obtained when 

the line of sight bisects an edge of the universe cube and 
passes through the center of the cube. An edge view is 
labeled with the two adjacent octants of the universe cube 
each of which contains one-half of the bisected edge. The 
octants of the cube in Fig. 1 viewed from edge 3-7 would 
appear as shown in Fig. 5 .  Since the octree generation 
algorithm requires a square array, the elongated image 
from an edge view must be compressed into a square ar- 
ray. This is accomplished by resampling the digitized im- 
age with smaller density along the horizontal direction. 

The recursive procedure for constructing an octree from 
a square array of pixels representing an edge view is sim- 
ilar to procedures for constructing a quadtree. If the square 
array is all ones or all zeros, then it is marked black or 
white, respectively. Otherwise it contains some ones and 
some zeros and it is decomposed recursively in two dif- 
ferent ways. 

1) It is decomposed into the usual four quadrants, each 
with one label. The labels depend on which edge is being 

5,4 7 , 6  
I 175, 74 177.76 5, 4 I65.64i67.66i 

71 70 13.72 
61.60 b3. 62 
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(a) (b) 
Fig. 3. The labeling scheme for quadrants for the face x view. Each quad- 

rant is assigned two labels (a) instead of one. Each time a quadrant is 
subdivided, the subquadrants have twice as many labels (b). 

4, 0 6, 2 7- 
5 ,  1 I 7, 3 

Fig. 4. The labeling scheme for quadrants for the face y view (a), and face 
z view (b). 
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Fig. 5.  The cube in Fig. 1 view from edge 3-7 
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(a) (b) 
Fig. 6 .  The decomposition of the image array for the edge 3-7 view into 

4 quadrants (a) and 2 center squares (b). 

viewed. For example, the labels for the four quadrants for 
the edge 3-7 view are given in Fig. 6(a). If a quadrant 
contains both zeros and ones then it is recursively decom- 
posed. 

2) It is decomposed into two center squares and two 
margins [see Fig. 6(b)]. The center squares are the same 
size as the quadrants in the first decomposition step. The 
margins are half the width of the squares and are not used. 
Each center square has two labels. These are treated in a 
manner similar to the way the quadrants with two labels 
for the face view are treated. Whenever a node with one 
of the two labels is added to the octree, another node with 
the other label is also added, If a center square contains 
both zeros and ones, then it is recursively decomposed. 

Each time a quadrant or a center square is decomposed, 
both methods of decomposition described above are used, 
unless it is a 2 x 2 square in which case only the first 
method is used. At each recursive decomposition step the 
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dimension of the quadrants examined is half that at the 
previous step. When the dimension of a quadrant is 2, it 
can only be decomposed according to the first method 
above (otherwise an image pixel would have to be split in 
half). To prevent the introduction of nonexistent “holes” 
in the octree during this process, a center square of a 2 x 
2 array is marked black if either one of the two quadrants 
intersecting with it is marked black. For example, if a 
silhouette image taken from edge 3-7 is decomposed down 
to a 2 X 2 square and the upper right quadrant (whose 
label is 6) is black, then, in addition to octant 6, octants 
7 and 4, corresponding to the upper central square, will 
also be marked black. 

Fig. 7(a) shows the center squares decomposed into four 
quadrants (each quadrant inherits two labels from the par- 
ent square) and Fig. 7(b) shows quadrant 6 decomposed 
into two center squares. 

C.  Corner View 
A “comer view” is the view obtained when the line of 

sight intersects a comer of the universe cube and passes 
through the center of the cube. Each comer view is la- 
beled according to the comer octant which is closest to 
the viewer. The silhouette of a cube viewed from one of 
its comers is a regular hexagon [see Figure 8(a)]. Because 
the geometry of the comer view silhouette does not cor- 
respond naturally with the rectangular image plane, pro- 
cessing a comer view is somewhat more complicated than 
processing face or edge views where the silhouette of the 
universe cube is a rectangle. 

The silhouettes of the different octants of a cube are all 
regular hexagons whose regions of intersection are com- 
posed of equilateral triangles (see Fig. 9). The silhouette 
of any octant is a union of subset of these triangles. Thus, 
the occupancy of an octant can be inferred from the oc- 
cupancy of an appropriate set of triangles. The occupancy 
of the universe cube can be inferred from the occupancy 
of the six major triangular cells [Figure 8(a)]. To generate 
nodes at lower levels in the octree, the triangles of interest 
are the result of recursive triangular decomposition [see 
Fig. 8(b) and 8(c)] of the six major triangles. Therefore, 
the processing of a corner view is done in two phases. 
First, six quadtrees are generated from the digitized im- 
age in such a way that each quadtree represents one of the 
six triangular sections of the regular hexagon silhouette 
of the universe cube. Second, the octree is constructed 
from the six quadtrees. The quadtrees and octree are con- 
structed recursively. 

To construct the quadtrees, the universe hexagon is di- 
vided into six triangles labeled 0-5 as shown in Fig. 8(a). 
Each triangle is recursively subdivided and its nodes are 
labeled 0-3 according to one of the two schemes shown 
in Fig. 8(b) and (c). The orientation of the triangle deter- 
mines which labeling scheme is used. In both labeling 
schemes, quadtree node 0 is in the center and node 2 is in 
the lower comer. The recursive subdivision of a triangle 
into four subtriangles continues until the distance between 

35. 36. 
0 5  06 

3 1 .  32. 
01 0 2  

(a) (b) 
Fig. 7. Further decomposition of center squares into quadrants (a), and of 

the upper right quadrant into center squares (b). 

(a) (b) (C) 
Fig. 8. The division of the universe hexagon into six triangular sections 

(a). Each section is represented by a triangular quadtree. The labels of 
the quadtree nodes for each of the two orientations of a triangle (b), (c). 

Fig. 9. The projection of octant 5 (shown in bold lines) which overlaps 
triangular quadtrees 0 and 1. 

the distance between pixels in the digitized image. The 
image pixel nearest the center of the triangle at the lowest 
level in the quadtree determines whether the correspond- 
ing quadtree node is black or white. The color of a quad- 
tree node above the lowest level is determined by the 
colors of its children. If the children of a quadtree node 
are all white or all black, then the parent node is assigned 
the same color as its children, and the children are re- 
moved from the tree. Otherwise, some children are white 
and some are black so the parent is assigned the color 
gray. Each quadtree is given the label (0-5) of the major 
triangle it represents. Once the six quadtrees are con- 
structed, the raw silhouette image data are no longer 
needed. The octree is generated directly from the quad- 
trees; quadtrees are used only as an intermediate step in 
the octree construction. 

The octree construction is best explained by showing 
the centers of adjacent triangles is less than or equal to how the color of a particular octant is determined. Fig. 9 
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shows the projection of octant 5 in relation to the projec- 
tion of the universe cube viewed from octant 7. Octant 5 
also projects as a hexagon and overlaps triangular quad- 
trees 0 and 1. Octant 5 is labeled white if the nodes of 
quadtrees 0 and 1 covered by the projection of octant 5 
are all white. In this case the relevant nodes that need to 
be examined are: nodes 0, 1, 3 of quadtree 0 immediately 
below the root level, and nodes 0, 1, 2 of quadtree 1 im- 
mediately below the root level. If these nodes are not all 
white nor all black and the predetermined maximum depth 
for the octree has not been exceeded, then octant 5 is re- 
cursively subdivided and the appropriate children of these 
nodes in the quadtree at the next lower level are exam- 
ined. This process continues until all nodes are labeled 
black or white. The same procedure is used for the other 
octants, the only difference being in the set of quadtree 
children which needs to be examined. The details for the 
actual procedures used can be found in [2]. 

D. Octree Intersection 
One octree is generated from the silhouette obtained 

from each viewpoint. The resulting octrees are intersected 
a pair at a time to find the global intersection octree. We 
experimented with other algorithms where the already 
generated octree is used to guide the search of the next 
silhouette image, to reduce the number of generated nodes 
in constructing the updated octree. However, we found 
that the savings obtained were marginal on an average, 
and generally independent generation of octrees leads to 
a simpler method with comparable performance. 

111. PERFORMANCE OF THE OCTREE GENERATION 
ALGORITHM 

In this section, we will discuss some issues regarding 
the performance of our octree generation algorithm de- 
scribed in the previous section. First and foremost is the 
issue of the accuracy of the object shape captured by the 
octree generated. Next is the question whether any trade- 
off is possible between the accuracy of the representation 
obtained and the complexity of the computation per- 
formed to obtain it. Another aspect of the algorithm con- 
cerns the execution time, i.e., the efficiency with which 
the algorithm implements the necessary computations. 

A. Dejining Accuracy 
An algorithm of the kind described in this paper that 

attempts to reconstruct an object shape from its silhouette 
views suffers some inherent limitations. First, the algo- 
rithm cannot detect those three-dimensional features of 
the object that are lost during the projection process. For 
example, no surface concavities are registered. Thus, at 
its very best the algorithm suffers from such detection er- 
rors that occur during the data acquisition phase; the al- 
gorithm can provide a representation of only a bounding 
volume of the object. Then, there are the inaccuracies 
arising from the limitations of the representation itself. In 
our case, the octree of a given depth will have an asso- 
ciated error due to the 3-D spatial quantization. An in- 

crease in the allowed depth (resolution) of the octree will 
reduce the error, possible to zero. Finally, there is the 
usual 2-D digitization error in obtaining the image. This 
error can also be reduced by using higher resolution im- 
ages. 

Beyond these general sources of inaccuracy is the re- 
striction of the viewing directions used specifically by our 
algorithm. This limits the amount of available informa- 
tion about the object, leading to differences between the 
shape of the object captured by the octree and the original 
object. This error in shape representation may serve to 
measure the accuracy with which an object is approxi- 
mated using silhouettes obtained from the given viewing 
directions. The approximation, of course, depends on the 
shape and orientation of the object viewed. 

Thus, one possible measure of accuracy for a set of 
viewing directions is the ratio of the volume of the small- 
est object which could give rise to a given set of silhou- 
ettes to the volume of intersection of the extended silhou- 
ettes. This measure is a fraction since the volume of the 
intersection of extended silhouettes of an object contains 
that object. Even if the object is convex, the volume of 
the object is probably smaller than the volume of the in- 
tersection. This worst-case definition means that if a given 
set of silhouettes has an accuracy measure of 90 percent 
then the volume of the actual object can be no less than 
90 percent of the computed volume. Some restrictions 
must be placed on the object shape (such as requiring it 
to be convex) to prevent the smallest object from having 
an arbitrarily small volume. Even with restrictions, how- 
ever, the accuracy measure can be very low if only a few 
views are used. For example, there exist convex objects 
smaller than a unit cube which have unit squares as sil- 
houettes when viewed along three orthogonal directions. 
The projection of a tetrahedron oriented so that its four 
vertices coincide with four vertices of the unit cube is a 
unit square when viewed along any direction perpendic- 
ular to the face of the unit cube. The tetrahedron would 
be represented as a cube by the algorithm since the inter- 
section of extended silhouettes is a cube. The volume of 
the tetrahedron, however, is only one-third the volume of 
the cube. Since a tetrahedron inscribed in a unit cube is 
the smallest convex object whose three orthogonal silhou- 
ettes are unit squares, the accuracy measure for that set 
of three silhouettes is 33.3 percent. 

The above definition of accuracy may be of only theo- 
retical interest; the difficulty of finding the smallest object 
for each set of silhouettes makes this definition impracti- 
cal. An alternate approach is to empirically measure the 
performance of a chosen set of viewing directions on a 
suitable set of objects. The measure of accuracy for a 
given object is the observed ratio of the volume of the 
object to the volume of the intersection of the extended 
silhouettes of the object. For example, a sphere would 
have an accuracy measure equal to the ratio of its volume 
to the volume of the intersection of circular cylinders con- 
taining it, where the axes of the cylinders coincide with 
the viewing directions. Using this measure of accuracy, 
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Objects Used in Performance Analysis 

Defi"LU0n Volume 

x . y . r  in L-1.11 8.0 

three orthogonal views of a sphere would yield an accu- 
racy of 88.9 percent. The accuracy of nine face and edge 
views is approximately 98.7 percent. 

Except for the sphere, the accuracy of a set of viewing 
directions for a given object is dependent on the object's 
orientation. In one orientation, the tetrahedron yields an 
accuracy of 33.3 percent for three orthogonal views; in 
another orientation, the accuracy is 100 percent. In fact, 
only two orthogonal views of the tetrahedron are neces- 
sary to represent it exactly. To obtain the average perfor- 
mance of all orientations, a Monte Carlo simulation ex- 
periment can be performed to measure the desired ratio of 
volumes over a large number of randomly chosen orien- 
tations. Then, for a given set of objects, the measurement 
of accuracy for a set of viewing directions is the estimated 
expected value of the ratio of the object volume to the 
constructed volume for a randomly selected object at a 
randomly selected orientation. 

B. Measuring Accuracy 
How should the objects constituting the test set be cho- 

sen? One way to resolve this question is to use objects 
having shapes used as primitives for three-dimensional 
representations, e .g . , generalized cones. A generalized 
cone is defined by a space curve spine and a planar cross 
section which is swept along the spine according to a 
sweeping rule. The sweeping rule determines how the 
cross section changes as it is translated along the spine. 
Fig. 10 shows a sample of generalized cones used by 
Brooks [3] as primitive volume elements. 

The measure of accuracy can then be computed as the 
average of the results of a large number of executions of 
the following three step procedure. First, an arbitrary ob- 
ject from the chosen set and a random orientation are se- 
lected. Second, the object is projected along each viewing 
direction to provide a set of silhouette images. Finally, 
the octree is constructed and the corresponding object vol- 
ume computed. The ratio of the actual to the computed 
volume is the desired result for the chosen object and ori- 
entation. 

In our experiments, we used the set of geometric ob- 
jects shown in Fig. 10 with the following modifications. 
In place of 10(f) we used a circular cone; in place of 1O(g) 
we used a regular cube; and in place of 10 (i) we used a 
regular pyramid. We further added the sphere and a small 
cube to the set of objects giving us eleven objects on which 
to observe the performance of the octree generation al- 
gorithm. These objects were viewed at random orienta- 
tions to determine an average accuracy resulting from the 
thirteen viewing directions described in this paper. Fig. 
11 lists the objects used along with their mathematical 
definitions and volumes. The cube is the largest object in 
the list and all other objects fit inside it. This was done 
so that the silhouettes of all the objects would be guar- 
anteed to fit on the simulated image screen. 

For each object in the test set, one hundred random ori- 
entations were selected. For each orientation, the thirteen 
digitized silhouette images in the form of binary-valued 
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Fig. 10. A selection of generalized cones taken from [ 3 ] .  A rectangular 
prism (a), an octagonal prism (b), a wedge (c),  an arc (d), a cylinder (e ) ,  
a truncated cone (f), a rectangular solid (g), a slice (h), and a truncated 
pyramid (i). 
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x , y  > o .  1 0 2 9 4 5  
and 0 2 5 < x ' t v Z 6 1  I 

Fig. 1 1 .  List of primitive objects used to test the accuracy of the octree 
generation algorithm. 

square arrays were computed assuming that the object is 
placed with its center at the origin. The octree was then 
constructed from the thirteen silhouettes and the ratio of 
the object volume to the octree volume was computed. 

The silhouettes were generated on the computer from 
mathematical definitions of the test objects and a simu- 
lated 128 X 128 digitized image was created. To deter- 
mine the value of an image pixel, a line was constructed 
perpendicular to the image plane and passing through the 
center of the image pixel. If this line intersected the test 
object the pixel value was set to 1, else it was set to 0. 
This process was repeated for each of the 16,384 pixels 
to generate a digitized silhouette image. 

Since the octree constructed from extended silhouettes 
represents an object larger than or equal to the actual ob- 
ject, the ratio of the object volume to the octree volume 
should always have a value less than or equal to 1. Due 
to digitization error, sometimes a pixel on the border of a 
silhouette is marked empty (set to zero) when it is actually 
partially covered by the silhouette. This can lead to lost 
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Fig. 12. Ratios of the volume of a randomly oriented object to the volume 
represented by the octree generated from the object’s silhouettes. For 
each object the left bar corresponds to the case of no preprocessing of 
silhouettes and the right bar corresponds to preprocessing. 

volume in the object represented by the octree since the 
method of taking intersections of extended silhouettes al- 
ways yields a smaller (or possibly the same size) octree 
as each new silhouette is processed. Once an octant is 
removed from the octree, it is never returned. Similarly, 
when a pixel partially covered by the silhouette is marked 
full, it may add extra volume to the final octree. Specific 
applications may assume complete occupancy or no oc- 
cupancy for partially occupied pixels to minimize the ef- 
fect of digitization error. Thus, when visibility of scene 
features is to be predicted, and missing visible features 
has a high cost, it is safer to mark the partially occupied 
pixels as empty. On the other hand, in collision avoidance 
applications, it is safer to assume that the partially full 
pixels represent completely occupied space. Alternately, 
some measure of the partial occupancy may be stored at 
the leaf nodes of the octree, which can then be interpreted 
in a way chosen by the application algorithm. 

This impact of digitization error is more pronounced for 

smaller objects since the removal of a fixed chunk of the 
object represents a larger portion of its volume. To illus- 
trate the effect of digitization error, we consider here both 
the original silhouette as well as expanded silhouette, i.e., 
we “grow” the silhouette by locating every pixel with 
value 1 and setting its neighbors (in all eight directions) 
to 1. This guarantees that the octree will not represent an 
object smaller than the actual object as desired by path 
planning algorithms. We have included a small cube, 
1 / 5  12 of the volume of the universe cube, in the set of 
test objects to assess the impact of silhouette expansion 
on accuracy. 

Fig. 12 shows the average accuracies over a sample of 
one hundred random orientations for each object. The re- 
sults for both the original silhouettes and the expanded 
silhouettes, after preprocessing, are shown for compari- 
son. Above each object’s name are shown two bars. The 
left bar depicts the accuracy using silhouettes with no pre- 
processing, and the right bar depicts the accuracy using 
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expanded silhouettes. The average accuracy for the entire 
set of test objects with no silhouette preprocessing 93.7 
percent and with silhouette expansion is 76.5 percent. 

C. Accuracy-Computation Tradeoff 
In many cases it may suffice to have occupancy infor- 

mation which is even less detailed than that provided by 
the 13 directions. Of greater importance may be the speed 
at which the octree is generated. Under such conditions it 
is of interest to know how the accuracy degrades with a 
decrease in the number of directions. In Fig. 12 we have 
indicated the ratios of actual volumes to the octree vol- 
umes corresponding to 1) only face views (3 directions), 
2) face and edge views (9 directions), and 3) face, edge, 
and corner views (13 directions). The successive incre- 
ments in bar heights represent the additional accuracy 
contributed by the additional silhouettes. The graphs show 
that for all the objects tested, the additional six edge views 
contribute a significant amount of new information. The 
addition of the four comer views to the nine face and edge 
views, however, increases the accuracy only slightly. 

1)  Parallel Versus Serial Computation: For any algo- 
rithm that constructs a volumetric description from object 
silhouettes, the silhouette information from multiple 
viewpoints may be acquired either using one camera and 
changing viewpoints with time, or by using multiple cam- 
eras located at fixed viewpoints and acquiring the multiple 
silhouette data in parallel. The former leads to necessarily 
serial computation since the input data arrives as the cam- 
era moves. The frequency with which successive silhou- 
ette views may be acquired is determined by the relative 
magnitudes of the processing time T for a single view, 
and the camera velocity. If T is small then closely sepa- 
rated viewpoints may be used to eventually obtain a rel- 
atively accurate octree representation, and the overall oc- 
tree generation time is determined by the time taken by 
the camera to traverse viewpoints. If T i s  large, then the 
overall computation time is proportional to the number of 
silhouettes acquired by one camera. 

An algorithm that allows arbitrary viewpoints is useful 
when accuracy of the representation is important and the 
time delay due to camera motion is insignificant. In such 
cases, one can use partial knowledge of the object shape 
to make a judicious choice of next viewpoint so as to best 
reveal the hitherto unknown part of the object shape. An 
algorithm such as that of Shneier et al. would be very 
useful under such conditions. On the other hand, if the 
goal is to generate the octree representation fast, albeit 
less accurately, then this can be achieved by using mul- 
tiple cameras at different viewpoints. This eliminates any 
delays due to camera movement, and opens up the pos- 
sibility of parallel processing of silhouette data. Our al- 
gorithm uses a fixed set of viewpoints, suitably chosen so 
as to make the construction of octrees from images effi- 
cient. Thus, our algorithm is more appropriate for this 
second scenario. 

2) Coarse-to-Fine Computation: When the computa- 
tion time per silhouette view is larger than the time taken 

by the camera to move to the next viewpoint, or when the 
time taken for the intersection of multiple silhouette data 
in a multiple camera setup can be reduced by reducing the 
number of silhouettes, it may be desirable to have a mech- 
anism of tradeoff between the accuracy of the constructed 
octree and the time taken to construct i t .  Both our algo- 
rithm, and an algorithm that accepts general viewpoints 
[5] would benefit from availability of such a mechanism. 

The choice and order of the viewing directions used in 
our algorithm constitute a coarse-to-fine mechanism of 
acquisition of occupancy information. The face views act 
as coarse sensors of occupancy. Their spatial orthogonal- 
ity contributes to independence of the information they 
provide. The additional edge views are well separated and 
reveal occupancy of the space halfway between the face 
viewing directions. Thus, they provide finer grain occu- 
pancy information. The corner views further increase the 
density of viewing directions fairly isotropically since the 
corner viewing directions are located far away from the 
face and edge viewing directions. Using the three sets of 
viewing directions in different orders results in different, 
near optimal ways of acquiring the silhouette information 
in a coarse-to-fine manner. For example, if the order 
(face, edge, comer) is used, then one can stop after using 
3, 3 + 6 = 9 ,  or 3 + 6 + 4 = 13 directions: if the order 
(edge, face, corner) is used, then one can stop after 6, 9, 
or 13 directions. For certain numbers of allowed viewing 
directions, e.g., 8,  not all directions in a given subset may 
be used, thus, making information acquisition less iso- 
tropic. 
D. Stability 

The measure used in the performance analysis of the 
derived octree representation is an average computed over 
a large number of random orientations of the objects. 
Thus, the results correspond to the expected fraction of 
the volume represented by the octree that is actually oc- 
cupied by the object. In practice, we may derive the oc- 
tree for a given single orientation of the object, which 
may be random. The question then arises as to how reli- 
able the resulting representation is. In other words, how 
stable is the representation from orientation to orientation 
even though we know how the representation performs on 
an average over many orientations. Fig. 13 shows the ob- 
served maximum and minimum values of the measure over 
all 100 observations for each object and for the case of no 
preprocessing. Also shown are the average values and the 
standard deviations of the values. Clearly, the smaller the 
standard deviation, and the smaller the differences among 
the maximum, minimum, and the average values, the bet- 
ter the stability of the derived octree representation. The 
improvement in the stability of the representation with an 
increasing number of views can be seen in Fig. 13. Figs. 
16(a)-(h) show a graphic display of the objects repre- 
sented by the constructed octrees. 

E. Complex Objects 
An inadequacy of the above performance analysis is the 

simplicity of the objects analyzed. Originally, these ob- 
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Fig. 13. Stability characteristics of the algorithm. For each object the three 
bars correspond, respectively, to 3 ,  9, and 13 views, with no silhouette 
preprocessing. Each bar extends from the minimum to the maximum ob- 
served measure value over the 100 observations made. The band in the 
bar is centered at the observed average value and has a thickness of the 
observed standard deviation. 

jects were chosen because they are diverse and fairly 
powerful to serve as geometrical primitives to construct 
arbitrary objects. However, the construction entails 
simultaneous presence of these objects in the octree space, 
as components of the larger object whose octree represen- 
tation is to be derived. Their relative configuration is de- 
termined by the complexity of the object to be con- 
structed. For example, consider the object shown in Fig. 
14 consisting of the volumetric primitives of Fig. 10. The 
spatial configuration of the components leads to their mu- 
tual occlusion when the object is viewed from an arbitrary 
direction. Thus, the already incomplete information in the 
silhouettes about the object is further confounded by self- 
occlusion. Of course, unlike surface concavities, the in- 

formation about occupancy of regions self-occluded from 
a viewpoint may be recovered if other, allowed directions 
are more revealing. The availability of a large number of 
viewing directions assumes increased importance in this 
context. 

To test the performance of our algorithm over more 
complex objects than shown in Fig. 10, we conducted ex- 
periments with the object shown in Fig. 14. Fig. 15 shows 
the results analogous to Fig. 13. Fig. 16(j) shows a 
graphic display of the self-occluding object in Fig. 14 as 
represented by the constructed octree. The upright rect- 
angular solids have reproduced well without any staircase 
effect because these are oriented with their faces parallel 
to the faces of the universe cube. Parts of the curved sur- 



146 IEEE TRANSACTIONS ON PATTERN AN 

1.4 - 
1.3 - 
1.2 - 
1.1 - 
1.0 - 
0.3 - 
0.8 - 
0 . 7  - 
0.6 - 
0.5 - 
0 . 4  - 
0.3 - 

0.2 - 

0.1 - 

ALYSIS AND MACHINE INTELLIGENCE. VOL. I I ,  NO. 2,  FEBRUARY 1989 

Fig. 14. A self-occluding object used in testing the octree generation al- 
gorithm. 
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Fig. 15. Graphical depiction of the stability characteristics of the self-oc- 
cluding object shown in Fig. 14. The three bars correspond to the 3,  9, 
and 13 views. Each bar extends from the minimum to the maximum 
observed value over the 100 observations made. The band in the bar is 
centered at the observed average value and has a thickness of the ob- 
served standard deviation. The three bars on the left show the results 
with no silhouette preprocessing and the three bars on the right show the 
results with silhouette preprocessing. 

faces of the circular cylinders are lost since these parts 
were occluded by the rectangular solids in all the silhou- 
ette views used. 

F. Experimental Details 
The algorithms were implemented in C on a VAX 11/ 

780 computer (see [2] for details). Some simple modifi- 
cations were made to the edge view algorithm to improve 
its efficiency. The C programs were timed using test data 
in the form of 64 x 64 arrays representing binary images 
of varying complexity. The average CPU time spent in 
the octree generation procedures was recorded for face 
and edge views and was found to increase linearly with 
the number of nodes in the octree for a fixed image size. 

The accuracy of the octree increases as its depth in- 

creases. Whenever the image resolution is finer than the 
maximum allowed tree depth, then octants at the lowest 
level in the tree represent square regions of image pixels 
instead of individual pixels. As discussed in Section III- 
B, when a square region is not of uniform value, its de- 
gree of nonuniformity may be used to determine the color 
of the representative octree node. In applications such as 
path planning among obstacles, it is safer to overestimate 
the object sizes rather than underestimate them. In our 
case, we chose to label the node black if at least 1 / 4  of 
the pixels were black. This resulted in a good approxi- 
mation without being too conservative. The depth of the 
generated octree in our experiments is determined by a 
parameter under user control. We set the tree depth so that 
the deepest node corresponds to a pixel in the face views. 
Before closing, we would like to mention that the current 
implementation suffers from the problem that nodes in a 
newly created set of siblings may have identical color in 
which case they may have to be deleted. This results in 
wasted space and time. 

IV. VISUAL EVALUATION OF PERFORMANCE 
During our work on the octree generation algorithm, it 

was necessary to monitor the accuracy of the octree rep- 
resentation constructed at different stages of develop- 
ment. First, we did this by printing each node in the oc- 
tree with its associated “black” or “gray” label 
(“white” or empty nodes were not stored), and then ver- 
ifying by hand that the octree was correct. As the octrees 
became larger, however, it became necessary to be able 
to view directly the object which the octree represented. 
This section describes an algorithm we developed for this 
purpose. The algorithm produces a line drawing of an ob- 
ject represented by on octree. The object is drawn with 
hidden lines removed. An alternative method of display- 
ing the object represented by an octree is described by 
Meagher [9], [lo]. His algorithm produces a surface dis- 
play from octree after hidden surface removal. However, 
surface displays depend upon light source positions. In 
addition, many output devices cannot draw shaded sur- 
faces. A line drawing representation, on the other hand, 
captures the essential details of the object structure in the 
form of edges since the objects are polyhedral. We there- 
fore chose to display the objects represented by the octree 
as line drawings which can be easily drawn. We will not 
give the details of the display algorithm here; they can be 
found in [2], [8]. 

The octree generation algorithm followed by the line 
drawing generation algorithm should provide a display of 
the original object. Any differences between an object and 
its line drawing represent the approximations and errors 
involved in octree generation, and thus serve as a quick 
method of evaluating the performance of the octree gen- 
eration algorithm. 

Figs. 16(a)-(h) show the line drawings generated by 
our algorithm for the octrees of the test objects in Fig. 10. 
Fig. 16(i) is a line drawing generated from an octree that 
was obtained from gray level, silhouette images of a cof- 
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gular prism. (h) Arc. (i) Coffee cup. (j) Self-occluding object. (k) A 
diamond shaped object. 
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fee cup. Fig. 16(j) shows the drawing for the octree of 
the self-occluding object in Fig. 14. Fig. 16(k) shows an 
object whose silhouette is a diamond when viewed from 
any face of the universe cube which contains it. The line 
drawing algorithm was executed on a VAX and the output 
sent to a QMS laser printer. 

V. SUMMARY 

We have presented an algorithm to generate the octree 
representation of an object from silhouette images taken 
from a set of thirteen viewing directions. These viewing 
directions are parallel to three orthogonal faces, six face- 
diagonals, and four long-diagonals of an upright cube. 
Each silhouette of an object is first extended into a cyl- 
inder parallel to the viewing direction, and the corre- 
sponding octree is constructed. An intersection is per- 
formed on the octrees generated from the silhouettes to 
obtain an octree representing the space occupied by the 
object. The octree for each silhouette image is computed 
efficiently by a recursive quadtree decomposition of the 
image, and identification of the occupied octree nodes 
from a table listing corresponding pairs of image windows 
and octree nodes. In actual applications, the requirements 
of the thirteen images may be met very simply by placing 
cameras in fixed positions in a cubical room, namely, at 
centers of walls, edges and corners, all pointing at the 
room center and talung orthographic images. We have also 
run performance tests on the accuracy of the octree and 
concluded that thirteen silhouette views can provide 
enough information for a good approximation of the ob- 
ject. The three sets of viewing directions (face, edge, and 
corner) act as coarse-to-fine, information acquisition 
probes. Fewer than thirteen directions may be used to re- 
duce computation time in exchange for reduced accuracy 
of the representation generated. 

Although a general view algorithm allows an arbitrary 
viewpoint, this generality requires an explicit computa- 
tion of the volume of intersection for determining the oc- 
tree nodes corresponding to extended silhouettes. The 
corresponding intersection tests are more complex and 
may require greater computation time than the direct con- 
struction of octree nodes from image pixels used in our 
approach. Moreover, since silhouette images taken from 
viewing directions which are widely spaced yield more 
information, in general, than do silhouette images which 
are close together, and since the thirteen viewing direc- 
tions used in our algorithm are distributed widely about 
the entire octree space, it is unlikely that a large amount 
of additional information will be obtained using a silhou- 
ette taken from a viewpoint which falls at an intermediate 
position. The results of our experiments bear out this ex- 
pectation, where the accuracy for the thirteen views used 
in our algorithm is over 90 percent (with no silhouette 
preprocessing). Thus, there may be only a marginal gain 
in accuracy by using a general view algorithm, especially 
considering the inherent limitations discussed earlier of 
any shape-from-silhouette reconstruction algorithm. 
Given that the octree representation is useful only as a 

coarse occupancy map (for applications such as rough path 
planning), and is not intended as a representation of fine 
shape details, the accuracy provided by the thirteen view- 
ing directions may suffice. This may be particularly im- 
portant if the general-view algorithm turns out to be more 
expensive than our alogrithm in processing silhouette 
views. Our algorithm requires orthographic views in or- 
der to make use of the a priori relationships between im- 
age space and octree nodes. These relationships do not 
directly extend to perspective views. 

We have used a display algorithm to produce a line 
drawing of an object from its octree. The object is drawn 
with cracks and hidden lines removed. The line drawing 
produced may be used to check the performance of the 
octree generation algorithm by comparing the original and 
the represented object. 

One of the inherent weaknesses of using silhouette im- 
ages to obtain 3-D information is that surface concavities 
cannot be identified. A subject worthy of study is the use 
of range information, in addition to the silhouettes, to help 
identify these concavities. The range information could 
be obtained from such sources as sonar devices or laser 
range finders. 

Several applications of this research suggest them- 
selves. One possibility is the construction of a working 
system of thirteen cameras to monitor the objects in a 
room. The resulting octree representation of the occupied 
space in the room might be used to guide a robot. Another 
possibility is to point cameras at a spot above a conveyor 
belt and as objects pass through the octree space defined 
by the camera viewing directions, perform some task 
based on the volume or shape of the octree approximated 
objects. If cameras are a scarce or precious resource, one 
could experiment with using multiple or movable mirrors 
(in conjunction with a single camera) to obtain the silhou- 
ette images. Finally, one could experiment with mounting 
a camera on a moving vehicle to obtain sequential images 
of an object or an environment for the purpose of main- 
taining a representation of the workspace, planning paths, 
and locating objects. 

ACKNOWLEDGMENT 
Thanks are due to anonymous reviewers who made very 

helpful comments on the manuscript. 

REFERENCES 
[ l ]  N .  Ahuja and C. Nash, “Octree representations of moving objects,’’ 

Comput. Vision, Graphics, Image Processing, vol. 26, pp. 207-216, 
1984. 

[2] N. Ahuja and J .  Veenstra, “Octree generation and display,” Coor- 
dinated Sci. Lab., Univ. Illinois, Tech. Rep. UILU-ENG-86-2215, 
May 1986. 

[3] R. Brooks, “Symbolic reasoning among 3-D models and 2-D im- 
ages,” Artijicial Inrell., vol. 17, pp. 285-348, 1981. 

[4] C. H. Chien and J .  K .  Agganval, “Volume surface octrees for the 
representation of 3-D objects, ” Compur. Vision, Graphics, Image 
Processing, vol. 36, pp, 100-113, 1986. 

[ 5 ]  T. H. Hong and M. Shneier, “Describing a robot’s workspace using 
a sequence of views from a moving camera,’’ IEEE Trans. Parrern 
Anal. Machine Intell., vol. PAMI-7, pp. 721-726. NOV. 1985. 

[6] Y.  Hwang and N .  Ahuja, “Path planning using a potentlal field rep- 
resentation,” Univ. Illinois Coordinated Sci. Lab., Tech. Rep. UILU- 
ENG-88-2251, Oct. 1988. 



AHUJA AND VEENSTRA: GENERATING OCTREES FROM OBJECT SILHOUETTES 149 

C. L Jackins and S L. Tanimoto, “Oct-trees and their use in rep- 
resenting three-dimensional objects,” Comput. Graphics Image Pro- 
cessing, vol. 14, pp 249-270, 1980 
J. Veenstra and N Ahuja, “Line drawings of octree-represented ob- 
jects,” ACM Trans. Graphics, to be published. 
D. Meagher, “Efficient synthetic image generation of arbitrary 3-D 
objects,” in Proc. IEEE Conf Pattern Recognition and Image Pro- 
cessing, Las Vegas, NV, June 14-17, 1982, p. 473. 
- , “Geometric Modeling Using Octree Encoding. ” Comput. 
Graphics Image Processing, vol 19, p. 129, 1982. 
W. Osse and N. Ahuja, “Efficient octree representation of moving 
objects,” in Proc 7th Int Conf Pattern Recognition, Montreal, P Q , 
Canada, July 30-Aug. 2, 1984, pp. 821-823. 
M Shneier, E. Kent, and P. Mansbach, “Representing workspace 
and model knowledge for a robot with mobile sensors,” in Proc. Sev- 
enrh Int Conf Pattern Recognition, Montreal, P.Q , Canada, July 
1984, pp. 199-202 
S .  Srivastava and N. Ahuja, “An algorithm for generating octrees 
from object silhouettes in perspective views,” in Proc. IEEE Work- 
shop Computer Vision, Miami Beach, FL, Nov 30-Dec 2, 1987, 
pp 363-365. 
J Weng and N. Ahuja, “Octrees of objects in arbitrary motion‘ Rep- 
resentation and efficiency,” Comput. Vision, Graphics, Image Pro- 
cessing, pp 167-185, Aug. 1987. cessing machines. 

Narendra Ahuja (S’79-M’79-SM’85), for a photograph and biography, 
see this issue, p. 136. 

Jack E. Veenstra was born in Grand Rapids, MI, 
on Apnl 4 ,  1961. He received the B.A. degree in 
mathematics and computer science from Calvin 
College, Grand Rapids, MI, and the M.S. degree 
in computer science from the University of 1111- 
nois at Urbana-Champaign in 1986. 

Since February, 1986, he has been working for 
AT&T Communications and Information Systems 
in Naperville, IL His current interests include op- 
erating systems and languages for parallel pro- 


