
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 34, 189-203 (1986)

Efficient Planar Embedding of Trees for VLSI Layouts*

NARENDRA AHUJA

Coordinated Science Laborato~, University of Illinois, 11 O1 W. Springfield A venue,
Urbana, Illinois 61801

Received July 24, 1985; accepted January 28, 1986

The use of planar polygonal partitioning schemes for planar embedding of tree structures is
examined. Two layout designs based on recursive square and triangular decompositions are
described for trees having branching factors of k 2 and k 2 - 1, where k is an integer. The
former design allocates the same amount of area to nodes at all levels and requires a total area
linear in the number N of nodes in the tree. The latter design assigns increasing area to nodes
closer to the root and requires a total area of O[N(k2/ (k 2 - 1))logN]. The longest
interconnection has a length of O (~) in each case. 6, 1986 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the problem of generating a planar embedding of
tree structures. Given a tree we want to create a partition of the chip area such that
each node and edge of the tree is assigned to a unique region in the partition. The
circuitry necessary to perform the required computations at a node can then be built
into the node's region on the chip. Similarly, the regions assigned to the tree edges
can house the interconnections between nodes. The interconnections are not allowed
to cross.

Possible schemes for generating planar partitions are examined, and two layout
designs for trees having branching factors of k 2, where k is an integer and all nodes
require regions of the same size, are presented. In most applications where trees are
used merely as a data structure, the same amount of hardware may be necessary at
each node and hence the corresponding regions may have a fixed area. This is the
case addressed in the literature [8]. However, the tree may also be used as an
interconnection network for processors in a multiprocessing environment [2, 3]. Here
the hardware requirements of nodes may change in different parts of the tree. For
example, the nodes closer to the root may need more hardware, and hence, larger
regions [2, 3]. The exact rate of increase in the required area will depend upon the
nature of computations to be performed. Two layout designs for trees such that the
areas of regions assigned to nodes at successive levels increase by a factor of k 2,
where k is an integer and the trees have branching factors given by k 2 - 1, are
presented. For the cases of both constant and variable area per node the two layout
designs given differ in type of partitioning scheme used. One of the layouts, that uses
the square tessellation for decomposition is more practical than the other that uses
the triangular tessellation.

The total area required by the layout of a tree containing N nodes is linear in N
in the former case. The longest interconnection has a length which is linearly
proportional to the square root of the area. For the latter case, the k e - fold
increase in the node size with level makes the area grow as C 1~ N with N. The

* The support of the National Science Foundation under grant ECS8352408 is gratefully acknowl-
edged.

189
0734-189X/86 $3.00

Copyright ~c 1986 by Academic Press, Inc.

190 N A R E N D R A A H U J A

increase in the length of the longest interconnection is still linear in the square root
of the area.

Our motivation for the work described here comes from the prevalence of tree
structures in computer vision and image analysis. Trees with branching factor of 4
are used both as data structures [12] and as multiprocessor networks for 2-dimen-
sional image analysis [2]. Trees with branching factor of 8 are useful for 3-dimen-
sional object representation [13] e.g., for collision avoidance [1].

Section 2 describes the details of the problem at hand. Section 3 examines the
possible polygonal planar partitioning schemes for generating the regions. Section 4
describes the layouts, and estimates the amount of area occupied by them and the
length of the longest interconnection. Section 5 presents concluding remarks.

2. THE PROBLEM

Given a tree, we want to generate a planar layout of nodes interconnected as in
the tree. Appropriate circuits can then be built into the regions assigned to the
nodes and the interconnections using VLSI techniques. There are two different
aspects to this problem.

The first concerns the topology of the tree and its realization as a planar network.
It requires a planar embedding scheme that partitions the plane into cells and
establishes a node to cell mapping such that the cells can be interconnected as in the
tree. The partition should be infinitely repetitive (and divisible) to capture the
recursive nature of the interconnections and an arbitrary size of the tree.

The second aspect of the problem concerns the geometry of regions assigned to
nodes and to their interconnections. On the one hand, a dense packing of circuits at
the nodes and along interconnections is desirable to minimize the chip size.
However, this makes the operation of the overall design very complex at high
speeds. In addition to the desired, explicitly provided interconnections among nodes
there may be electromagnetic interactions among them due to short intervening
distances. The interconnections between nodes may not act simply as wires with
negligible communication time. Their resistive and stray capacitive effects may lead
to a network which is effectively a more complex interconnection of nodes than the
desired tree. The deviation in the performance of the interconnections from ideal
wires is a problem of major concern in VLSI design. Several models of the
dependence of transmission time across an interconnection on its length have been
described [6]. Included among these models are those that assume zero, linear, and
quadratic increase in transmission time with the length of the interconnection.
Different models apply to different technologies and design details, the embedding
scheme should therefore minimize the interconnection lengths, which suggests that
the interconnected nodes should be assigned to regions close to each other.

In addition, for regularity in mask generation it is desirable that the region
interrelationships be identical in different parts of the layout as is the case for the
tree, except, of course, for scale effects. This suggests that all node regions should
have identical shapes. In conjunction with the earlier observations that intercon-
nected regions be nearby and that the partition be infinitely repetitive, this suggests
a recursive decomposition of the plane as the partitioning scheme to obtain the
regions. "Recursiveness" here means that the node regions are recursively parti-
tioned to house interconnected nodes. The requirement of infinitive repetitiveness is
met by ensuring that the regions can be split (merged) to decrease (increase) in size
as much as necessary without altering their shape. Finally, for VLSI implementation

EMBEDDING OF TREES FOR VSLI LAYOUTS 191

(a]

FIG. 1.

(b) (c)

Regular tessellations: (a) triangular, (b) square, and (c) hexagonal.

it is desirable that the partition be defined by straight line segments having a limited
number of orientations. We will now discuss possible polygonal partitioning schemes
and examine their suitability for embedding trees in the light of the requirements
stated above.

3. PARTITIONING SCHEMES

A polygonal partition is defined by a collection of polygonal faces (cells). Let k
denote the number of sides of a cell in a given partition. Let v denote the number of
cells meeting at a vertex. It can be shown [11, 7] that there exist only three partitions
of the plane in which the value of k(v) is same for all cells (vertices)-- the possible
(k, v) values being (3, 6), (4, 4), and (6, 3). We call such tessellations kv regular
tessellations [4]. They correspond to a division of the plane into regular triangular,
square (rectangular), and hexagonal cells, respectively (Fig. 1). The triangular and
the hexagonal tessellations form a pair of dual graphs.

If the value of k is allowed to vary from cell to cell, keeping v fixed, eight
additional types of partitions are also possible [7]. By definition, these partitions do
not consist of congruent cells, but a mixture of as many different regular k-gons as
there are values of k. They are called semiregular (Archimedean) tessellations. A
semiregular tessellation may be characterized by an ordered sequence of v integers,
where the i th integer denotes the number of sides of the i th cell surrounding a
vertex, starting at any of the surrounding cells arbitrarily, and moving, say,
clockwise. In this notation, the eight semiregular tessellations are given by (3, 12, 12),
(4,6,12), (4,8,8), (3,6,3,6), (3,4,6,4), (3,3,3,3,6), (3,3,3,4,4), and (3,3,4,3,4)
(Fig. 2).

Both regular and semiregular tessellations possess the infinite repetitiveness prop-
erty. We now examine them with respect to the requirement of recursive decompos-
ability. Cells in a regular tessellation are all congruent. If we can partition each cell
further into smaller cells such that the new tessellation still is a kv regular
tessellation, then the infinite decomposability requirement is met. Alternatively, it
should be possible to merge cells locally to obtain a kv regular tessellation with
larger cells.

Clearly, the triangular and square tessellations possess this property (Fig. 3). On
the other hand, cells in a hexagonal tessellation cannot be further divided into
regular congruent hexagons. To prove this, imagine merging neighboring hexagons
(of side d) in a regular tessellation to form a larger hexagon. By the requirement of
recursive decomposability, the edges of the larger hexagon must be contained in the
given tessellation. However, all the straight line segments in the tessellation are of
length d; they cannot possibly define hexagons of side longer than d. A similar
argument rules out all semiregular tessellations except for (3, 6, 3, 6) and (3, 3, 3, 3, 6).
In the latter two, the placement of star-shaped cells [5] leaves holes (Fig. 4). Thus

192 NARENDRA AHUJA

(a) (3, 12, 12) (b) (4, 6, 12)

-<>-<>-

(c) (4, 8, s)

/ \ /) ~

(d) (3, 6, 3, 6)

(e) (3, 4, 6, 4) (f) (3, 3, 3, a, 6)

I

(g)

J, J
(3, 3, 3, 4, 4) (h) (3, 3, 4, 3, 4)

FIG. 2. Semiregular tessellations [7].

EMBEDDING OF TREES FOR VSLI LAYOUTS 193

(a) (b)

FIG. 3. Cells (dotted lines) in (a) triangular and (b) square, tessellations merge into larger cells
(continuous lines).

(o) (b)

FIr. 4. The placement of the star-shaped tile in the semiregular tessellations (a) (3, 6, 3, 6) and (b)
3, 3, 3, 3, 6), leaves holes (hatched) between adjacent tiles.

adjacent cells cannot merge to form a larger cell, making the tessellation recursively
nondecomposable. The regular square and triangular tessellations, therefore, are the
only partitioning schemes that place no restriction on region size.

If an upper limit on the cell dimensions, and therefore, on the largest allowed
region size is acceptable, then some of the remaining semiregular tessellations could
also meet the recursive decomposability requirement. For example, cells in those
tessellations involving only squares and triangles (Fig. 2g, h) may be recursively
partitioned using regular square and triangular decompositions. One must start with
the largest required cell sizes, since cells do not combine into larger cells. However,
the requirement that all cells have a fixed shape rules out such choices.

Thus, we have the square and triangular tessellations as two possible choices for
an acceptable partitioning scheme. However, the triangular tessellation has two
disadvantages: first, it involves a grid containing lines oriented in three different
directions compared to two for the square case, and second, to make the best use of
space may often require that the chips be triangular in shape. In what follows, we
will consider both partitioning schemes to design two sets of layouts, although the
square tessellation based layouts may be more appropriate for reasons given above.

4. LAYOUTS

The decomposition of a cell, say a square, into smaller squares in the planar
decomposition corresponds to branching of a node in the tree. While the polygonal

194 NARENDRA AHUJA

(a) I
(b)

(d)

FIG. 5. The decomposed square cell in (a) is enlarged in (b) to create space for interconnections; (c)
and (d) are analogous to (a) and (b), but for the triangular cell.

decomposition as described in Section 3 yields appropriate space for the nodes,
there is no space allocated for interconnections, or the edges of the tree. There are
two important issues to be resolved before a layout can be designed:

(1) How are the internode connections to be implemented, i.e., how is the
decomposition scheme to be modified to allocate space for the necessary connec-
tions between nodes?

(2) What is the relationship between the sizes of regions assigned to a node and
its children?

The first problem has a simple solution. The parent cell can be enlarged while
retaining the sizes of the subcells, and creating narrow strips of vacated space
between adjacent subcells. The strips are made sufficiently wide so as to accommo-
date connections between nodes which are routed through the strips. Figure 5
illustrates this for both square and triangular cases. In fact, if the width of the basic
cell is sufficient to hold interconnections then some of the subcells can touch each
other. For example, in the repetitive pattern in Fig. 6a, the central square cells can
touch the outer cells at corners. If e denotes the edge-length of the basic square cell,
then the edge-length of the region occupied by a two-level tree will be 3e,
corresponding to an area of 9e 2. With each additional level the area will grow by a
factor of 9. Of course, only a fixed number of intersections are required to pass
through each strip, irrespective of the number of levels in the tree.

The answer to the second question depends upon the specific application of the
tree. When the tree is used only for its topological structure, all the nodes being
identical as is the case for many data representation applications, equal size regions
can be used for all nodes. Figure 6a illustrates for this case the basic repetitive

EMBEDDING OF TREES FOR VSLI LAYOUTS 195

(b)

FIG. 6. (a) The basic repetitive pattern for a quadtree (k = 2, B = k 2) layout using square
tessellation. (b) A three-level layout generated by (a). All nodes are of equal size.

structure required for planar embedding of a quadtree (branching factor B = 4)
using a square tessellation, where the node corresponding to the newly inserted
central region is a parent of the nodes corresponding to the moved subcells. Figure
6b shows how this basic two-level structure can be repeated to generate a larger tree,
in this case, consisting of nodes at three levels. Figure 7 is analogous to Fig. 6 but
uses the triangular decomposition. If the basic cell has an edge length of t and this
is sufficient to house the interconnections, then the repetitive patter of Fig. 7a may
have an edge length of only 3t. The ara occupied by a tree grows by a factor of 9
with every level as is the case for the square tessellation. Thus, both square and
triangular tessellations make equally efficient use of space. In certain other applica-

196 N A R E N D R A A H U J A

/

(a)
7

(b)

FIG. 7. Analogous to Fig. 6 but using triangular tessellation.

tions of tree structure, the node characteristics depend upon its location in the tree,
e.g., in multiprocessor pyramid architectures [2, 3] each node houses a processor
whose size increases with the height of the node. This can be implemented by
recursively splitting all but one of the regions; the unsplit large region serves as the
parent node. Figures 8 and 9 are analogous to Figs. 6 and 7, and illustrate the
layouts for a ternary tree (B = 3).

4.1. Permissible Branching Factors

Our examples so far have involved trees with branching factors of only 4 and 3,
corresponding to the cases of equal and variable size nodes, respectively. In the
former case the branching factor is the same as the number of subcells obtained by

(a) I

!

(b)

FIG. 8. Analogous to Fig. 6 but for the case when node size increases (quadruples) with level resulting
in a ternary tree (k = 2, B = k 2 - 1).

EMBEDDING OF TREES FOR VSLI LAYOUTS 197

/E

(a) @ ~

(b)

FIG. 9. Analogous to Fig. 8 but using triangular tessellation.

splitting a cell, and in the latter case it is one less since one of the subcells is used by
the parent node.

The decomposition scheme of Fig. 5 that gives rise to the above cases (B -- 3, 4)
can be described as follows. Divide each side of the parent cell into two parts
(k = 2). From each midpoint draw a line parallel to each of the remaining sides of
the cell to obtain subcells. Since each dimension of a subcell is 1 /2 of the larger cell,
its area is 1 /22 = �88 that of the larger cell. Thus, there are four subcells per cell
giving B -- 3, 4 for the two cases of node sizes. In general, if each side of a cell is
divided into k equal segments and lines parallel to the remaining sides are drawn
from the endpoints of the segments, k 2 subcells will result. Thus, trees with B = k 2
or k 2 - 1 could be laid out. Figures 10 and 11 illustrate layouts for k = 3 and
B = k 2. The layouts for the case of k = 3 and unequal node sizes (B -- k 2 - 1) are
shown in Figs. 12 and 13.

In all the layouts the line segments are drawn along an underlying (square or
triangular) grid tessellation, not shown in the figures. The cell decomposition for the
B = k 2 _ 1 case is the same as that shown in Fig. 5. However, to obtain the B = k 2
case, a new parent node is inserted as the (k 2 + 1)th node in the decomposition
given in Fig. 5. The locations of the k 2 subcells in Fig. 5 are perturbed to
accommodate the new subcell as near the cell center as possible while minimizing
the loss in packing density.

Note that if the 4-way (k = 2) square decomposition of a region shown in Fig. 5a
is carried out in two steps, first into two rectangles and then each rectangle into two
squares (Fig. 14), the resulting scheme gives, as a special case, the standard
H-layout for binary trees proposed in the literature [9]. Such cascading of steps is
not possible for the triangular case.

198 NARENDRA AHUJA

(a)

(b)

FIG. 10. (a) The basic repetitive pattern and (b) the layout for a three-level tree (k = 3, B = k 2)
using square tessellation. All nodes are of equal size.

4.2. Area and Interconnection Length

Each successive step splits a node region into children node subregions and the
interregion spaces of small width (<< 1) for interconnections. Both the square and
triangular decomposition schemes use the same amount of area per node. Let d
denote the edge length of the layout and let N denote the number of nodes in the
tree at levels 0,1 , L. We will derive the relationship between the total area of the
layout and the number of nodes in the tree, for the square tessellation and for each
of the two cases B = k 2 and B = k 2 _ 1. The area of the interconnection regions
will be ignored in computing the layout area, since the width of such regions is

A

(a)

EMBEDDING OF TREES FOR VSLI LAYOUTS 199

(b)

FIG. 11. Analogous to Fig. 10 but using triangular tessellation.

assumed to be small (<< 1), and their length grows linearly with the square root of
the area.

Case 1. B = k 2. Each step of the decomposition divides the layout edge into
k + 1 segments: k equal length segments occupied by k children nodes and a unit
length segment corresponding to the parent node (see Figs. 6, 10). If the tree has L
levels then all segments along the layout edge will be of unit length after L steps of
recursive decomposition. Thus L and d are related:

d = l + k + ke + . . . + k L -
k L+I - 1 k L+I

k - 1 k - l "

N o w ,

N = 1 + k 2+ (k2) 2 + . . . + (k 2) L =
(k2) L§ - 1 k 2(L+1)

k 2 - 1 k 2 - 1 "

200 NARENDRA AHUJA

Ca)

(b)

FIG. 12. Analogous to Fig. 8 but for k = 3.

The layout area per node is given by

Area(N) d 2 k 2tL+l) k 2 - 1 k + 1

N N (k - 1) 2 k2(L+l) k - 1

k + l
A r e a (N) = k---:--f_ l u.

Thus, the area Area(N) of the layout of a tree consisting of N nodes is linear in N,

Area(N) = O(N).

C a s e 2. B = k 2 - 1. Each step of the decomposition now divides the layout
edge into k equal segments (see Figs. 8, 12). After L steps of recursive decomposi-
tion the layout edge will consist of unit length segments. Thus,

d = k L.

Now,

N = 1 + (k 2 - 1) + (k 2 - 1) 2 + "-" + (k 2 - 1) L

(k 2 - 1) L+I - 1 (k 2 - 1) L+I

g 2 - 2 k 2 - 2

EMBEDDING OF TREES FOR VSLI LAYOUTS 201

(b)

FIG. 13. Analogous to Fig. 8 but using k = 3 and triangular tessellation.

I +

(a) (b ~) (c)

FIG. 14. A two step decomposition (b), (c) of a square (a), similar to Fig. 5a, yields the / / - t r ee layout
of a binary tree proposed in literature [9].

Alternately,

Thus,

(k 2 - 1) L+I = (k 2 - 2)N

L+ 1 =log~k2 1)(k 2-2)+log(k2 ~)N

L=log(k2 1)N+ (log{k~ 1)(k 2 - 2) - 1).

L= log~k2 1)N.

202 NARENDRA AHUJA

The layout area per node is given by

Area(N) d 2

N N

Thus,

k 2 L (k 2 - 2)

(k 2 - 1) L+I

k2L

(k 2 - 1) L (k2 - 1) L+I

k2)l~ k2 1) N
Area(N) = N

Here the layout area grows faster with the number of nodes than is the case for
B = k 2. This is to be expected as the same amount of layout area holds fewer nodes
(k 2 _ 1 = B < k2), the nodes at higher levels occupying larger areas. However, if
k 2 >> 1 then the number of leaves, and hence the area occupied by them, will
dominate the total layout area. Thus the dependence will be almost linear:

k 2
- - ~ 1
k 2 - 1

and Area(N) --- O (N) .
The longest interconnection occurs between the root and its children, since all

lower levels are obtained by compact polygonal decomposition. Thus, the longest
interconnection has a length on the order of the dimension (diameter) of the largest
region (see figures). Therefore,

Length(N) = O(~/Area(N)) = O(~/N).

5. CONCLUSIONS

We have examined possible schemes for partitioning the plane into regions such
that the nodes and edges of a tree can be assigned to these regions to obtain a
planar embedding of the tree. The interconnections are not allowed to cross. Only
two different partitioning schemes based upon the regular square and triangular
tessellations are found to permit the desired node to region mapping. For each
scheme, two different layout designs have been described. In the first, all nodes are
assumed to require a fixed area, for example, when the tree is used as a data
structure. A general method for embedding k2-ary trees has been described that
takes O(N) area and has the longest interconnection of length O(~Area(N)), for a
tree containing N nodes. In the second case, the nodes at levels closer to the root
are assumed to require increasing amount of area, for example, when the tree is used
as a processor interconnection network for multiprocessing. A general method for
e m b e d d i n g (k 2 - 1)-ary trees has been described that takes O (N C l~ area
(C = k 2 / (k 2 - 1) and log is to the base (k 2 - 1)). the longest interconnection has
a length O((Area(U)) .

EMBEDDING OF TREES FOR VSLI LAYOUTS 203

Trees with branching factors other than k 2 (or k 2 - 1, when node area varies) do
not permit efficient layouts as per the schemes described in the paper. Consequently,
such a tree may be realized by using a chip implementing a larger tree but activating
only the desired subtree. Thus, for example, a tree with B = k 2 + r, 0 < r < 2k + 1,
may be realized by using a chip designed for a (k + 1)2-ary tree, but using only that
subtree containing edges labelled 1, 2 k 2 + r down to the leaves. For the
purpose of image analysis, quadtree and octree are two important tree data
structures, useful for representing 2- and 3-dimensional images, respectively.
Quadtree layouts are realized using k = 2 and B = k 2. Octrees are realized by
setting k = 3 and B = k 2, and using only eight children of each node. Multi-
processor pyramids for 2-dimensional image analysis [2, 3] that require B = 4 and
approximately doubting node size with level can not be laid out in linear area using
k = 2, and B = k 2 - 1. However, their approximate 3-dimensional counterparts
(B = 8), with the node area increasing by a factor of 9 with level, can be laid out
using k = 3, and in a total layout area O(N(1.1)I~

We have considered layouts that employ explicit interconnections between nodes,
unlike the case in "implicit wiring" described in [10], where the connections may be
routed through nodes acting partly as switches. Indeed, by allowing implicit wiring,
any k-ary tree layout could be used to realize a k'-ary tree, for any integer n, by
treating subtrees of n levels as single nodes. Thus, for example, the H-tree layout for
binary trees could be used to realize quadtrees, octrees, or any other 2"-ary tree. The
message switching operations at nodes increase the internode communication time.
This factor is absent in the layouts discussed in this paper where the communication
time is primarily determined by the length of the interconnection.

REFERENCES

1. N. Ahuja, R. T. Chien, R. Yen, and N. Bridwell, Interference detection and collision avoidance
among three dimensional objects, in Proc. 1st National Conf. on Artificial Intelligence, Stanford
University, August 19-21, 1980, pp. 44-48.

2. N. Ahuja and S. Swamy, Multiprocessor pyramids for bottom-up image analysis, in Proc. IEEE
Conf. on Pattern Recognition and Image Processing, Las Vegas, June 13-17, 1982, pp. 380-385.

3. N. Ahuja and S. Swamy, Interleaved pyramid architectures for bottom-up image analysis, in Proc. 6th
Int. Conf. on Pattern Recognition, Munich, Germany, October 19-22, 1982, pp. 388-391.

4. N. Ahuja and B. Schachter, Pattern Models, Wiley, New York, 1983.
5. N. Ahuja, On approaches to polygonal decomposition for hierarchical image representation, Comp.

Vision Graphics Image Processing, November 1983, pp. 200-214.
6. G. Bilardi, M. Pracchi, and F. P. Preparata, A critique of network speed in VLSI models of

computation, IEEE J. Solid State Circuits SC-17, 1982, 696-702.
7. L. Fejes Toth, Regular Figures, Macmillan, New York, 1964.
8. C. E. Leiserson, Area-Efficient Graph Layouts (for VLSI), Department of Computer Science

Technical Report, Carnegie-Mellon University, August 1979.
9. C. A. Mead and A. Rem, Cost and performance of VLSI computing structure, IEEE J. Solid State

Circuits SC-14, 1979, 455-462.
10. A. Mukhopadhyay and R. K. Guha, Embedding a tree in the nearest neighbor array, in Proc. Int.

Conf. on Parallel Processing, August 1981, pp. 261-263.
11. O. Ore, Graphs and Their Uses, Random House, New York, 1963.
12. A. Rosenfeld, Quadtrees and pyramids for pattern recognition and image processing, in Proc. 5th Int.

Conf. on Pattern Recognition, 1980, pp. 802-811.
13. S. N. Srihari, Representation of three-dimensional digital images, ACM Comput. Surveys, December

1981, 399-424.

