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Abstract 

A multiscale region detector for low-level image analysis 
is described. The basis of the detector is a set offilters simi- 
lar to the Laplacian of an elliptical Gaussian. The responses 
of these Flters to ideal ellipses are derived, and equations 
for determining the parameters of detected ellipses from the 
filter responses are found. The use of scale-space techniques 
to eliminate false ellipse sites in real images is described. 

1. Introduction 

Many image analysis tasks require regions of relatively 
uniform gray level to be extracted from an image. One such 
task is texture analysis, in which regions may have arbitrary 
density, size, and contrast which are a priori unknown [ 1, 
21. Blostein and Ahuja [3, 41 approach this problem by 
approximating texture elements, or texels, as collections of 
overlapping disks. Their detector searches the image for 
circular regions of relatively uniform intensity. They use 
multiple filters to find disks at a range of sizes, combining 
overlapping disks of similar contrast values to form the 
final regions. They demonstrate the effectiveness of this 
approach over a wide range of images, but they acknowledge 
that their algorithm is not well-suited to finding long, thin 
regions and that “the use of primitives with elongated shapes 
could lead to better detection of elongated regions.” 

The region detector we propose is designed to improve 
upon the results of Blostein and Ahuja. Rather than using 
circular disks as primitives, we use ellipses of relatively 
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uniform gray level. Scalle-space concepts are used to fit 
ellipses over a range of sizes, eccentricities, and orientations. 
Though discussion of an implementation of this system is 
beyond the scope of this pixper (see [ 5 ] ) ,  the extracted ellipses 
may be used by medium-llevel vision processes for a variety 
of purposes. For example:, arbitrary (non-elliptical) regions 
can be constructed by combining individual overlapping 
ellipses with similar contrast values; such a system could be 
used as a region detector for a variety of applications. 

2. The Filter Selectilon Process 

Our approach to the problem of region extraction is to 
find a filter or a set of filters which, when convolved with 
an image, will identify elliptical regions of nearly constant 
gray level. Combining ideas from the literature with our 
own analysis and experimentation leads us to choose filters 
similar to the Laplacian ad an elliptical Gaussian. 

2.1. Properties of an Ideal Filter 

Accurate evaluation aC ellipse-detecting filters requires 
consideration of the ideal1 properties of such a filter. The 
properties below are generalized to apply to any uniform 
primitive-detecting filter and are listed in order of decreasing 
importance. 

1. When convolved with an image, the filter should pro- 
duce a local maximum or minimum at the center of 
each primitive-shaped region of relatively constant 
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2. 

3. 

4. 

5 .  

gray level in the image. The convolution of a filter 
H ( z ,  y) with an image I ( z ,  y) is defined by 

Z ( z ,  y) = Sm 1: H ( u ,  v) I ( z  - U ,  y - v) du dv 

In this notation, Z(z ,  y) should have a local maximum 
or minimum at the center of aprimifive-shaped area of 
nearly uniform intensity. 

-m 

( 1 )  

The convolution integral given above should have a 
closed-form solution at the center of a singleprimitive- 
shaped region of uniform contrast. For a closed region 
R of shape primitive, the following integral should be 
analytically solvable: 

The function defining the filter and its derivatives 
should be smooth to minimize the effects of noise. 

The filter should exhibit spatial domain localization. 
Pixels in the image which are near to the center of con- 
volution should be weighted more heavily than pixels 
which are far away, ensuring that the filter response at 
a given location in the image is minimally affected by 
information in remote areas of the image. 

The filter should also exhibit frequency domain local- 
ization. Our detection method is based on Witkin’s 
scale-space technique [6] ,  in that we use multiple fil- 
ters of different shapes, sizes, and orientations to de- 
tect elliptical regions in the image. The success of 
this method is predicated upon having filters which 
are highly selective of features near their own scales. 
Consequently, we desire a filter which has a high sen- 
sitivity to a narrow band of frequencies and a very low 
sensitivity to frequencies outside that band. 

circularly symmetric and that these receptors can be mod- 
eled with a difference of two Gaussians, which is a discrete 
approximation’ to V2G. 
Marr suggests that a set of V2G filters, representing a 

range of g, should be applied to an image to detect edges. 
Witkin [6] develops this idea further by introducing the con- 
cept of a scale-space. He proposes that V2G filters of a 
continuous range of sizes be applied to an image. The zero- 
crossings of the responses for one-dimensional signals are 
recorded in a two-dimensional x-U space. In this way, the 
locations of edges in an image can be accurately located by 
tracing zero-crossings at a large filter size through applica- 
tions of successively smaller filters. 

The scale-space concept is extended to the problem of 
region detection by Crowley 191. Whereas Witkin analyzes 
the zero-crossings of V2G over a range of scales, Crowley 
examines the peaks in the responses. A peak in the V2G 
response signifies the center of a circular region of relatively 
constant intensity. The size of this region depends on the 
size of the filter producing the peak. Thus disks of a range 
of sizes are found by applying a range of filters to an image. 

Blostein and Ahuja apply these principles to develop their 
region extractor, which uses a circular disk as the shape 
primitive. They derive the response of a V2G filter to an 
ideal disk of diameter D and contrast C. They also find the 
response due to a second filter, &V2G. Application of this 
filter implicitly incorporates Witkin’s scale-space technique 
by using information across scales (varying U ) .  The V2G 
and the &V2G filter responses are two equations in two 
unknowns (C and 0) and can be solved for these parameters. 

Combining these ideas has led us to seek a set of filters, 
each of which is tuned to produce maximal response for an 
ellipse of a particular size, shape, and orientation. 

2.3. From Circles to Ellipses 

Since an ellipse is in some sense a generalized version of 
a circle, our approach is to generalize Blostein and Ahuja’s 
V2G filter to respond maximally to ellipses rather than cir- 
cles. An elliptical Gaussian is similar to the circularly sym- 

We cannot expect our filter to fully satisfy all of these re- 
quirements. In particular, the demands of spatial and fie- 
quency domain localizations conflict, as documented in [7]. 

2.2. Literature Review 

metric version except that its level curves are ellipses. The 
y = 0 plane contains a Gaussian curve of size U, while the 
3: = 0 plane contains a Gaussian curve of size by. This 
function is defined by 

(3) 
~ ( z ,  y> = exp (-- 22 - -) Y2 

2a; 20; 
In [7 ] ,  Marr and Hildreth show that the circularly sym- 

metric Gaussian function G ( r )  = e z p ( - r 2 / 2 a 2 ) ,  where 
U is the “size” of the filter, optimizes the constraints of 

It is 
smooth and continuous, as are all of its derivatives in both 
the spatial and frequency domains. In addition, there is bio- 
logical evidence [8] indicating that retinal ganglion Cells are 

and the Laplacian of this function is given by 

-2-25 1 1 z2 e 2.7; 2-2 spatial and frequency localization described above. V 2 F =  ( z + T - - - g )  Uy U$ ay” (4) 

‘The difference of two Gaussians is a discrete approximation to G, 
which is in turn related to V2G by the diffusion equation V2G = i &G, 
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We define the image I ( z ,y )  to contain only a single 
ellipse of contrast C and major and minor axes A and B, 
respectively: 

Requirement 2 of Section 2.1 is that the convolution V 2  F * I 
must have a closed-form solution at the center of the ellipse. 
Unfortunately, we have not succeeded in finding a closed- 
form solution for this convolution. 

In fact, on further inspection, we can see that although 
F ( z ,  y) is elliptically symmetric (that is, its level curves are 
ellipses), V2F is not. Furthermore, an elliptically symmet- 
ric version of V2F will permit a closed-form solution of 
the convolution integral, since a variable substitution can be 
made which maps the ellipses into disks. This analysis has 
led us to define the following filter, which is “nearly” the 
Laplacian of an elliptical Gaussian: 

We show in Section 3 that by varying U, and uy in 
€(x, y) we obtain a set of filters which respond maximally 
to ellipses of a range of sizes and eccentricities. We also find 
a closed-form solution for the response of &( z, y) to an ideal 
elliptical region of constant gray level. Thus, the essential 
two requirements for our filter are satisfied. By inspection, 
the filter function is smooth, and so are its derivatives. It 
exponentially decreases towards zero in all directions in both 
the spatial and the frequency domains, thereby satisfying the 
desired localization property. 

3. Derivation of Filter Responses 

In this section we build the mathematical foundation upon 
which our region extraction algorithm is based. We derive 
the responses of several filters to an image containing only a 
single isolated ellipse of constant intensity. While this ideal 
case is not likely to be encountered in any real images, the 
results obtained here must be used as a reference when one 
attempts to locate nonideal ellipses in an image. 

3.1. The Elliptical Gaussian Filter 

We have already claimed that the filter C ( x ,  y) is suitable 
for detecting elliptically shaped regions of relatively con- 
stant gray level. Here, we derive the response of this filter 
to an ideal ellipse of uniform contrast. In the next section, 
we will use this response to verify that this filter is suitable 
for ellipse detection. 

We defined our ideal ellipse in Equation (5). The convo- 
lution of the filter &(z, 31) with this image I ($ ,  y) is 

Z(Z, y) = Jm J” 2- (1 - - U* - -) v2 
-m .-@ uxuy 262 2.; 

Our efforts to find a clos,ed form for this integral have been 
unsuccessful. However, we can still obtain a useful re- 
sult by making two assumptions which are reasonable when 
considered in the context of an actual implementation. We 
assume: 

1. The filter is being applied at the center of an ellipse, i.e., 
at (z, y) = (0,O). This is justified because the filter 
response is only extrema1 at ellipse centers and because 
in our implementation we attempt to fit ellipses only at 
local extrema of the: convolution result. 

2. The filter has the same eccentricity and orientation as 
the ellipse, though its scale relative to the ellipse may 
vary. Again, since ithe filter only responds maximally 
to ellipses with these properties and since maximal 
response is requirecl for an ellipse to be detected, this 
assumption is acceptable. 

The first assumption enforces a relationship between the 
location of the image ellipse and the location of the filter: 
the origins of both must coincide. This allows us to set 
(z, y) = (0,O) in our convolution equation. The result is 
a double integral which !simply finds the volume under the 
portion of the f ( x ,  y) surface bounded by the ideal ellipse 
(multiplied by the scaling factor C): -- 

exp (-- U2 - -) 212 dvdu 
2a: 2u; 

The second assumption enforces a relationship between the 
eccentricity of the image ellipse and the eccentricity of the 
level curves of the filter: they must be similar. Mathemat- 
ically, this means that we can use a scaling factor s which 
is defined by s = A/u ,  = B/u, .  Setting A = sul and 
B = suy in our integral yields 

(9) 

Now we have a form which can be solved with the help of 
two variable substitutions. We first map the ellipses into 
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circles by scaling the axes. We let x = u/u,, y = v/uy 
and find that the Jacobean gives us du dv = a,uy dx dy. 
Making these substitutions, we have 

exp (-T x 2  - 5) dydx 
We map into polar coordinates by letting x = P cos 0, y = 
r sin 8, and dx dy = P dr do. Performing the substitution 
and adjusting the limits accordingly, we obtain 

Z = C[:  Is (1 - :) rdrd0 (11) 

Integrating by parts on each piece of the integral and com- 
bining terms yield the following solution: 

z = r c s 2 e - s 2 / 2  (12) 

3.2. Verifying That This Filter Detects Ellipses 

Having derived an equation for the response of C(z, y) 
to an ideal ellipse, we now verify that this filter is acceptable 
as an ellipse detector. 

We have asserted that C( x, y) produces a maximal (min- 
imal) response when applied to the center of an elliptically 
shaped region of uniform positive (negative) contrast. To 
verify this mathematically, we use the following approach. 
We have defined the filter to be a function of U, and ay . We 
can change the filter size by changing these parameters. For 
a given ellipse of major axis A and minor axis h’ (oriented 
in standard position) there is at least one filter (we will show 
there is only one) which produces the maximum response to 
that ellipse. Denote the parameters of that filter by 8, and 
6,. We must then verify the following consistency property: 

If the maximum response to an ellipse of size 
( A ,  B) is found with afilter of size (&=, ay), then a 
filter of size (a,, ay) gives the maximum response 
when applied to an ellipse of size (A ,  B ) .  

We can check that this consistency holds for Z(z, y) using 
Equation (12). By differentiating 2 with respect to each of 
the variables A and U, we obtain: 

and 

) ($) (I4) -- - - ( K C ( 2 S  - s3)e-a2/2 
az az as -- - 
aa, as dux 

Setting both of these to zero to find local extrema yields, by 
inspection, 

(16) 
-=o t - - l , s=d5  az 
do2 

which is the desired consistent relationship. In a similar way, 
it can be shown that and E are zero when s = fi as 
well. 

We have verified mathematically that for every elliptical 
region R there is a filter E(x, y) which responds maximally 
to it, and, furthermore, that R is the one and only elliptical 
region which forces a maximal response from this filter. 
We conclude that passing a single filter & of fixed U, and 
ay allows us to detect elliptical regions of uniform contrast 
whose parameters are given by ( A ,  B )  = ( u 2 f i ,  uYfi). 
We further conclude that by passing a series of such filters, 
each with different uI and uy , we extract ellipses of a variety 
of shapes and sizes. 

3.3. Recovering Ellipse Parameters 

The filter response given in Equation (12) is a function 
of the contrast C of the ellipse and the scale factor s of the 
ellipserelative to the filter. When the filter is applied to areal 
image and aresponse 2 is obtained at a point in the image, it 
is impossible to determine the parameters of the ellipse from 
the €(x, y) response alone. For example, a given response 
could be due to a large ellipse of very low contrast or to a 
small ellipse of very high contrast. In essence, we have one 
equation Z with two unknowns C and s. We need more 
information to be able to extract the ellipse parameters from 
the filter response. 

One solution to this problem is to use Witkin’s scale- 
space concepts and gather information about the ellipse from 
the behavior of the filter response across scales. In Blostein 
and Ahuja’s detector, for example, they implicitly use scale- 
space information by convolving the image with two filters, 
V2G and &V2G. The two filter responses obtained allow 
them to solve for the two unknowns, the diameter and the 
contrast of the disk. 

We use a similar approach here, except that in addition 
to the ellipse-detecting filter already discussed we use two 
additional filters which are related to the original by dif- 
ferentiation with respect to the scale variable. For ease of 
notation in the following equations, we define a variable z 
such that 

22 y2 
z(x,y) = - 4- - 2 4  2a; (17) 

In terms of z ,  these additional filters are defined by 
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and 
2 

oxfly 
& 2 ( 2 )  = - (1 - 1 IZ + 1 1z2 - 2z3) e - z  ( 19) 

These can be shown to be related to the first and second 
partial derivatives with respect to s in the following way: 

and 

By linearity of the differentiation operation, the filter 
responses of each of these filters can be quickly obtained 
from the response 2 to C(z, y). The response to 81 (2, y), 
denoted by 21, is 

The response to &(z, y), denoted by 2 2 ,  is 

3.4. Calculations of C and s from &, and &2 

We have three equations (the responses of three filters) 
in two unknowns, C and s. While this is an overdetermined 
system, we have found through implementation and analysis 
that three filters provide additional information about the 
candidate region which is useful in determining whether the 
region is sufficiently elliptical. To this end, we derive two 
values of s which correspond to two sets of filter responses. 

Using 2 from Equation (12) and 2 1  from Equation (22), 
we can eliminate C by division and solve fors immediately: 

SI = Jq (24) 

In similar fashion, using 2 2  from Equation (23) and 2, we 
can solve for another version of s which we call s2: 

These two values SI and s2 are used in an implemen- 
tation to eliminate false ellipse sites (local maxima of the 
filter response) if they differ by a large factor. If they are 
sufficiently close in value, they can be combined (by either 
simple or weighted averaging) to find a single value s which 
will be considered the actual scale factor of the ellipse rel- 
ative to the filter. The major and minor axis dimensions of 
the ellipse are then given by: 

A = su, 

B = suy 

Finally, by substituting this s into the formula for 2 and 
solving, the ellipse conltrast C can be determined: 

Z 
‘ITS2 

( 7 -  , -  

3.5. Verification of the Derived Equations 

To verify the accuracy of these derivations and the suit- 
ability of this method for image analysis, an implementation 
of this region detection system has been applied to synthetic 
and real images. The synthetic image experiments show 
that the region detector is robust with respect to image noise 
and shape deviations. The natural image experiments show 
the strength of the detector in modeling elongated homoge- 
neous regions. These experiments and results are described 
in [5] .  
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