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ABSTRACT 
This paper presents a model-based algorithm for estimating 

motion from monocular image sequences. We first present a new 
two-view motion algorithm and then extend it to multiple views. 
The two-view algorithm requires generally 6 pairs of point cor- 
respondences to give unique solution of the motion parameters. 
However, when the uredpoints lie on a Maybank Quadric, the al- 
gorithm requires 7 pairs of point correspondences to give double 
solutions. Object-centered motion representations and a motion 
model of constant acceleration are used to estimate motion pa- 
rameters from long image sequences. The algorithm guarantees 
globally optimal solution. Since the algorithm does not involve 
structure parameters, it contains the least number of unknowns 
and is hence more efficient and robust than the existing ones. Ex- 
perimental results with real image data are presented. The same 
method can be applied to solve for motions described by second 
or higher orders of polynomials. 

1 Introduction 
This paper addresses the problem of estimating motion and 

structure from point correspondences in a monocular image se- 
quences. It is well-known that the motion problem is nonlinear 
and very sensitive to noise. One way to improve the performance 
of motion algorithms is to use model-based motion representa- 
tions to obtain additional constraints. A good model involves 
fewer unknowns and, therefore, whenever the model applies, 
model-based motion estimation should give better estimation re- 
sults than an algorithm that applies to general motion. In this 
paper, we consider motion having constant acceleration. 

In the previous approaches [2][1][13][5], structure param- 
eters are solved for simultaneously with the motion parameters. 
This not only greatly increases the computation complexity, but 
makes a globally optimal solution impossible. We show that the 
structure parameters can be eliminated in advance and present 
a two-step nonlinear algorithm which involves only motion pa- 
rameters. First the rotation parameters are solved for nonlinearly 
and then the translation parameters are solved for in a closed 
form. Therefore a much smaller number of unknowns are in- 
volved in the nonlinear optimizations process. The same method 
can be applied to motions represented by any order of polyno- 
mials and guarantees globally optimal solution for motions de- 
scribed by second or lower orders of polynomials. The rotations 
are represented in the matrix form and do not introduce additional 
model noise which exists in some of the previous formulations 
[1][13][5]. Experiments with real image data are presented to 
show that the algorithm yields accurate estimates. Since the long 
sequence motion algorithm heavily relies on the two-view mo- 
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tion algorithm, we first discuss two-view and then multi-view 
motions. 

Section 2 presents a very robust nonlinear two-view motion 
algorithm which gives double or unique solution for any rigid 
surface. Section 3 discusses the model and the solution for 
motion of constant acceleration. Section 4 presents experimental 
results with real image data. Section 5 summarizes the paper. 

2 Two-View Motion Solution 
Linear [9][14] and nonlinear [11][8] motion algorithms have 

been developed for motion estimation. The former rarely work 
for noisy data, though they have been used to produce initial 
guesses for the latter. The existing nonlinear algorithms all 
assume that the motion is uniquely determined and require good 
initial guesses. In this section we present a robust and efficient 
nonlinear two-step algorithm which solves for rotation first and 
then translation. 

Let R = (rij) and T = [ tl t2 tg IT (T can be zero here) be 
the rotation matrix and translation vector between the two views. 
L e t @ , = [ z i  yi 1 ] , 0 : = [ 4  y: l ] , i = 1 , 2  ,..., n(n15). 
be n pairs of correspondences, where (xi, yi) and (xi', yi') denote 
the image coordinates in the first and the second views. Then 
the algorithm will minimize the sum of squared residues of the 
motion epipolar line equations: 

n 

sI = { (0: x R O ~ )  . T}~=T"II;II, T= 1 p n ~ l l 2 ,  
i=l 

where 

IIn= I 1,  llT1l2= 1. (2.2) 

(0; x R O y  
For a given estimate R, the optimal estimate of T corresponds to 
the eigenvector of IInTIIn associated with IInTII,,'s least eigen- 
value A,, which is just the minimum value of SI. Therefore, 
minimizing S1 can be reduced to minimizing Am, which is a 
function of only the rotation matrix. The algorithm is thus di- 
vided into two steps: 1. first search for R to minimize the least 
eigenvalue A, of IInTIIn; 2. then estimate T in a closed form by 
solving for the eigenvector of IInTIIn associated with the smallest 
eigenvalue A,. The sign of T is to be determined such that the 
depths are positive. 

If the motion is a pure rotation, then the resulting T in the 
above algorithm could be anything but zero. To determine if the 
translation is zero, we use the following confidence measure: 

s 2  = (z: - + (YI - q i y ,  (2.3) 
I 

where 
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If S2 is close to zero (the particular threshold depends on the 
camera parameters), then the estimated T is unreliable. Other- 
wise, the translation is visible and hence the estimation of T is 
trustworthy. 

The first step of the algorithm is nonlinear, but the second 
step is linear and gives a closed form. Therefore most of the 
computation is spent on the first step. Fortunately, only the 
rotation matrix R and hence only 3 unknowns are involved in 
the first step. To estimate R, we represent it by the three-angle 
representation 

where Ax, Ay, and Az are the rotation matrices around X, Y, Z 
axes respectively, e.g., 

coswz -sinwx 
(2.6) 

[ 0  0 1 

The search of WX. wy, and wz can be fast if an optimization 
technique and/or an initial estimate is used. For rotation angle of 
less than loo, it often suffices to start the search of (wx, w y ,  WZ) 
at (O,O,O) or at the estimate obtained from linear solution. We 
have experimentally found that in the neighborhood of the global 
minimum, different optimization algorithms (e.g., hill-climbing 
or gradient method) all work. 

S1 is a weighted version of the following criterion that has 
been used by many researchers [111[2][1][13][5]: 

S:I E (xi - U;)' + (yi - vi)' Ed:, (2.7) 
1 I 

where Ui and Vi are the expected position of x, and yi after the 
motion. ui and vi are related to the depth Z, and the motion 
parameters R and T through 

(2.8) 
~l = (T11Zl + TUyI + TKt)Zl + bl 

(T:!lZ, + ?-:12yz + T:l:l)zl + t:l' 

(2.9) 

For a given estimate of R and T, (ui, v,) is on the motion epipolar 
line li defined by the motion and (xi, yi): 

( T 2 1 2 :  + T22Yt + T2: l ) z1  + 2 2  v 1  = 
(T:!lZt + ?-:12yt + T:l:l)zl + t:l' 

[ U i  Vi 11 (T x R.Oi) = 0. (2.10) 

Different values of Z; makes (ui, vi) lie on different positions on 
li. Therefore, the optimal solution Zi is that which makes di the 
shortest distance between point (xi', yi') and line li. Let TxROi 
= (ai, bi, tip, then S3 is equivalent to 

S:! = EO:. (TxRO,) / Jaf  + b f ,  (2.1 1) 
1 

which indicates that $1  is a weighted version of S3. Hence, 
by choosing SI instead of S3 as the optimality criterion, the 
motion algorithm can be significantly simplified without loss of 
performance. 

The nonlinear algorithm above yields one optimal solution 
for any rigid surface. However, for special surfaces like planes 
and Maybank Quadrics, the solution is generally not unique. 

First, let us discuss planar surface. Although planar surface 
can be a branch of a special Maybank Quadric (two planes), 
we have to deal with it differently from other Maybank Quadrics 
since in general infinitely many Maybank Quadrics are associated 
with a single plane [4]. 

The existing linear algorithms [3][12][6][10] need a priori 
knowledge of the surface shape before they can be applied. To 
determine whether the surface is planar or not, a general algo- 
rithm is still needed. For planar surfaces, there are generally 2 
solutions for the motion and structure and the nonlinear algo- 
rithm above will converge to any one of the solutions. We now 
describe the method with which we determine if the surface is 
planar, and if it is, we refine the estimation by applying plane 
motion algorithms. 

Assume one solution R1 and T1 is obtained and minimizes 
SI. Then the structure parameter Zi is obtained ( Zi has unique 
solution if and only if O'i is not parallel to T) by minimizing 
di, or by equalizing (ui, vi) to the intersection point of li and 
its perpendicular line passing (xi', yi'). Then we solve for a 
hypothesized plane structure NI from 

N"X = [ n l  n2 n:l]@Z= 1. (2.12) 

The other set of motion parameters Rz, Tz, and N:! is obtained 
by decomposing the plane motion matrix K [3][12] defined as 

K=R~+T~N:. (2.13) 

We then substitute R2 and Tz into (2.1) to check if 

SI(%, T2) - Sl(R1, TI)  < E . Sl(R1, TI), (2.14) 

where c is a preset constant (say 0.1). If so, then the surface is 
planar; if not, the surface is not planar. In case K has unique 
decomposition, the above method may not work. However, in 
this case the motion and the depths are uniquely determined. We 
can also use the sum of the distances of the estimated 3-D points 
to the hypothesized plane to determine if the surface is planar or 
not. When the surface is determined to be planar, then the plane 
motion algorithm [3] is used to obtain a better estimation of the 
motion and structure parameters. 

The situation for general Maybank Quadrics is more compli- 
cated. The algorithm presented below requires 7 correspondences 
of points satisfying certain condition to determine the other possi- 
ble solution from one known solution if the surface is Maybank 
Quadric. 

Assume one solution R1 and T I  has been obtained. The goal 
below is to determine whether there is another solution which 
satisfy the same image data; if so, obtain an optimal solution of 
the alternative solution. It is well known that if another solution R 
and T satisfies the data, then the points used for correspondences 
must lie on a Maybank Quadric defined as follows: 
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where Z is the depth of the image point 0 and E = T x R .  The 
depth Z can be solved for as described above fromR1 and TI. 
It is well known that the Maybank Quadric passes through ZO 
= -RTIT1= 0, where 0 is the new origin of the coordinates for 
cameracentered motion model. Now given n (1127) points Oi, i 
= 1,2, .... n, we first fit the points Oi and 0 with a more general 
surface of the form 

(2.16) 

where A is symmetric matrix and B is a vector. A and B can 
be determined linearly from Equation (2.16) if and only if the 
resulting coefficient matrix has a row rank of 8 or above. After 
A and B have been solved for, we can then solve for E from 

1 -ZO'"AO+B'"O = 0, 
2 

R;:'E+E'" RI]= A , T;:'E=B'" , (2.17) 

After E has been solved for, we can then obtain an optimal 
solution of the other possible set of motion solution Tz and Rz 
using the method in [7]. 

Again, Equation (2.14) is used to determine if Tz and Rz 
are really a solution and if the surface is Maybank Quadric. 

3 Multi-View Motion Solution 
The accuracy of motion estimation can be greatly improved 

when a long sequence of images are used, because more evi- 
dences about motion are present. 

In this section we introduce a model-based approach which 
uses an accurate, yet flexible object-centered motion representa- 
tion. It is evident that model based motion algorithm should give 
better results than a general motion algorithm since a right model 
involves fewer unknowns and employs more constraints. 

First let us describe the camera-centered and object-centered 
motion representations used in our approach. 

The cameracentered interframe motion representation is as 
follows ([2]): 

where 

1 - 1  

RI,I=R,R,-~ .  . . R ~ + J ,  t , ,J=t ,+ R,,ktk. (3.2) 
t = 1 + 1  

This representation gives a purely mathematical description of the 
relationships between multi-frame motion and interframe motion. 

The motion of a rigid object can also be considered as that 
the object rotates about a center 0 which translates relative to 
the camera center C. The coordinate system used is still camera- 
centered. We use 0, to denote the rotation center's position 
and X, any point on the object at time n. R, and T, denote 
the rotation matrix of the object and the translation velocity of 
the rotation center at time n. Then the object-centered motion 
representation between two consecutive frames is as follows: 

Reordering Equation (3.3) as 

and using Equation (3.2) we can obtain the following represen- 
tation of motion between frame i and j (i > j): 

Xi = Ri,i[X,i - Oj] + Oi 

Let us note that the above representation is significantly different 
from the camera-centered motion representation when the motion 
involves rotation. In this representation. the initial rotation center 
0 0 ,  and the motion parameters, Tu, and R., n = 1,2,3 ..., are the 
unknowns to be determined. A scale constant is involved in 
the translation vectors. Also 00 may not always be determined 
uniquely. For example, when R,, n = 1,2,3 ..., share the same 
rotation axis nnl, then if 00 is a solution, 00 + cynn, for 
any constant cy is also a solution. That is, any point on the 
rotation axis can serve as the rotation center. However, this 
uncertainty will not affect our understanding of the motion. And 
whenever such uncertainty occurs, we can remove it by enforcing 
00. nnl= 0. 

For the motion model of constant accelerations, we assume 
that the rotation axis is fixed, the rotation angle and the translation 
vector change with constant accelerations: 

RI, = i m 1 -  0 nn'1-I cos +,+n x Isin &, (3.7) 

where To and T, are vectors, n is the rotation axis, 4, the rotation 
angle, and I the identity matrix. Since the rotation axis n is fixed, 
we have 

from which we have 

where I 

4 I J  = +k  = AJII + [a, - a3]+ar (3.11) 
k =3 

(3.12) 
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For the purpose of estimation, we represent the rotation axis n 
by two angles a and ,f3 in the form of 

n =  [ s inacosp ,  cosa,  s i n a s i n p l T .  (3.14) 

Therefore, To, T., a, p, 40, and 4 1  are the unknown parameters. 
Let I I i j  be the matrix defined in the way described in (2.2). 

Let X i j  be the least eigenvalue of IIi,jTIIij. Then the rotation 
parameters for each model are searched to minimize 

(3.15) 

where wij is a weighting factor. Since IIijTIIij is a 3 x 3  matrix, 
its eigenvalues can be obtained in a closed form. With good 
initial guesses from the two-view algorithms, globally optimal 
solutions are guaranteed for this model. 

To obtain an optimal solution of the translation parameters, 
first t i j  is obtained for all i and j with i > j using the two-view 
motion algorithm and the rotation parameters obtained with the 
method above. Then 0 0 ,  To, and T. are solved for from Equation 
(3.10) with the linear least squares method. The obtained 00 
and To are then used to compute tij using Equation (3.9). In 
general, 0 0 ,  To, and T.. cannot be obtained accurately. However, 
the interframe translation G j  computed from them is in good 
accuracy. 

This algorithm gives unique solution whenever the motion 
is uniquely defined by the correspondence data. It is noteworthy 
that method above allows independent choices of models for 
rotation and translation. For example, a motion may involve 
a rotation with constant acceleration but a translation of second 
order polynomials. 

4 Experimental Results 
This section presents two examples with real image data. 

An active vision system is developed for the motion and structure 
estimation problem. The system is able to yield any required mo- 
tion and capture a motion sequence of images while graphically 
controlled at the computer terminal. The images are taken with a 
Cohu solid state camera of wide angle lens (Vicon V10-100M). 
The maximum visual field of the camera is about 50'. Cameras 
of such wide angle must be carefully calibrated. 

In the examples provided below, only the ground truth of 
rotation angles are accurately recorded. Because of the diffi- 
culty in measuring the direction of the camera optical axis and 
the position of rotation center relative to the optical center, the 
rotation axis and translation direction cannot be measured accu- 
rately. Therefore the reference ground truth and results for the 
translation directions are not presented due to short of space and 
actually the "ground truth" may be more erroneous than the esti- 
mates. Erom our experience with simulation data, the estimation 
of rotation axis and translation direction is usually more reliable 
than that of rotation angle. 

In the experiments below, the weighting factor wij is chosen 
as l/Nij, which is the number of correspondences between the 

ith and jth views. If N;j = 0, then wij is set to zero. The 
correspondences are obtained with a newly developed matching 
algorithm. 

The first example contains fifteen images. Figures 1 (a) 
and (b) show the first and last images and the correspondences 
obtained between the two images. The white points on a dark 
background and the black points on a bright background are the 
matched feature points. Figures 1 (c) and (d) show the eighth 
and ninth images and the correspondences. The motion involves 
a constant rotation of 0.55' per frame around the Y axis ([0, 1, 
0IT). The estimated rotation parameters are: n = [0.0042,0.9999, 
-0.00691, $0 = 0.5379'. The two-view motion algorithm gives 
the following results: the rotation between the first and the second 
views is n = [0.0227, 0.9986, -0.04611, q5 = 0.6096', and the 
rotation between the fourteenth and the last views is n = [0.3779, 
0.6722, -0.63661, 4 = 0.4783'. The arbitrary motion model gives 
the following results: the rotation between the first and the second 
views is n = [0.5916, 0.7918, 0.15151, d = 0.5563". and the 
rotation between the fourteenth and the last views is n = [0.2969, 
0.8318, 0.46881, q5 = 0.5209'. It is obvious that the model-based 
motion algorithm yields much better results. 

In the fourth example, fifteen images are taken by a moving 
camera. Figures 2 (a) and (b) show the first and last images. No 
correspondences are found between these two images because of 
the large motion between them. Figures 2 (c) and (d) show the 
eighth and ninth images and the correspondences. The motion 
involves a rotation (tilting) of constant acceleration around the X 
axis ([l 0 01') with 40 = 0.6' per frame, da = 0.04" per frame', 
and a constant translation along X axis ([l 0 0IT). The rotation 
causes also a translation along Z and Y axes, the amount of which 
is not accurately measured. The estimated rotation parameters 
are: n = L0.9703, -0.1975, 0.13891, 40 = 0.6371". 40 = 0.0416". 

5 Summary 
In this paper we have presented a model-based algorithm 

and a nonlinear two-view motion algorithm for estimating motion 
parameters from a long sequence of images. These algorithms 
utilize the state-of-art techniques developed by many motion 
researchers and are very flexible for use. The whole process, 
from images to feature points, to matching, and then to motion 
estimatior, is fully automated. The application of the algorithms 
to real image data has obtained good results, from which we can 
conclude that model-based methods yield much better results than 
those assuming arbitrary motions. 

This algorithm has four good features: 

It works for general motion (including pure rotation and 
translational motion) of any rigid surface and significantly 
involves only motion parameters as unknowns. 
It does not depend on initial guesses of the motion parameters 
and gives arobust and globally optimal solution for the motion 
parameters for the given criterion SI. 
It gives unique solution as long as the motion is uniquely 
determined by the correspondence data. Therefore this algo- 
rithm requires the least stringent condition for unique solution 
of motion parameters. 
The two-step computing makes it ideal for real time appli- 
cation. 
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(a). The first image. (b). The fifteenth image. (c). The eighth image. (d). The ninth image. 

Fig. 1 : Example 1. Figures (a) and (b) show the first and the last images and the correspondences between 
them; Figures (c) and (d) show the eighth and ninth images and the correspondences between them. 

(a). The first image. (b). The fifteenth image. (c). The eighth image. (d). The ninth image. 

Fig. 2: Example II. Figures (a) and (b) show the first and the-last images and the correspondences between 
them; Figures (c) and (d) show the eighth and ninth images and the correspondences between them. 
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