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Abstract

A closed-form solution to motion and structurc from line
correspondences in monocular perspeciive image scquences is
presented. The algorithm requires a minimum of 13 lines over three
perspective views. Redundancy in the data provides overdetermina-
tion to combat noise. The estimates can be used as an initial guess
for further optimization [8]. A unique solution to motion and struc-
ture is guaranteed if and only if the linc configuration is not degen-
erate and the translation between any two views does not vanish.
Necessary and sufficient conditions for degenerate spatial line
configurations have been derived.

Simulations are performed which show the performance of the
algorithm in the presence of noisc.

1. INTRODUCTION

With monocular image scquences, the motion parameters and
the structure of the scene gencrally can be derived up to a global
scale factor. A feature based approach conventionally involves the
following steps: First, the correspondence (or displacement vector)
of some features are established. Then, the motion and structure are
computed from these correspondences. This paper is mainly devoted
to the second step: the computation of motion and structure from linc
correspondences. An approach is proposed in [7] that combines the
motion analysis bctween consecutive views in a long scquence to
reach a higher level understanding of the motion.

The choice of the type of featurcs depends on their availability
in the images and the reliability of their measurement. When points
arc not available in large quantities, other features such as lines or
contours can be used. Since the higher level features like lines, edges
and contours are determined by a set of pixels, the redundancy in the
pixels that form a line make it possible to locate those features accu-
rately.

We discuss in this paper the use of straight lines without
known end points, since the end points of a line are not stable with
respect to viewpoint. For example, the end points are often occluding
points which do not correspond to physical points and they are not
fixed in 3-D as the view point changes. Many factors such as light-
ing and surface reflection often change the position of two cnds of a
line. However, the location and oricntation of the line can generally
be determined reliably by a line fitter to edge points.

From line correspondences among three perspective views,
iteration is used for solving motion parameters from line correspon-
dences [21, [4], [1]. A convergence 10 a solution is not guarantced by
those iterative algorithms.

Spetsakis and Aloimonos [5] and Liu and Huang[3] recently
proposed linear algorithms for estimating motion and structure
parameters from line correspondences. Though Spetsakis and
Aloimonos claim a closed form solution, many problems remain to
be solved. First, many spurious solutions are generated by their algo-
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rithm. The number of spurious solutions is so large that the compu-
tation is very inefficient and unreliable. Second, the algorithm fails
for some types of motion cven though the translation docs not van-
ish. Third, they have not answered the question of uniqueness. By
substituting many spurious solutions into the original equations, as
proposed by them, is any solution that satisfies the equation correct?
Fourth, what is the necessary and sufficient condition for the algo-
rithm to give a unique solution? Finally, since their algorithm is for
the exact data, no noise is considered. An algorithm needs to be
designed in the presence of noise and the sensitivity of the algorithm
to the noise needs to be investigated. Similar criticisms can be made
of the algorithm of Liu and Huang. These problems are taken up in
this paper.

Because the space is limited, we omit most proofs here. A full
length discussion is presented in [9]. The algorithm is derived in Sec-
tion 2. Section 3 is devoted to the problem of degeneracy and
uniqueness. Scction 4 presents the simulation results. Section 5
presents concluding remarks.

2. SOLUTION AND ALGORITHM

The goal is to determine the relative motion between the cam-
era and the scene, as well as the structure of the scene. Let the (cam-
cra) coordinate system be fixed on the camera with the origin coin-
ciding with the focal point of the camera, and the Z axis coinciding
with the optical axis and pointing in front. (In the camera coordinate
system, the scene is moving.) Since any unit can be uscd to measure
the three-dimensional distance, we choose the focal length of the
camera as a unit for simplicity. Thus the focal length is unity, and
the image plane is located at z=1. Visible objects are always located
in front of the image plane, i.e., z>1. We assume the scene is rigid.

First we introduce some notation. Matrices are denoted by cap-
ital italics. Vectors are denoted by boldface either capital or small.
A 3-dimensional column vector is specificd by (s1, 52, $3)¢. A vector
is sometimes regarded as a column matrix. So vector operations such
as cross product ( x ) and matrix opcrations such as matrix multipli-
cation are applied to 3-dimensional vectors. Matrix operations pre-
cede vector operations. 0 denotes a zero vector. A vector with a hat
such as T denotes the corresponding unit vector of the original vec-
tor. a//b if and only if axb=0. For a matrix A=[a;;], 1A I denotes
the Euclidean norm of the matrix. ie., il[a;]11%=3a;2. We definc a

]

mapping [-]x from a 3-dimensional vector to a 3 by 3 matrix:

0 —x3 x»
[ x2,x3) Ix=| x3 0 —-x; 2.1)
-x2 x1 O

Using this mapping, we can express cross operation of two vectors
by the matrix product of a 3 by 3 matrix and a column matrix:

XxY = [X]Y 22)

‘When we say that a vector X or a matrix E is essentially determined
or essentially solved, we mean that it is determined up to a scale fac-



tor, i.e., x=ky or E=KkE; with known y or E; and unknown real
number k.

Essential Parameters

In a coordinate system fixed on the camera, a line passing
through a point x, (to be specific, let x, be the point on the line that
is the closest to the origin), with direction I at time ¢o, can be
expressed in parametrical form:

Xo =X, +k1 23)

where the subscript in Xo means time fo, and & is a parameter. At
another time instant, ¢1, the line is moved from ty by a rotation
represented by a rotation matrix R and then a translation represented
by a translation vector T. That is, any point at position x) at time f,
is related to its original position xq at times ¢g by
X1 =Rxg+T 24
The line equation at time ty is
X1 = Rxo+T=(R x, +T)+kR1.
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Similarly at another time instant 5, the line is rotated by a rotation
matrix S and then translated by a vector U from time ¢;. The line
equation at ¢3 is

x3 =S xo+U=(S x p +U)+kS 1.

The order of the three time instants ¢, t and ¢, can be arbitrary.

i 2.6)

We define the characteristic normal of a line as the normal of
the plane that passes through the line and the focal point of the cam-
era ( also the origin ). Since the characteristic normal is orthogonal to
the line and the position vector of a point on the line, it is easy to get
the characteristic normals at the three time instants from (2.4)-(2.6):

to: Mp=X,Xxl Q.7
ti: m=Rx,+TXRI=R ((x, +RIT)x) = R (ng+R~'Tx1) (2.8)
10 mp=(SXp+UIXSI=S (x, +S1UXD) =S Me+S71UXD)  (2.9)

Equation (2.8) gives
R~'nj=ng+R1Tx1 (2.10)
Using the vector identity ax(bxc)=(a-c)b—(a-b)c and (2.10) yields
noxR~In; = ngx(R~1TX1) = (ng DR ~'T—(ny:R 1 T)l= —(ny:R 1 T)I
(2.11)

The last equation follows from the fact that ny1=0. Equation (2.10)
gives

ngRT=R M~RITX)RIT=R'n:R'T=nm T (2.12)
Equation (2.11) and (2.12) yicld

nexR'n; =—(n;- Tl (2.13)

Similarly we get noxS-ny = ~(ny Ul 2.14)

Multiplying both sides of (2.13) by ny U and those of (2.14) by n;'T
yields
(2 U)(oxR~Inyp) = (n) T)(npxS~'ny) (2.15)

. (nglB=0 2.16)

where  B=(npyU)R~nj—~(n-T)S'n,;. Letting R=[R; R, R3] and
S$=[S; S2 S3], B can be expressed as

n{(R;U'~TSDn, n{En,
B=| n{(R,U*~TSHny| & | n{Fn, 2.17)
n{(R3U'-TSHn, nfGn,
where define the intermediate parameters (E,F, G ):
E=R\U'-TS{, F=R,U'-TSi, G=R;U'-TS{. (2.18)
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We have niEn,

[nol| nfFny| =0
n{Gn;,

(2.19)

Equation (2.19) is a vector equation involving motion parameters
R,T,S, U and observables ng, nj, and n,. The nonzero scale factor
of ng, n; and n; is arbitrary in (2.19). The three scalar equations in
(2.19) are lincar in the 9x3=27 components of the intermediate
parameters (£, F, G). Since rank([ng)x) =2 for ng=0, (2.19) has at
most two independent scalar equations. From each line correspon-
dence over three perspective views, we get a set of corresponding
characteristic normals: ng, n; and np. If we have at least 13 line
correspondences over three views, we might have 26 independent
scalar equations. If so, we can esscntially solve for the intermediate
parameters (£, F,G) based on (2.19). The condition to have 26
independent scalar equations is discussed in the next section. Now it
is assumed that the intermediate parameters (£, F, G) are essentially
determined. For convenience, we solve for the normalized intermedi-
ate parameters (Es, Fs, G;) with 11 E; 12411 Fs 12411 G, 11 %=1, such
that

(Es, Fs,Gs)=0(E,F,G) (2.20)

with unknown real number o. The motion parameters are to be deter-
mined in terms of the intermediate parameters. | T2+ 11U 112 cannot
be determined from the monocular images. For simplicity of nota-
tion, we drop the subscript s and let LE U2+ F {1241 G 112=1, with
the understanding that (E, F, G) are known only up to a scale factor.

Motion Parameters from Essential Parameters

Let V;=TxR,, i=1,2,3. From (2.18) we have E‘'V;=0,
F!Vy=0 and G*V3=0. If the ranks of £, F, G are all equal to two,
V: can be cssentially determined from (E,F,G). Then the
translation vector T can be essentially determined by T-V;=0,
i=1,2, 3. However the ranks of £, F,G are not always equal to 2.
The following theorem enumerates all the possible cases.

Theorem 1. Assume T#0 and Uz0. Then there exist unit vectors Vi,
V,, and V3 such that

E'V1=0, (2.21)
F'Vy=0, 2.22)
G'V3=0. (2.23)

and the ranks of £, F and G fall into three cases.

Case 1. All of E, F, G have rank two. V; is then esscntially
determined. Let A=[V, V, V3]. Then rank (A)=2 and T is essentially
determined by A’ T=0.

Case 2. Two of E, F, G have rank two, and the third has rank
onc. Without loss of generality, lct rank(E)=1. Let A=[V, V3], If
rank(A)=2, T is slill essentially determined by Af T=0. Otherwise, T
is essentially determined by T//(E;xV,)XV,, where E; is any non-
zero column vector of E. (E; xV)xVyz0.

Case 3. Only onc of E,F,G has rank two, the other two
matrices have rank one. Without loss of generality let rank (G )=2.
Then there are two orthogonal solutions in (2.21) and (2.22), respec-
tively:

EiV=0,  E'V=0,
FiVy,=0,  F'Va,=0.

where Vi, V=0 and V,,V,,=0. One and only one of two cqua-
tions

V3 (V1axVy,)=0

V3:(V2a xV2,)=0

hold. T//V1,XVy, if (2.24) holds. T//Vy, XV, if (2.25) holds.
From Theorem 1, we know that T can be essentially deter-

(2.24)

and (2.25)



mined. Similarly if we apply E*, F!, G* to Theorem 1, we know U
can also be essentially determined. The following theorem states the
uniqueness of the solution for motion parameters from the intermedi-
ate parameters. The condition T#0, U#0 and R’ T#S' U is called dis-
tinct location condition. In scction 5 we will see that this condition
turns out to be a necessary condition for unique solution of inter-
mediate parameters from (2.19). It is a sufficient condition in fol-
lowing theorem.

Theorem 2. Given (E, F, G), the solution for R, T, §, U is unique
provided T#0, U0 and R* T=S'U.

Proof. From Theorem 1, we can determine ’i‘s and U, such that
T=s, I THT, and U=s, 1 Ul U, where §1,5,€ {—1, 1}. For four com-
binations of the values of s; and s, we have four sets of equations:

E=s NUNRUi=s, I TN, Sf

(51, 52): F:sllIUIIszg§—52IITII’%‘$SQ (2.26).
G=s1IUNR3U!=s, I TH T84
Premultiplying both sides of the first equation in (2.26) yiclds
[T IkE = s 10T, LR, 0 Q.27)
Post-multiplying both sides by U, gives
(T BTy =51 1UHT, LR, (2.28)

Applying the same operations to the second and the third cquations
in (2.26) gives the other two equations similar to (2.28). Combining
these three cquations yiclds

(T EU; FU, GU =5, 1UUT, 1R

Since R is a rotation matrix, IIRxli=!Ixil. We get [1UIl from
(2.29):

(2.29)

HUI = H[T, - WED, FO, GU I (2.30)
Considering the transposed version of E, F, G, similarly we have
O, E T, FiT, G, 1=—soITHT, LS @231

IITH is determined similarly to (2.30). The equations (2.29) and
(2.31) both have the form A=BR . In the presence of noise, we solve
for a rotation matrix R for A=BR such that

1A —BR l=min subject to: R is a rotation matrix(2.32)

The solution will be presented later with the algorithm.

However, there cxist four combinations for all the possible
signs of (s1, §2) in (2.26). The following Lemma states that only one
combination has a solution for rotation matrices R and S from
(2.26).

Lemma 2. Assume T#0, U0, and R* T=S' U. Only onc assignment
for (51, 52), 51, S2€ {—1, 1}, has a solution for rotation matrices R and
S from (2.26).

By substituting into (2.26) the four assignments for (s, 52), we
get unique solution R and § for cach assignment. The assignment of
(81, 52) that satisfies (2.26) gives the solution for motion paramc[erﬁ.__]

One the other hand, (E, F,G) can only be essentially deter-
mined, i.e., up to a scale factor. From (2.29)-(2.31), it is easy to be
seen that the scale factor does not affect the solution of the rotation
matrices R and S. Howgver the translation vector pair (T, U) is only
essentially determined. We can choosc any sign for (E, F, G) and
solve for the translation vector pair to get Ty and U, such that
(T, U)=o(T,, Uy) with unknown ¢.. The absolute value of o can not
determined from monocular images. The sign of o can be deter-
mined in the following.

389

Structure, and Sign of Translation Vectors

We can solve R and S and (T, U)=o(Ts, U;) with unknown a.
From (2.7)-(2.9) we get I'ng=0, I'R~'n;=0 and 1-S-!n,=0. For each
line we solve for a unit vector I such that I//1 by

Illng R~'ny S~'ny)ill=min (2.33)

If the rank of [ng R~!'n; S~'ny] is no more than one, the line posi-
tion cannot be recovered.

For each line let x,, be a point on the line that is the closest to
the origin. doAlix, Il is the positive distance of the line 1o the origin.

Since x, 1=0, from (2.7) we have

IIngll=1lx, <111 =11x, I 1] (2.34)

Though we use (2.7)-(2.9) to define the characteristic normals, the
scale factor of those normals is immaterial since it will be canceled
out later in (2.36). Using (2.13) and (2.34) yields

IT-ny =1~ IngxR ~ny T=11x, 11 11no 171 ing<R "', 11(2.35)
Dividing both sides by Iin; Il gives the distance of the line to the ori-
gin

do= 11x, H=1lfig<R ', -1 Tt (2.36)

Notice that do is proportional to I TIl. When T, replaces for T in
(2.36), I1xp Il is essentially determined.

Let ¥ be a unit vector that is parallel to x, and always points to
the Z direction. That is, ¥=tingxi|l~'ngxl, such that Z-9>0. Then
Xp:tdofﬂ

To determine the sign for the translation vectors, we assume
that x,, the point on the line that is the closest to the origin, has a
positive Z component for a majority of lines. This assumption is
called majority positive-z assumption. We can then determine the
sign for translation vectors [9]. The motion from ¢y to £, can be
analyzed in a similar way.

In the Presence of Noise

Since short lines in the images are generally not as reliably
determined as long lines, less weight should be assigned to the short
lines in (2.19) when solving E, F, G . Let the length of the lines in
the images at time #; be /;, i=0, 1, 2. The weight for the line is

U+ ! (2.42)

A simple way to ensure that two independent equations are always
included is including all three cquations of (2.19). These three equa-
tions are scaled by the weight in (2.42) in the system of linear cqua-
tions with (2.19) for all the lines.

In the presence of noise, a noise corrupted matrix is gencrally
of full rank, the conditions on the rank of the matrices should then be
modificd for the algorithm. A discussion of the sensitivity of the
cigenvectors to the perturbation of the matrix can be found in [6]. A
rough measurement for the error of the eigenvector associated with
the smallest eigenvalue A; is (A1—Ay)~! where A; is the second smal-
lest cigenvalue. The solution of V; i=1,2, 3 in (2.21)-(2.23) is the
cigenvector of EE’, FF!, GG*, respectively, associated with the
smallest eigenvalue. The reliability of those solutions is roughly
proportional to the difference of the smallest eigenvalue and the
second smallest one. Case 1 and Case 2 in Theorem 1 can be imple-
mented by combining them together using a weighted A. Let the ith
column vectors of A be weighted by the difference of the two smal-
lest eigenvalues of EE', FF' and GG', for i=l, 2, 3, respectively.
For example, if rank (E) is close to one, the corresponding weight in
A is closc to zero, which is Case 2.

We have observed considerable improvements in simulations
by using the weighted schemes discussed above.



In determining the distance do, the motion from to 10 t) and
that from ¢ to ¢7 can both be used to enchance the robustness.

Algorithm

In the algorithm, € denotes a small positive threshold to accom-
modate noise. Without noise, e=0. With noise & can bc estimated by
the approach in [6] or determined empirically. Though e should be
different in different parts of the algorithm, a single € will be used
for the simplicity of notation.

(i) solving for (E, F, G) up to a scale factor.

Given n line correspondences over three views. For cach line
let the unit characteristic normal at time ¢; be n;, i=0, 1, 2. Solve for
(E,F,G)such that

HIEIIZ 2
,Z weight || [nolx| n{Fn, =min (A1)
ines H{G n,

with HE II2+1IF 12+11G 12=1, where the weight for each line is
given in (2.42). (A.1) can be written in the form

Dy=0 (A2)
where D is a 3n by 27 matrix determined by characteristic normals,
and y is a 27-dimensional unit vector. The solution for unit vector y
is the unit eigenvector of D!D associated with the smallest eigen-
value.

_ (1) Determining unit vectors ’i‘s and ﬁ, such that T//'i} and
U/

Let H.Alh,) heo h,sl, Fralhgy hyy hgs) and

Hgalh,y hga hg3] be orthogonal matrices such that
H{EE'H.=diag o1, Ao Aed), AerSheaShess  (A3)
H}FF'Hf=diag0»f1, 7»]’7_, 7\.f3), lflskfszf:;; (A.4)
H{GG'Hy=diag (Ag1, hg2, Ag3)s  Ag1ShgoShes.  (A5)

Case 1. The medium of the set C={A.2, Ar2, A2} is larger than
e Let A={(Aho2-heDhey Qyeo-hedhypy (ga—AgDhgy). @) If the
second smallest eigenvalue of A’A is larger than € (rank (4)22), T;
is determined up to a scale factor by

A* T, 1l =min (A6)
b) Otherwise (rank(A)=1 numerically), determine the smallest
qumber in set C. If A, is the smallest in set C, then
T, //(E;xhy )xhs |, where E, is a nonzero column vector of E. If Asp
or A, is the smallest in C, T; is determined by the similar equation
(circularly rotating e, f, g and E, F, G ).

Case 2. The medium of the set C={),2, hy2, A2} is not larger
than €. Determine the maximum of the set C. Without loss of gen-
erality, assume A, is the maximum.
if Vhgy(hexhe)t <Thyp(hye pdhpo)
otherwise

S h,xh,,

o 1 wh 5 (AT

Replacing E, F, G by E', F', G, similarly determine U,.
(iii). Determining R and S .

Let Gr=1,ET, FU; GU,]

Gs=[U,)JE'T, F'T, G'T) (A8)

and NUN=11Gg IN2, ITII=11Gg 1I/N2. Then let G IIUII1Gy,
and Gs«IITII-'Gs. Solve for the following rotation matrices Ry,
R4, S, and S, such that

1 Gr=I[Ts xR, ) li=min
N Gs—{ 0 1S, 1 =min

=Gr~[T,1Ra1lI=min (A.9)
II—GS—[I"J:]XS,,]II:min (A.10)

Both (A9) and (A.10) have the form (
IND-CR U=IR'C*~D*1l):

IIRC-D H =min subject to: R is a rotation matrix (A.11)

Where C=[C, C, C3], D=[D; D, D3]. The solution of (A.11) is as
follows.

noticing

Define a 4 by 4 matrix B by

3
B = ;Bl‘Bg (A.12)
where
0 (C;-Dy)
BF{D.—C, m.-+c,-]l a13

Let q=(q0. ¢ 1. g2, ¢3) be the unit eigenvector of B associated with
the smallest eigenvalue. The solution of rotation matrix R in (A.11)
is

qé+9t-q92-9% 2g192-q093) 2(q193tgog2)

R=| 2(q291+q093) q—qf+q7-q% 2(q293-q0q1) | (A.14)
2(g3q1~qoq2)  2(g3qrtqoq)) qé-qf-g3+q%
Substituting four assignments
(1L, LRy, 5p), -1, 1, R,, Sp),
(1, 1,Ry, S, (-1,-1,R,.,S,)
for (s;, 54, R,S)1
E=s; IUIR;Uf=s, 1 TIT,S{
F=s, 1UlIRyU!~s, N TN T, S} (A.15)

G =5, WU R,Ui~s, I THT, S8

the set best satisfying (A.15), in the sense of Euclidean norm, gives
the assignment of (s, s,, R, S). Then

T=s, ITHT,, Us=s, I1UNT;. (A.16)

(iv). Determining structure 1 and x,,.

For each line, solve for the direction of the line represented by
a unit vector 1, such that

lllng R~1ny S~Iny}{ll=min (A17)
1Ty ! U,
d —
2 TAR A 1T+ 21THoxS 1Az |l (A18)
N ﬁoxi
V= TRed T (A.19)

where the sign is such that the third component of v is non-negative.

Let POS and NEG be empty scts. For each line ¢ do the fol-
lowing: If

Inp(doR ¥+T) 1+1n3:(d oS v+UY < Iny(dpR ¥=T) |+ ny (dpS ¥-U) |
i is added into the set POS. Otherwise, i is added to the set NEG .
Finally, if | POS lI> IINEG |1, for each line i,

do¥ if i € POS
Xp =1 v otherwise (A20)

Otherwise if I1POS | <IINEG 1I,

Te -T, Ue-U. (A21)
For each line i,
—dgV if i € POS
¥ = dov otherwise (A22)



3. DEGENERACY

From just two views, it is impossible to determine motion and
structure from line correspondences: An image line with the focal
point determines a 3-D plane. Two images with the focal point
determine two 3-D planes whose intersection gives the 3-D line. We
can move, slightly and arbitrarily, one image with its focal point and
the new 3-D plane still intersect the corresponding 3-D plane and so,
determines a new 3-D line. The same is true for other lines. In other
words, motion parameters can be arbitrary and the corresponding 3-
D structure of lines exists such that they yield the same pair of
images. However, intersection of three planes generally is not a line.
This is why three views are generally enough to determine motion
and structure.

In the last section, it is established by Theorem 2 that as long
as T#0, U#0 and T'R#U'S the solution of motion parameters from
the intermediate parameters (£, F, G ) is unique.

First, lct us see what the condition
T=0, Uz0, T'R=U'S 3.1

mcans. Let a world coordinate system be fixed with the scene and
coincide with the camera coordinate system (that we havc uscd car-
lier) at time to. It can be casily shown that the position of the focal
point at time ty, in the world coordinate system, is at O=—R'T.
Similarly the position of the focal point at time 7 is at O;=—5'U.
Thus the condition in (3.1) is cquivalent to the condition

0,20, 0270, 0,70, (3.2
That is to say that any two positions of the focal point of the moving
camera do not coincide, or in other words, the translation between
any two views does not vanish. So the conditions in (3.1) and (3.2)
are called distinct location condition.
The following theorem gives the necessary and sufficient con-
ditions for degeneracy in terms of 3-D line configurations at time to
and the motion parameters.

Theorem 3. (E,F,G) is not cssentially determined by (2.19) or

equivalently, rank(p)gZé_ in (A.2), if and only if therc cxist no

trivial parameters (£, F', G) such that
(=0 E ((x,~02)x))

[n]x| ((Xp=ODX)'F ((x,~02)x1)| =0

((xp~01)xD) G {(x,~02)x1)

is satisfied for all lines x=x,+k1 at time 0. (€, F, G ) is trivial if and

only if

(33)

(E.F,G)=o(P -0}, P2—05. P5~0}) (3.4)

for some real numbcer . where P; and Q; are matrices with the {—th
column being O and O, respeclively, and the other columns are
ZCIo veclors. O

Corollary. If the distinct location condition is not satisficd, the
intcrmediate paramcters is not essentially determined by (2.19). O

Another form of necessary and sufficient condition is prescnted
in the following theorem.

Theorem 4. Assume 13 line correspondences at time g, with the
i—th line being represented by x=x,;+l; (X is the point closest to
the origin) and the normal for the plane that passes though the line
and O is iy, k=1,2,i=1,2 - 13. Then (E, F, G) is not essentially
determined by (2.19), or equivalently, rank(D)<26 in (A.2), if and
only if there exist no «;, b;, i=1,2,3, -, 13, not all of which are
zeros, such that

B
;(di Xpi +;1; )iz fiz; =0 (3.5)

where ab denotes tensor out product of a and b. For m-dimensional

391

vector a and n-dimensional vector b, ab has mn components which
are products of all the possible combinations between an eclement in
a and an element in b. o

From Theorem 2 though theorem 4 and the majority positive-z
assumption, we come to the conclusion that if the distinct location
condition is satisfied and the line structure is not degenerate (see
(3.3) or (3.5)), the motion parameters and the structure of the line can
be uniquely determined.

4. SIMULATIONS

Simulations have been conducted to check the correctness of
the algorithm and the sensitivity of the solution to the noise.

The lines are generated randomly for time to. In noise-frec
cases, the error in the solution are of the order of 10710 because of
computer round off crrors.

The visible end points of the lines at each time are projected
onto the image. These image coordinatcs are digitized according to
the resolution of the images to simulate noise. The images have a
size 2 by 2. For a 512 by 512 image, the image coordinates have
2x512 evenly spaced levels for 4 and v coordinates, respectively,
accounting for a line fitting process for real images. The image coor-
dinates are digitized to the closest levels. For each line, two digi-
tized images of the two visible end points and focal point of the cam-
cra (the origin) determine the characteristic normal of this line. In the
presence of noise (real image coordinates are digitized according to
the image resolution), the errors depend on the configuration of the
lines randomly generated. To show the general sensitivity to the
noise, the average errors over 100 random scquences (randomly gen-
erated lines at time tq) are recorded. Fig. 1 shows a sample
sequence.

The errors shown in the following are all relative errors. The
relative error of a matrix (or vector) is defined by the Euclidean norm
of the difference between the estimated and the true matrix (or vec-
tor) divided by the Euclidean norm of the true matrix (or vector).
Fig. 2 through Fig. 4 show the relative errors for the number of lines
ranging from 13 to 30. The image resolution is 512 by 512. The
motion parameters are as follows: R corresponds to a rotation about
an axis (1, 1, 1) by an angle 6°, and S to a rotation about (0, 1, ~1)
by 5°. T=(1,~1, 3). U=(1, 1, -2.5). It can be seen from those figures
that, with a minimal 13 lines, the algorithm does not give reliable
cstimates of molion parameters with the 512 by 512 resolution.
Some short lines in the images may give very unrcliable characteris-
tic normals in the presence of noise. Degencrate configurations are
more likely to be generated with fewer lines. When the number of
line correspondences increases, the errors decreases considerably.
When the number of line correspondences is around 20, we get rea-
sonably accurate results. Fig. 4 shows the average errors of the
recovered direction of lines 1 (solid lines) and those of recovered
relative errors of the distance of the line to the origin, Il xp I, (dashed
lines).

5. CONCLUSIONS

A new lincar algorithm is presented for determining the motion
parameters and the structure of the lines. The algorithm uses a
minimal of 13 lines but more lines are nceded to obtain more accu-
rate results in the presence of noise. The algorithm is complete and
the uniqueness of the solution is proved. The degenerate conditions
for the structure of the lines are presented. Derivation for a more
intuitive condition is suggested for future rescarch. The errors of this
algorithm can be estimated using the approach in [6].

The estimates of this algorithm can be used as an initial guess
for an iterative process that optimizes the solution based on a good
objective function (See [8] for a two-step approach). Since a better
objective function is used and a good initial guess is available, solu-
tions can be significantly improved through iterations.
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Fig.2. Relative Errors of (E,F,G) (solid
lines), R (dashed lines) and T (dot-dashed lines)
versus number of line correspondences.

Fig.1. A sample sequence with 18 lines

Fig.3.
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