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Abstract. There has been growing interest in developing nonlinear dimension-
ality reduction algorithms for vision applications. Although progress has been
made in recent years, conventional nonlinear dimensionality reduction algorithms
have been designed to deal with stationary, or independent and identically distrib-
uted data. In this paper, we present a novel method that learns nonlinear mapping
from time series data to their intrinsic coordinates on the underlying manifold.
Our work extends the recent advances in learning nonlinear manifolds within
a global coordinate system to account for temporal correlation inherent in se-
quential data. We formulate the problem with a dynamic Bayesian network and
propose an approximate algorithm to tackle the learning andinference problems.
Numerous experiments demonstrate the proposed method is able to learn nonlin-
ear manifolds from time series data, and as a result of exploiting the temporal
correlation, achieve superior results.

1 Introduction

Dimensionality reduction algorithms has been successful applied to vision problems
for decades. Yet many tasks can be better approached with nonlinear methods, and re-
cently there has been growing interests in developing nonlinear dimensionality reduc-
tion (NLDR) algorithms for vision applications. Nonlineardimensionality reduction
aims at representing high dimensional data with low dimensional intrinsic parameters.
For data assumed to be distributed along a low dimensional nonlinear manifold, solving
NLDR is equivalent to recovering their intrinsic coordinates. There exist two main ap-
proaches that transform data to their intrinsic parameterswithin a global coordinate sys-
tem. Embedding methods such as Isomap [1] and LLE [2] find the intrinsic coordinates
on the manifold from a set of samples. However, one limitation is that these algorithms
discover the underlying embeddings rather than mapping functions from observed data.
An alternative approach is to find a nonlinear mapping between the data and their intrin-
sic coordinates, either with a combination of local linear models [3][4][5], or a single
nonlinear function [6][7][8].

All the abovementioned methods assume that the observed data samples are station-
ary or independent, identically (i.i.d.) distributed. However, numerous real world appli-
cations, e.g., object tracking and motion synthesis, entail analyzing continuous data
sequences where strong temporal correlation inherent in samples should be taken into
consideration. Consequently, it is essential to extend a conventional NLDR algorithm
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to account for temporal dependence in the data, thereby discovering sample dynamics
along the manifold.

Few attempts have been made to tackle the NLDR problems for time series. Exam-
ples include [9] that extends the standard generative topographic mapping to handle se-
quential data within the hidden Markov model framework, [10] that modifies the Isomap
algorithm with heuristics to find the underlying embedding from data sequences, and
[8] which applies a semi-supervised regression model to learn nonlinear mapping from
temporal data. Nevertheless, these algorithms are mainly concerned with learning the
nonlinear embedding or mapping functions. Less effort is made to model the dynamic
process of the intrinsic coordinates on the manifold.

In this paper, we address both nonlinear dimensionality reduction with bidirectional
projection and the dynamics of time series data within a single statistical framework.
We propose a model that learns the nonlinear mapping from time series that is capa-
ble of performing dynamic inference. Building on the work onthe global coordination
model [3] which provides a generative approach for the nonlinear mapping with a mix-
ture of factor analyzers, we extend this graphical model to adynamic Bayesian network
(DBN) by adding links among the intrinsic coordinates to account for temporal de-
pendency. Although the exact inference of this model is intractable, we exploit unique
properties of nonlinear mapping within the global coordination model and propose an
efficient approximate algorithm. We show that by applying this approximate algorithm,
this DBN becomes a generalized Kalman filter for nonlinear manifold where model
parameters are constantly adjusted.

We take a variational learning approach to estimate model parameters. Given initial
values of the parameters, we use our approximate inference algorithm to estimate the
statistics of latent variables. Then based on these statistics, we update the model para-
meters in the DBN. With this iterative process, the learningalgorithm converges to a
local optimum. For concreteness, we demonstrate the meritsof this DBN with applica-
tions such as object tracking and video synthesis in which itis essential to model the
sample dynamics on the underlying manifold.

The rest of this paper is organized as follows. We first brieflyreview the global
coordination model [3] in Section 2. Next, we present an extension of this model to
a DBN in which temporal correlation is taken into consideration in Section 3. Based
on this DBN, we propose an approximate inference method and alearning algorithm
for model parameters. Experimental results on synthetic and real world applications are
presented in Section 4. We conclude this paper with discussions on the proposed model
and future work in Section 5.

2 Global Coordination of Local Linear Models

The global coordination model is an extension of mixture of factor analyzers in which
latent variables are aligned in a global coordinate system.Denotey ∈ RD the observed
data,s the index of the selected linear model, andzs ∈ Rd the latent variables in the
s-th local linear model. The joint probability of these parameters is:

P (y, zs, s) = P (y|zs, s)P (zs|s)P (s) (1)



in whichP (s) is the prior probability of local models, P (zs|s) is a zero mean univariate
Gaussian, i.e.,P (zs|s) = N (0, Id), andP (y|zs, s) is defined by a factor analyzer:

P (y|zs, s) =
1

√

(2π)D|Ψs|
exp(−

1

2
(y − Λszs − µs)

T Ψ−1
s (y − Λszs − µs)) (2)

Since the latent variablezs is defined within the local coordinate system ofs-th local
model, the global coordination algorithm transformszs to the corresponding intrinsic
parameter within a global coordinate system. Letg denote the global coordinate of data
y that is generated froms-th local linear model withzs, the transformation is defined
by

g(s, zs) = Aszs + κs, P (g|s, zs) = δ(g − Aszs − κs) (3)

whereAs is a full ranked matrix to ensure a bidirectional mapping, and κs is an offset.
Given this model, the mapping fromy to g is described by:

P (g|y) =
∑

s

P (g|y, s)P (s|y) (4)

where

P (g|y, s) =

∫

P (g|s, zs)P (zs|s, y)dzs (5)

and the mapping fromg to y is defined as:

P (y|g) =
∑

s

P (y|g, s)P (s|g). (6)

AlthoughP (g|y) andP (y|g) are in the form of mixture of Gaussians, the distributions
of P (g|y) andP (y|g) are expected to be unimodal since ideally the mapping between g
andy should be one to one. For example given two mixture componentssi andsj , the
posterior distributions for global coordinates of a data point computed by (6) should be
as identical as possible sinceg is the global coordinate ofy. That is,P (g|y, si) should be
close toP (g|y, sj) as possible, i.e.,P (g|y, si) ≈ P (g|y, sj). This unimodal constraint
is imposed in learning the global coordination of local linear models by Roweis et al.
[3], and we take a similar approach. For mappings betweeny andg, E[P (g|y)] and
E[P (y|g)] are used in this work.

Learning the global coordination model is equivalent to estimating parameters{(Λs,
µs, As, κs)} from a set of observed data. This is an ill-posed problem since global coor-
dinates of the data set are unknown. A few methods have been recently been proposed
to address this issue. Wang et. al. [5] apply Isomap [1] to obtain global coordinates
of the data, and learn the model parameters by solving a regression problem. Roweis
et. al. [3] present an algorithm in which a regularization term is introduced to enforce
the alignment constraints, and model parameters are estimated using variational algo-
rithms. Nevertheless, both approaches have limitations asthe method in [5] requires
a good Isomap embedding, and the algorithm in [3] might have serious local minimal
problems. In addition, both methods assume observations are i.i.d. samples without tak-
ing the temporal dependence into consideration.



3 Dynamic Global Coordination Model

To account for the temporal relationship among data samples, we incorporate the global
coordination method into a dynamic model. Now observations{yt} are a temporal se-
quence generated from a Markovian process{gt} and the mapping fromgt to yt is
based on (6). The resulting dynamic Bayesian network is depicted in Figure 1.

gt-1 gt+1gt

yt-1 yt yt+

st-1 st st+1

Fig. 1. Our dynamic Bayesian networks that is based on the temporal dependency among the
global coordinates.

3.1 Inference

We now provide the inference algorithms for the model. Although the DBN shown in
Figure 1 is structurally complex, it becomes a simple state-space model if we marginal-
ize outst at each time step.

P (gt|y1:t) ∝
∑

st

P (yt|gt, st)P (st|gt)

∫

P (gt|gt−1)P (gt−1|y1:t−1)dgt−1

= P (yt|gt)

∫

P (gt|gt−1)P (gt−1|y1:t−1)dgt−1 (7)

Note thatP (yt|gt) is composed of a mixture of Gaussians. If we compute (7) di-
rectly for exact inference, the number of mixtures in the posterior distribution will grow
exponentially as the time index increases, thereby making the problem intractable. As
discussed earlier, the ideal mapping betweeny andg at any time instance should be one
to one. For efficient inference, we apply the first order Generalized Pseudo Bayesian
(GPB) algorithm [11] to approximateP (yt|gt), which can be shown to be the best sin-
gle Gaussian approximation in the KL sense.

In this work, we computeP (yt|gt) with Bayes rule

P (yt|gt) =
P (gt|yt)P (yt)

P (gt)
(8)



and neglect the effect ofP (gt) for the reason that will be explained in the next section.
That is, we approximateP (yt|gt) using the joint probabilityP (yt, gt). SinceP (yt) is
a constant with knownyt, we carry out GPB approximation usingP (gt|yt).

Let (µt, Σt) denote the mean and the covariance matrix of the Gaussian that we use
to approximateP (gt|yt), and likewiseP (gt|yt, st) ∼ N (µs

t , Σ
s
t ). From (4),(µt, Σt)

can be estimated by minimizing the weighted KL-distance:

(µt, Σt) = argmin
µ,Σ

∑

s

P (st|yt)KL(N (µs
t , Σ

s
t )||N (µ, Σ)). (9)

and the analytic solution is

µt =
∑

s

P (st|yt)µ
s
t , Σt =

∑

s

P (st|yt)
(

Σs
t + (µt − µs

t )(µt − µs
t )

T
)

. (10)

In our work, the dynamic model is set to beP (gt|gt−1) = N (Cgt−1, Q̂) whereC
is the system matrix. SinceP (yt|gt) andP (gt|gt−1) are now both Gaussians, as a result
the posterior distributionP (gt|y1:t) in (7) is also a Gaussian.

Let P (gt|y1:t) ∼ N (gt
t, Σ

t
t) andP (gt|y1:t−1) ∼ N (gt−1

t , Σt−1
t ). It can be shown

that in our dynamic Bayesian network,

gt−1
t = Cgt−1

t−1 , Σt−1
t = CΣt−1

t CT + Q̂ (11)

, and

Σt
t =

(

(Σt−1
t )−1 + Σ−1

t

)

−1
(12)

gt
t = Σt

t

(

(Σt−1
t )−1gt−1

t + Σ−1
t µt

)

(13)

Likewise, it follows that for the cases of smoothing and lag-one smoothing with our
model:

µT
t = µt

t + Jt(µ
T
t+1 − µt

t+1) (14)

ΣT
t = Σt

t + Jt

(

ΣT
t+1 − Σt

t+1

)

JT
t (15)

Jt = Σt
tC

T [Σt
t+1]

−1 (16)

ΣT
t,t−1 = ΣtJ

T
t−1 + Jt

(

ΣT
t+1,t − CΣt

t

)

JT
t−1 (17)

whereΣT
t,t−1 = E

[

(gt − µT
t )(gt−1 − µT

t−1)
T |y1:T

]

.
It should be emphasized that although our filtering and smoothing procedures are

similar to the ones used in standard Kalman filter, our model is a generalized filter.
While Kalman filter performs dynamic inferences on a linear manifold, our model ex-
tends this framework and performs dynamic inference on a nonlinear manifold. There-
fore, unlike a standard Kalman filter which uses a fixed Gaussian for the measurement
functionP (yt|gt), in our modelµt andΣt are adaptively updated according toyt to
account for the nonlinearity on the manifold as in shown in (10).



3.2 Learning

We take a variational approach to learn the model parameters. Let θ = {(Λs, µs, As,
κs, Ψs ), C, Q̂} denote the set of model parameters. Using Jensen’s inequality,

log P (y1:T |θ) ≥ Φ =
∑

s1:T

∫

Q(g1:T , s1:T |θ) log

(

P (y1:T , g1:T , s1:T |θ)

Q(g1:T , s1:T |θ)

)

dg1:T

(18)
We first define a proper functionQ and then learn the model parameters using an

EM algorithm. Starting with the initial valueθ(0), in the E-step we maximizeΦ with
respect toQ(g1:T , s1:T |θ(0)). In the M-step we fixQ and update the model parameters
θ to maximizeΦ. This iterative procedure continues until it reaches convergence.

In this work, we factorizeQ(g1:T , s1:T |θ) into two components:

Q(g1:T , s1:T |θ) = Q(s1:T |θ)Q(g1:T |θ) (19)

ForQ(g1:T |θ), we want it to be close toP (g1:T |y1:T , θ) as possible. Let̃P (g1:T |y1:T , θ)
denote the approximation ofP (g1:T |y1:T , θ) computed by our inference algorithm dis-
cussed in Section 3.1, and setQ(g1:T |θ) = P̃ (g1:T |y1:T , θ). ForQ(s1:T |θ), we further
factorize it toQ(s1:T |θ) =

∏T

t=1 Q(st|θ), and defineQ(st|θ) = qs,t whereqs,t is a
scalar.

It follows that,

Φ =
T

∑

t=1

S
∑

s=1

qs,t

∫

P̃ (gt|y1:T , θ) log P (yt, gt, st|θ)dgt

+

T
∑

t=2

∫

P̃ (gt, gt−1|y1:T , θ) log P (gt|gt−1)dgtdgt−1

−
T

∑

t=1

S
∑

s=1

qs,t log qs,t −

∫

P̃ (g1:T |y1:T , θ) log P̃ (g1:T |y1:T , θ)dg1:T (20)

Notice that in the E-step we do not computeP̃ (g1:T |y1:T , θ), but ratherP̃ (gt|y1:T , θ)
andP̃ (gt, gt−1|y1:T , θ) for all t. With knownP̃ (gt|y1:T , θ), the dynamic model is fac-
torized intoT global coordination models at each time instance, andqs,t is:

qs,t =
exp(−Es,t)

∑

s exp(−Es,t)
, Es,t =

∫

P̃ (gt|y1:T , θ) log P (yt, gt, st|θ)dgt (21)

In the M-step with knowñP (gt|y1:T , θ) andqs,t, the model parameters are updated
as follows. Letqs =

∑

t qs,t,



P (s) = qs/
∑

s

qs (22)

κs = q−1
s

∑

t

qs,tµ
T
t (23)

µs = q−1
s

∑

t

qs,tyt (24)

Also denoteys,t = yt − µs, gs,t = µT
t − κs, Ms =

∑

t qs,tys,tg
T
s,t andNs =

∑

t qs,t[Σ
T
t + gs,tg

T
s,t], we obtain the remaining model parameters inθ:

Λs = MsN
−1
s As (25)

[Ψs]i = q−1
s

∑

t

qs,t

{

[

ys,t − ΛsA
−1
s gs,t

]2

i
+

[

ΛsA
−1
s ΣT

t A−T
s ΛT

s

]

i

}

(26)

A−1
s = (I + ΛT

s Ψ−1
s Λs)

−1{AT
s qs + ΛT

s Ψ−1
s Ms}N

−1
s (27)

As for the dynamic model, denoteDt,t−1 = ΣT
t,t−1+ (µT

t )(µT
t−1)

T andDT
t =

ΣT
t + (µT

t )(µT
t )T :

Cnew =

[

T
∑

t=2

DT
t,t−1

][

T
∑

t=2

DT
t−1

]

−1

(28)

Q̂new =
1

T − 1

T
∑

t=2

(DT
t − CnewDt,t−1) (29)

These equations bear similarities to the work by Roweis et al. [3], but at its core
they are rather different by design. In our model, the estimation of gt is conditioned on
the whole observation sequencey1:T , i.e.,P̃ (gt|y1:T , θ), whereas in [3] the estimation
of gt is conditioned on a single, i.i.d. sampleyt. That is, our model is developed within
a dynamic context in which temporal correlation is taken into consideration.

Note that in our algorithm, when factorizingP (y1:T , g1:T , s1:T ),

P (y1:T , g1:T , s1:T ) = P (g1)
T

∏

t=2

P (gt|gt−1)
T

∏

t=1

P (yt|st, gt)P (st|gt) (30)

we use joint probabilityP (st, gt) instead ofP (st|gt). NeglectingP (gt) here makes the
model consistent with our inference procedure described inthe previous section. As a

matter of fact,P (gt) has little effect on computinglog
(

P (y1:T , g1:T , s1:T |)/P̃ (g1:T |y1:T )
)

sinceP (gt) in P (y1:T , g1:T , s1:T ) andP̃ (g1:T |y1:T ) can be canceled out.



4 Experiments

We apply the proposed algorithm to learn nonlinear manifolds and sample dynamics
from time series for a few applications. Comparative studies are carried out to show the
merits of the proposed method that takes temporal dependence into design, thereby bet-
ter recovering the underlying manifold from time series data. More experimental results
are available on our web site (http://www.ifp.uiuc.edu/˜rlin1/dgcm.html ).

4.1 Synthetic Data

We first test our algorithm with a synthetic data set generated from a 2D manifold and embedded
in a 3D space as shown in Figure 2. The data points are generated by a 2D random walk, similar
to the data set tested in [8], in a rectangle area[0, 5] × [−3, 3], and then embedded in 3D by
a mapping functionf(x, y) = (x, |y|, sin(πy)(y2 + 1)−2 + 0.3y). Notice that this data set is
challenging as it is difficult to estimate the neighborhood structure around the neck where the
manifold is folded.
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Fig. 2. Synthetic data: (left column) ground truth data points generated from a random walk path
in 2D and its embedding in 3D space. (middle column ) recovered 2D manifold and its 3D lifting
using the method by Roweis et al. after 15 iterations [3]. (right column) recovered 2D manifold
and its 3D lifting using parameters after 15 iterations.

The second and third columns of Figure 2 show the results using the method by Roweis et
al [3] and our algorithm. Notice that without taking the temporal information into considera-
tion, the random walk path on the 2D manifold cannot be recovered correctly and thereby the
3D lifted points near the neck region are tangled together. Compared to the ground truth on the
first column, our method recovers the 2D manifold better thanthe unsupervised nonlinear man-
ifold learning algorithm without taking temporal dependence into consideration. In contrast to
the semi-supervised method presented in [8], our algorithmis able to discover the underlying
2D manifold from 3D time series as the temporal correlation is exploited in estimating local
neighborhood structures without any supervision.



4.2 Object Tracking

We apply the proposed dynamic model to an object tracking problem based on appearance. Im-
ages of an object appearance are known to be embedded on a nonlinear manifold, and a sequence
of observations is expected to form a smooth trajectory on the manifold. Exploiting this strong
temporal dependency, we can better track an object by exploring the trajectory of the mapped
global coordinates on the appearance manifold from observed images. The graphical model for
object tracking is shown in Figure 3 wherext is the video frame at timet, location parameterslt
specifies the location of the tracked object inxt, andgt is the global coordinates of the object’s
appearance inxt.

gt-1 gt+1gt

xt-1 xt xt+

st-1 st st+1

lt-1 lt+1lt

Fig. 3. Extension of our dynamic global coordination model for object tracking. Based on this
model, we apply Rao-Blackwellized particle filter for efficient tracking.

The state vector includes the location parameters and the global coordinates of the observed
image, thereby making it ineffective to employ a simple particle filter for tracking. However, we
can factorize the posterior as:

P (lt, gt|y1:t) = P (gt|x1:t, lt)P (lt|x1:t) (31)

According to our inference algorithm in Section 3.1,P (gt|x1:t, lt) is approximated as an Gaussian
distribution. Therefore, our tracker can sample particlesonly onlt and modelP (gt|x1:t, lt) using
an analytical distribution. That is, our tracker can use Rao-Blackwellized particle filter (RBPF)
[12] for efficient tracking.

We test our model on a face tracking experiment which undergoes large pose variations. In
our tracking video, there are other faces around the target object. We first test the video using a
baseline tracker that tracks location parameterslt only, and use a mixture of factor analyzers as
the measurement function. The result shows that this tracker might track the wrong target when
the two faces are close. On the other hand, our tracker is ableto track the target well even though
several similar objects appear in close proximity because we exploit the temporal dependency in
the appearance images of the target (i.e., global coordinates). Figure 4 shows the tracking results
using the proposed method. More detail on incorporating a RBPF into our dynamic model and
experimental results are available on our web page.

4.3 Video Synthesis

We demonstrate merits of the proposed algorithm on a video synthesis problem. The image se-
quences are taken from a database of textured motion [13] where most videos have 170 by 115
pixel resolution and contain 120 to 150 frames. Such problemhas been referred to a dynamic
texture problem where scene appearance is modeled in a linear subspace [14]. However, scene



Fig. 4. Tracking results (left to right on each row): a target with large pose variation and moving
in close proximity of similar faces. Our algorithm is able totrack the target person in different
pose, without confusing with other people.

appearance is usually complex and rarely linear. In addition, for a short video, thus a sparse data
set, temporal correlations between image frames offer additional information to robustly learn its
underlying low-dimensional manifold.

In our experiment, we learn the nonlinear manifold of scene appearance using our proposed
algorithm by setting the system matrixC in our dynamic model to be an identity matrix, i.e.,
P (gt|gt−1) = N (gt−1, Q̂). For each sequence, we model the underlying scene dynamics as
a continuous low-dimensional trajectory along a globally coordinated manifold using a mixture
of 20-dimensional factor analyzers. From each learned trajectory, we then generate synthesized
videos by drawing samples and mapping them back to the image space. Note that care needs to be
taken in sampling points along the learned trajectory to prevent drifts. Otherwise the synthesized
images may not look realistic. The details of our sampling algorithm can be found on our web
site.

Figure 5 shows the synthesized results of our method (a mixture of two factor analyzers for
river sequence and a mixture of three factor analyzers for flag sequence) and the dynamic texture
approach [14]. More videos are available at our web page.

Clearly the images synthesized by our method (first and thirdrows) are significantly crisper
than the ones generated by the dynamic texture algorithm (second and fourth rows). The results
are not surprising as complex scene dynamics inherent in videos can be better modeled on a
globally coordinated nonlinear manifold rather than a linear dynamic system (LDS). Although
the closed-loop LDS approach [15] improves results by [14],it also models scene appearance in
a linear subspace and therefore cannot synthesize high-quality videos of complex scenes such as
our flag example.



Fig. 5. Synthesized results by our method (first and third rows) and the dynamic texture algorithm
(second and fourth rows). Clearly the images synthesized byour method are significantly crisper
than the ones generated by the dynamic texture algorithm.

5 Concluding Remarks

Numerous vision problems entail analyzing time series where the underlying nonlinear manifold
as well as strong temporal correlation among the data shouldbe learned and exploited. In this
paper, we extend the global coordination model within a dynamic context to learn the nonlinear
manifolds and the dynamics inherent in time series data. Positing this problem within a Bayesian
framework, we present an approximate algorithm for efficient inference and parameter learning.
The proposed algorithm finds numerous applications from which the merits are demonstrated.
Our future work includes finding better initialization methods in learning model parameters, and
applying the proposed algorithm to other problem domains.
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