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Abstract 
A closed-form solution to motion and structure from line 

correspondences in monocular perspective image sequences is 
presented. The algorithm requires a minimum of 13 lines over three 
perspective views. Redundancy in the data provides overdetermina- 
tion to combat noise. The estimates can be used as an initial guess 
for further optimization [8]. A unique solution to motion and struc- 
ture is guaranteed if and only if the line configuration is not degen- 
erate and the translation between any two views does not vanish. 
Necessary and sufficient conditions for degenerate spatial line 
configurations have been derived. 

Simulations are performed which show the performance of the 
algorithm in the presence of noise. 

1. INTRODUCTION 
With monocular image sequences, the motion parameters and 

the structure of the scene generally can be derived up to a global 
scale factor. A feature based approach conventionally involves the 
following steps: First, the correspondence (or displacement vector) 
of some features are established. Then, the motion and structure are 
computed from these correspondences. This paper is mainly devoted 
to the second step: the computation of motion and structure from line 
correspondences. An approach is proposed in [7] that combines the 
motion analysis between consecutive views in a long sequence to 
reach a higher level understanding of the motion. 

The choice of the type of features depends on their availability 
in the images and the reliability of their measurement. When points 
are not available in large quantities, other features such as lines or 
contours can be used. Since the higher level features like lines, edges 
and contours are determined by a set of pixels, the redundancy in the 
pixels that form a line make it possible to locate those features accu- 
ratelv. 

We discuss in this paper the use of straight lines without 
known end points, since the end points of a line are not stable with 
respect to viewpoint. For example, the end points are often occluding 
points which do not correspond to physical points and they are not 
fixcd in 3-D as the view point changes. Many factors such as light- 
ing and surface reflection often change the position of two ends of a 
line. However, the location and orientation of the line can generally 
be determined reliably by a line fitter to edge points. 

From line correspondences among three perspective views, 
iteration is used for solving motion parameters from line correspon- 
dences [2l, [4], [ l l .  A convergence to a solution is not guarantccd by 
those iterative algorithms. 

Spetsakis and Aloimonos [ 5 ]  and Liu and Huang[3] recently 
proposed linear algorithms for estimating motion and structure 
parameters from line correspondences. Though Spetsakis and 
Aloimonos claim a closed form solution, many problems remain to 
be solved. First, many SpuriOuS solutions are generated by their Ago- 
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tor, i.e., x=ky or E==, with known y or E, and unknown real 
number k . 
Essential Parameters 

In a coordinate system fixed on the camera, a line passing 
through a point xp (to be specific, let xp be the point on the line that 
is the closest to the origin), with direction I at time t o ,  can be 
expressed in parametrical form: 

xo = xp+kl  (2.3) 

where the subscript in xo means time to ,  and k is a parametcr. At 
another time instant, t l ,  the line is moved from t o  by a rotation 
represented by a rotation matrix R and then a translation represented 
by a translation vector T. That is, any point at position XI at time t 1 

is related to its original position xo at times t o  by 

XI = R xo+T (2.4) 

t 1: X I  = Rxo+T=(Rx,+T)+kRl. (2.5) 

The l i e  equation at time t l  is 

Similarly at another time instant t 2 ,  the line is rotated by a rotation 
matrix S and then translated by a vector U from time to. The line 
equation at t z  is 

12: x2 = S xo+U=(S x p  +LJ)+ks 1. (2.6) 
The order of the three time instants t o ,  r l  and t z  can be arbitrary. 

We define the characteristic normal of a line as the normal of 
the plane that passes through the line and the focal point of the cam- 
era ( also the origin ). Since the characteristic normal is orthogonal to 
the line and the position vector of a point on the line, it is easy to get 
the characteristic normals at the three time instants from (2.4)-(2.6): 

to: no=xpxl (2.7) 
t 1: nl = (Rxp+T)xR l=R ((x,+R-'T)xl) = R (no+R-'Txl) (2.8) 
r z :  n2= (Sxp+U)x'i12;s((xp+S-1U)xl) =S(no+S-'Uxl) (2.9) 

Equation (2.8) gives 

Using the vector identity ax(bxc)=(a,c)b-(a.b)c and (2.10) yields 

R -h l=no+R -'Txl (2.10) 

noxR-'nl = nOx(R-lTxl) = (no.l)R-lT-(no.R-'T)I= -(no.R-lT)I 

(2.11) 

The last equation follows from the fact that n + O .  Equation (2.10) 
gives 

(2.12) no.R-'T = (R-lnl-R-lTxl).R-lT = R-'nl.R-lT = n l .T  

Equation (2.1 1) and (2.12) yicld 

noxR-'nl= -(nl.T)I (2.13) 

n&-Inz = -(n2,U)I Similarly we get 
(2.14) 

Multiplying both sides of (2.13) by n2.U and those of (2.14) by nl.T 
yields 

[nolxB=O (2.16) Or, 

where B=(nz.U)R-1nl-(nl.T)S-1n2. Letting R=[R1 R2 R31 and 
S=[SI SZ S31, B can be expressed as - 

(nz.U)(nox@nl) = (nl,T)(noxF1n2) (2.15) 

(2.17) 

where define the intermediate parameters ( E ,  F,  G ): 

E =R 1 U'-TS { , F =R2U' -TSJ, G =R3U' -TS 4. (2.1 8) 

We have 

niFnz =O (2.19) I::: :: , 
L J  

Equation (2.19) is a vector equation involving motion parameters 
R , T, S , U and observables no, nl ,  and nz. The nonzero scale factor 
of no, n l  and n2 is arbitrary in (2.19). The three scalar equations in 
(2.19) are lincar in the 9x3=27 components of the intermediate 
parameters ( E ,  F,  G).  Since rank([noJx) = 2 for n@O, (2.19) has at 
most two independent scalar equations. From each line correspon- 
dence over three perspective views, we get a set of corresponding 
characteristic normals: no, nl  and n2. If we have at least 13 line 
correspondences over three views. we might have 26 independcnt 
scalar equations. If so, we can essentially solve for the intermediate 
parameters (E ,  F,  C )  based on (2.19). The condition to have 26 
independent scalar equations is discussed in the next section. Now it 
is assumed that the intermediate parameters ( E ,  F ,  G )  are essentially 
determined. For convenience, we solve for the normalized intermedi- 
ate parameters (E,,F,,G,) with IlE, I12+IIFs 1I2+IIGS 11L1, such 
that 

(2.20) 
with unknown real number a. The motion parameters are to be deter- 
mined in terms of the intermediate parameters. II T II 2+ I1 U I1 cannot 
be dctermined from the monocular images. For simplicity of nota- 
tion, we drop the subscripts and let IIE l12+IIF IIZ+IIG 112=1, with 
the understanding that ( E ,  F ,  G )  are known only up to a scale factor. 

Motion Parameters from Essential Parameters 
Lct V;=TxR,, i=1,2,3.  From (2.18) we have EfVI=O, 

F'Vz=O and G'V3=O. If the ranks of E ,  F ,  G are all equal to two, 
vi Can be essentially dctcrmined from ( E , F ,  G). Then the 
translation vector T can be essentially determined by T.V, =O, 
i= l ,  2,3. However the ranks of E ,  F ,  G are not always equal to 2. 
The following theorem enumerates all the possible cases. 

Theorem 1. Assume T#O and U&. Then there exist unit vectors VI,  
Vz, and V3 such that 

(E,, F,. G,)=a(E, F ,  G )  

ErV1=O, (2.21) 
F1V2=0, (2.22) 
G'V3=O. (2.23) 

and the ranks of E ,  F and G fall into three cases. 
Case 1. All of E ,  F ,  G have rank two. Vi is then essentially 

determined. Let A =[VI V2 V,]. Then rank (A)=2 and T is essentially 
determined by AIT=O. 

Case 2. Two of E ,  F .  G have rank two, and the third has rank 
onc. Without loss of generality, Ict rank(E)=l.  Let A=[Vz V,]. If 
rank(A)=2, T is still essentially determined by A'T=O. Otherwise, T 
is essentially determined by T//(E;xV~)XV~. where Ei is any non- 
zero column vector of E .  (Ei xVz)xV2#0. 

Case 3. Only one of E ,  F ,  G has rank two, the other two 
matrices have rank one. Without loss of generality let rank(G)=2. 
Then there arc two orthogonal solutions in (2.21) and (2.22). respec- 
tively: 

E ' V I , ~ ,  E ' V l b 4 .  
Ff Vk=O, F'VZb=O. 

where V~o'vlb*  and v k . V 2 b d .  One and Only one Of two q u a -  
tions 

v3'(vlo X V l b ) d  (2.24) 

and v3'(v& x v 2 b ) d  (2.25) 

0 
hold. T//V1,XVlb if (2.24) holds. TIIVb xV2b if (2.25) holds, 

From Theorem 1, we know that T can be essentially deter- 
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mined. Similarly if we apply E ' ,  F ' ,  GI to Theorem 1, we know U 
can also be essentially determined. The following theorem states the 
uniqueness ofthe solution for motion parameters from the intermedi- 
ate parameters. The condition T&, U& and R'T#SS'U is callcd dis- 
tinct location condition. In section 5 we will see that this condition 
turns out to be a necessary condition for unique solution of inter- 
mediate parameters from (2.19). It is a sufficient condition in fol- 
lowing theorem. 

Theorem 2. Given ( E ,  F ,  G),  the solution for R , T, S, U is unique 
provided T d ,  U& and R'TG'U. 

Proof. From Theorem 1, we- can determine T, and U,, such that 
T-1 II T I1 T, and U = S ~  II U I1 U,, where s I , s 2 ~  {-1, 1). For four com- 
binations of the values of s1 and s2, we have four sets of equations: 

E.;s 1 I1 U II R1Uf-~2 II T I I ?, Sf 
F* 1 II U II R ~ U ; - S ~  II T II ? , S i  (S 1, ~ 2 ) :  (2.26). 
G=S I I U I I R~U:-S~  II T II ?, sj 

(2.27) 

(2.28) 

Applying the same operations to the second and the third equations 
in (2.26) gives the other two equations similar to (2.28). Combining 
these three equations yields 

[T, ],[EU, FU3 G U,] = s 1 II U II [T, IxR (2.29) 

Since R is a rotation matrix, IIRxll=llxll. We get llull from 

llUll = l l [ T ~ ] x l l ~ l l l [ T ~ ] ~ [ E U ,  FU, GU,]II (2.30) 

I 
Premultiplying both sides of the first equation in (2.26) yields 

[ T5 IxE = s 1 I I U I I [TS ],RlUJ 

Post-multiplying both sides by U, gives 

[T,]&US = s l l l U I I  [TsIxR1 

(2.23): 

Considering the transposed version of E ,  F ,  G , similarly we have 

[U,Ix[Ef T, F I T ,  G' T, ] = -s2 I1 T I1 [U, ]J (2.31) 

llTll is determined similarly to (2.30). The equations (2.29) and 
(2.31) both have the form A =BR . In the presence of noise, we solve 
for a rotation matrix R for A =BR such that 

subject to:  R is a rotation matrix(2.32) IIA-BR II=min 

The solution will be prcscnted later with the algorithm. 
Howevcr, there cxist four combinations for all the possible 

signs of (SI, s2)  in (2.26). The following Lcmma states that only onc 
combination has a solution for rotation matrices R and S from 
(2.26). 

Lemma 2. Assume T#O, UzO, and R f T G f  U. Only one assignment 
for (SI, xz), SI. S ~ E  {-1, 11, has a solution for rotation matrices R and 
S from (2.26). 

By substituting into (2.26) the four assignmcnts for (SI, ~ 2 ) .  we 
get unique solution R and S for each assignment. The assignment of 
(s 1, s3 that satisfies (2.26) gives the solution for motion parameter 

One the other hand, ( E ,  F ,  G )  can only be essentially deter- 
mined, i.e., up to a scale factor. From (2.29)-(2.31). i t  is easy to be 
seen that the scale factor does not affect thc solution of the rotation 
matrices R and S .  Howcver thc translation vcctor pair (T, U) is only 
essentially determined. We can choosc any sign for ( E ,  F ,  C )  and 
solve for the translation vector pair to get T, and U, such that 
(T, U)=a(T,, U,) with unknown a. The absolute valuc of a can not 
determined from monocular images. The sign of a can be dcter- 
mined in the following. 

b 

Structure, and Sign of Translation Vectors 

We can solve R and S and (T, U)=a(T, , U,) with unknown a. 
From (2.7)-(2.9) we get I.n,,=$. I.R-'nl=O-and I.S-lnz=O. For each 
line we solve for a unit vector I such that I//I  by 

II [no R-ln, S-lnz]filI=min (2.33) 

If the rank of [no R - h l  S-'nz] is no more than one, the line posi- 
tion cannot be recovered. 

For each line let xp be a point on the line that is the closest to 
the origin. d&llx, II is the positive distance of the line to the origin. 
Since xp +=O, from (2.7) we have 

Ilnoll=lIxPxlll=llxp II 11111 (2.34) 

Though we use (2.7)-(2.9) to define the characteristic normals, the 
scale factor of those normals is immaterial since it will be canceled 
out later in (2.36). Using (2.13) and (2.34) yields 

I T.nl I = II 1 II -I II nf l - ln l  II = II xp II II no 11-1 II n@R-Inl ll(2.35) 

Dividing both sides by I1 nl II gives the distance of the line to the on- 
gin 

do = II xp II = II AoxR-' AI II -I I T.A1 I (2.36) 

Notice that do is proportional to II T II . When T, replaces for T in 
(2.36), llxp II is essentially determined, 

Lct 9 be a unit vector that is parallel to x p  and always points to 
the Z direction. That is, O=-tllnoxlll-'noxl, such that Z.O>O. Then 
xP +d oC. 

To determine the sign for the translation vectors, we assume 
that xp,  the point on the line that is the closest to the origin, has a 
positive 2 component for a majority of lines. This assumption is 
called majority positive-z assumprion. We can then determine the 
sign for translation vectors [9]. The motion from to to t 2  can be 
analyzed in a similar way. 

In the Presence of Noise 
Since short lines in the images are generally not as reliably 

determined as long lines, less weight should be assigned to the short 
lines in (2.19) when solving E ,  F , G . Let the length of the lines in 
the images at time ti be 1; .  i =O, 1, 2. The weight for the line is 

(10'+11'+121)-' (2.42) 

A simple way to ensure that two independent equations are always 
included is including all three equations of (2.19). These three equa- 
tions are scaled by the weight in (2.42) in the system of linear equa- 
tions with (2.19) for all the lines. 

In the prcscnce of noise, a noise corrupted matrix is generally 
of full rank, the conditions on the rank of the matrices should thcn be 
modified for the algorithm. A discussion of the sensitivity of the 
cigcnvectors to the perturbation of the matrix can be found in [6].  A 
rough measurement for the error of the eigenvector associated with 
the smallest eigenvalue 11 is (hl-h2)-I where h2 is the second smal- 
lest eigenvalue. The solution of Vi i = l ,  2, 3 in (2.21)-(2.23) is the 
eigenvector of EE' , FF' , GG' , respectively, associated with the 
smallest eigenvalue. The reliability of those solutions is roughly 
proportional to the difference of the smallest eigenvalue and the 
second smallest one. Case 1 and Case 2 in Theorem 1 can be imple- 
mented by combining them together using a weighted A .  Let the ith 
column vectors of A be weighted by the difference of the two smal- 
lest eigenvalues of EE' ,  FF' and GC', for i= l ,  2, 3, respectively. 
For example, if rank ( E )  is close to one, the corresponding weight in 
A is close to zero, which is Case 2. 

We have observed considerable improvements in simulations 
by using the weighted schemes discussed above. 
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In determining the distance do, the motion from t o  to t i  and 
that from t o  to 22 can both be used to enchance the robustness. 

Algorithm 
In the algorithm, E denotes a small positive threshold to accom- 

modate noise. Without noise, E+. With noise E can be estimated by 
the approach in [6] or dctermined empirically. Though E should bc 
different in different parts of the algorithm, a single E will be used 
for the simplicity of notation. 

(i) solving for (E ,  F,  G )  up to a scale factor. 
Given n line corrcspondenccs over threc views. For each line 

let the unit characteristic normal at time t, be n , ,  i=O, 1,2.  Solve for 
(E,  F ,  G )  such that 

L J II  
with IIE 1I2+1lF I12+IIG 112=1, where the weight for each line is 
given in (2.42). (A.l) can be written in the form 

D y=o (A.2) 
where D is a 3n by 27 matrix determined by characteristic normals, 
and y is a 27-dimensional unit vcctor. Thc solution for unit vcctor y 
is the unit eigenvector of D'D associated with thc smallest cigcn- 
value. 

(ii) Determining unit vectors Ts and U, such that TIITS and 
U//Us. 

Let Heghet  he2 he319 F/%h/l  h/z hf31 and 
H g 3 h g  1 hg2 hg3] be orthogonal matrices such that 

HLEE'H,=diag(h,I, he2. he3), h,1<h,25he3; ( A 3  

HfFF'Hf=diag(hfl, hf2. hf3). h f 6 h f ~ ~ ~ ~ 3 ;  ( A 4  

HiGGIHg=diag(hgl, hg2, hg3), hgIshg25hg3. (A.5) 
Case 1. The medium of the set C=&2. hf2. kgzl is larger than 

E. Let A=[(he2-hei)he1 (hf2-hfl)hf1 (hg2-hgdhg11. a) If +e 
second smallest eigenvalue of A'A is larger than E (rank(A)22), T, 
is determined up to a scale factor by 

IIA'T, II=min (A.6) 

b) Otherwise (rank(A )=1 numerically), determine the smallest 
number in set C.  If he2 is the smallest in set C ,  then 
T,//(E, xhf I)xh/ 1. where E, j s  a nonzero column vector of E .  If ? y 2  
or hg2 is the smallest in C , T, is determined by the similar equation 
(circularly rotating e ,  f , g and E ,  F, G).  

Case 2. The medium of the set C=fie2, hrzl hg3 is not larger 
than E. Determine the maximum of the set C . Without loss of gen- 
erality, assume hg 2 is the maximum. 

('4.7) 
helxhe2 if IhgI.(helxhe2)1 <Ihgi.(hf1Xh/2)1 

T,= hf 1xhf2 otherwise I 
Replacing E ,  F , G by E', F' , GI ,  similarly determine U, 
(iii). Determining R and S. 

Let G R = [ T ~ ] ~ [ E U ,  FUs  GUS] 

GS=-[~.J~]~[E'?, F'?, G'T,] (A.8) 
and IIUII=IIGR lI/e, IITII=IIGs ll/?% Then let G R t l l U I I - I G ~ ,  
and Gs t II T II -'Gs. Solve for the following rotation matrices R,, 
R,  , S, and S, such that 

II-GR-[T,],R,] II=min (A.9) 

I I  +-[U, IJ, 1 I I  =min (A.IO) 

I I GR -[?, lXRp 1 1 1  =min 
I I  Gs-[U, IxS, I I1 =min 

Both (A.9) and (A.lO) have the form ( noticing 

(A.l l )  

Where C=[C1 Cz C3], D=[DI D2 D-,]. The solution of (A. l l )  is as 
follows. 

llD-CR II=IIR'C'-D'II): 

IIRC-D II =min subject to: R is a rotation matrix 

Dclinc a 4 by 4 matrix B by 
3 

B = B[B; (A.12) 3 
where 

(A.13) 

I 

E =sf I I U I I RlUf-s, I I T I I ?, S 

G -s, II U I1 R ~ U ~ - S ,  I I  T II T,Sj 
F=s, II U I1 R~U,'-S, II T II T, S j  (A.15) 

(A.16) 

the set best satisfying (A.15), in the sense of Euclidean norm, gives 
the assignment of (sf, s,, R I  S). Then 

I 
T=S, I I T I I T ~ ,  u=s, IIUIIU,. 

(iv). Determining structure i and x p  . 
For eacb line, solve for the direction of the line represented by 

II[no R-lnl S-1n2]'ill=min (A.17) 

a unit vector 1, such that 

(A.18) 
I T.A, I I UTI2 I 

O= 2 II n@-'n* II + 2 II n ~ - l A 2  I I  

i.=fAoxl 
II Aoxl I I (A.19) 

where the sign is such that the third component of v is non-negative. 

lowing: If 
Let POS and NEG be empty scts. For each line i do the fol- 

Inl~(d&O+T)I+In2~(d~O+U)I <Inl.(daRi.-T)I+Inz.(doSi.-U)I 
i is added into the set POS . Otherwise, i is added to thc set NEG . 

Finally, if IIPOS II>IINEG II,foreachlinei, r 
(A.20) -1 do+ if i E POS 

P - -do+ otherwise 
L 

Otherwiseif IIPOS IlillNEG II, 

T t  -T, U t  -U. (A.21) 
For each line i , i 

-do0 if i E POS 
(A.22) 

' P  ={ do9 otherwise 
i 
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~ ~ ~ p - ~ l ~ ~ ~ ~ ~ ~ ~ ( ~ p - 0 2 ~ ~ ~ ~  

[ n ~ ,  ((x~-OI)XI)'F((X~-O~)XI) 
((xp-oi)X1)' G ((xp-02)x1) 

(3.4) 

=O (3.3) 

for some rcal numbcr a. where Pi and Qi are matrices with thc i-th 
column being 01 and 0 2 ,  rcspcctivcly, and the othcr columns arc 

0 zero vectors. 

Corollary. If the distinct location condition is not satisficd, the 

0 intermediate paramcters is not esscntially detcrmincd by (2.19). 
Another form of necessary and sufficient condition is prescnted 

in the following theorem. 

Theorem 4. Assume 13 line correspondences at time to. with the 
i-th line being represented by x=xpi+l, (xpi is the point closest to 
the origin) and the normal for the plane that passes though the line 
and Ok is A k i ,  k=1,2,  i= l ,  2 ... 13. Then ( E ,  F ,  G )  is not essentially 
determined by (2.19). or equivalently, rank(D)<26 in (A.2). if and 
only if there exist no ai ,  bi, i = l ,  2, 3, ... , 13, not all of which are 
zeros, such that 

13 
,s(aixpi+b; I,)nziAji=O (3.5) 

where ab denotes tensor out product of a and b. For m-dimensional 

vector a and n-dimensional vector b, ab has mn components which 
arc products of all the possiblc combinations between an element in 
a and an element in b. 

From Thcorcm 2 though thcorcm 4 and the majority positive-z 
assumption, we come to the conclusion that if the distinct location 
condition is satisfied and the line structure is not degcnerate (see 
(3.3) or (3.5)). the motion parameters and the structure of the line can 
be uniqucly determined. 

4. S I M U L A T I O N S  
Simulations have been conducted to check the correctness of 

the algorithm and the sensitivity of the solution to the noise. 
The lines are generated randomly for time to. In noise-free 

cases, the error in the solution are of the order of because of 
computer round off errors. 

The visible end points of the lines at each time arc projcctcd 
onto the image. These image coordinatcs are digitized according to 
the resolution of the images to simulate noise. The images have a 
size 2 by 2. For a 512 by 512 image, the image coordinates have 
2x512 evcnly spaced levels for U and v coordinates, respectively, 
accounting for a line fitting process for real images. The image coor- 
dinates are digitized to the closest lcvcls. For each line, two digi- 
tized images of the two visible end points and focal point of the cam- 
era (the origin) determine the characteristic normal of this line. In the 
presence of noise (real image coordinates are digitized according to 
the image resolution), the crrors dcpcnd on the configuration of thc 
lincs randomly gcncrated. To show the general sensitivity to the 
noise, the average errors over 100 random sequences (randomly gen- 
eratcd lines at time t o )  are recorded. Fig. 1 shows a sample 
sequcnce. 

The errors shown in the following arc all relative errors. The 
relative error of a matrix (or vector) is defincd by the Euclidean norm 
of the difference between the estimated and the true matrix (or vec- 
tor) divided by the Euclidean norm of the true matrix (or vector). 
Fig. 2 through Fig. 4 show the relative errors for the number of lines 
ranging from 13 to 30. The image resolution is 512 by 512. The 
motion parameters are as follows: R corresponds to a rotation about 
an axis (1, 1, 1) by an angle 6", and S to a rotation about (0, 1, -1) 
by 5". T=(l, -1,3). U=(l, 1, -2.5). It can be seen from those figures 
that, with a minimal 13 lines, the algorithm does not give reliable 
estimates of motion parameters with the 512 by 512 resolution. 
Some short lines in the images may give vcry unreliable characteris- 
tic normals in the presence of noise. Degenerate configurations are 
more likely to be generated with fewer lines. When the number of 
line correspondences increases, the errors decreases considerably. 
When the number of line correspondences is around 20, we get rea- 
sonably accurate results. Fig, 4 shows the average errors of the 
rccovcred direction of lines 1 (solid lines) and those of recovered 
relative errors of the distance of the line to the origin, II xp II, (dashed 
lines). 

5. C O N C L U S I O N S  
A new linear algorithm is prescntcd for dctcrmining the motion 

parameters and the structure of thc lines. The algorithm uses a 
minimal of 13 lines but more lines arc nccdcd to obtain more accu- 
rate rcsults in the presence of noise. The algorithm is complete and 
the uniqueness of the solution is proved. The degenerate conditions 
for the structure of the lines are presented. Derivation for a more 
intuitive condition is suggested for future research. The errors of this 
algorithm can be estimated using the approach in 161. 

The estimates of this algorithm can be used as an initial guess 
for an iterative process that optimizes the solution based on a good 
objective function (See [8] for a two-step approach). Since a better 
objective function is used and a good initial guess is available, solu- 
tions can be significantly improved through iterations. 
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Fig.1. A sample sequence with 18 lines 

Fig.2. Relative Errors of ( E ,  F ,  G )  (solid Fig.3. Relative Errors of ( E ,  F ,  G )  (solid 
lines), R (dashed lines) and T (dot-dashed lines) lines), S (dashed lines) and U (dot-dashed lincs) 
versus number of line correspondences. versus number of line correspondences. 

Fig.4. Average Relative Errors of line direction i 
(solid lines), and line distance I1 x p  11 (dashed 
lines) vcrsus number of line corrcspondenccs. 
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