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Abstract. There has been growing interest in developing nonlineaedsion-
ality reduction algorithms for vision applications. Altingh progress has been
made in recent years, conventional nonlinear dimensigrnaduction algorithms
have been designed to deal with stationary, or independetantically distrib-
uted data. In this paper, we present a novel method thatdeamlinear mapping
from time series data to their intrinsic coordinates on thdeulying manifold.
Our work extends the recent advances in learning nonlineanifoids within
a global coordinate system to account for temporal coimglahherent in se-
quential data. We formulate the problem with a dynamic Beyesetwork and
propose an approximate algorithm to tackle the learningisfietlence problems.
Numerous experiments demonstrate the proposed methokkigdbarn nonlin-
ear manifolds from time series data, and as a result of exupjothe temporal
correlation, achieve superior results.

1 Introduction

Dimensionality reduction algorithms has been succesgfplied to vision problems
for decades. Yet many tasks can be better approached wittneanmethods, and re-
cently there has been growing interests in developing neali dimensionality reduc-
tion (NLDR) algorithms for vision applications. Nonlinedimensionality reduction
aims at representing high dimensional data with low dinmmiintrinsic parameters.
For data assumed to be distributed along a low dimensioméilrear manifold, solving
NLDR is equivalent to recovering their intrinsic coordieat There exist two main ap-
proaches that transform data to their intrinsic parametihsn a global coordinate sys-
tem. Embedding methods such as Isomap [1] and LLE [2] findrttrgnsic coordinates
on the manifold from a set of samples. However, one limitatiothat these algorithms
discover the underlying embeddings rather than mappingtims from observed data.
An alternative approach is to find a nonlinear mapping betvtiee data and their intrin-
sic coordinates, either with a combination of local lineardals [3][4][5], or a single
nonlinear function [6][7][8].

All the abovementioned methods assume that the observadaaiples are station-
ary or independent, identically (i.i.d.) distributed. Hever, numerous real world appli-
cations, e.g., object tracking and motion synthesis, eatalyzing continuous data
sequences where strong temporal correlation inherentmples should be taken into
consideration. Consequently, it is essential to extendnaexttional NLDR algorithm
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to account for temporal dependence in the data, therebgwdsag sample dynamics
along the manifold.

Few attempts have been made to tackle the NLDR problemaiierseries. Exam-
ples include [9] that extends the standard generative t@pidc mapping to handle se-
guential data within the hidden Markov model framework ] th@t modifies the Isomap
algorithm with heuristics to find the underlying embeddingnfi data sequences, and
[8] which applies a semi-supervised regression model tmleanlinear mapping from
temporal data. Nevertheless, these algorithms are maimigerned with learning the
nonlinear embedding or mapping functions. Less effort islen® model the dynamic
process of the intrinsic coordinates on the manifold.

In this paper, we address both nonlinear dimensionalityetdn with bidirectional
projection and the dynamics of time series data within alsistatistical framework.
We propose a model that learns the nonlinear mapping from semies that is capa-
ble of performing dynamic inference. Building on the worktbe global coordination
model [3] which provides a generative approach for the maai mapping with a mix-
ture of factor analyzers, we extend this graphical modeldgreamic Bayesian network
(DBN) by adding links among the intrinsic coordinates to@aa for temporal de-
pendency. Although the exact inference of this model isattable, we exploit unique
properties of nonlinear mapping within the global coortimamodel and propose an
efficient approximate algorithm. We show that by applying tpproximate algorithm,
this DBN becomes a generalized Kalman filter for nonlineanifoéd where model
parameters are constantly adjusted.

We take a variational learning approach to estimate modahpeters. Given initial
values of the parameters, we use our approximate inferdgogtam to estimate the
statistics of latent variables. Then based on these atatiste update the model para-
meters in the DBN. With this iterative process, the learralgprithm converges to a
local optimum. For concreteness, we demonstrate the noétitss DBN with applica-
tions such as object tracking and video synthesis in whichéssential to model the
sample dynamics on the underlying manifold.

The rest of this paper is organized as follows. We first briedlyiew the global
coordination model [3] in Section 2. Next, we present an msiten of this model to
a DBN in which temporal correlation is taken into considienain Section 3. Based
on this DBN, we propose an approximate inference method dadraing algorithm
for model parameters. Experimental results on syntheticeal world applications are
presented in Section 4. We conclude this paper with dissosgin the proposed model
and future work in Section 5.

2 Global Coordination of Local Linear Models

The global coordination model is an extension of mixtureaatdr analyzers in which
latent variables are aligned in a global coordinate sysBenotey € R” the observed
data,s the index of the selected linear model, ande R¢ the latent variables in the
s-th local linear model. The joint probability of these parters is:

P(y, zs,8) = P(y|zs, ) P(zs]s) P(s) (1)



in which P(s) is the prior probability of local model, P(z,|s) is a zero mean univariate
Gaussian, i.e P(z;s|s) = N(0, 1), andP(y|zs, s) is defined by a factor analyzer:

1 1
P(y|zs,8) = ———exp(—=(y — Aszs — ST![/Sfl — Agzs — L 2
(ylzs, 5) A p(=5( is) (y )  (2)
Since the latent variable, is defined within the local coordinate systemseth local
model, the global coordination algorithm transformso the corresponding intrinsic
parameter within a global coordinate system. d.denote the global coordinate of data
y that is generated fromtth local linear model withz,, the transformation is defined

by
9(8,25) = Aszs + ks, P(g|s,2s) = 0(g — Aszs — Ks) 3)

whereA; is a full ranked matrix to ensure a bidirectional mappingl apnis an offset.
Given this model, the mapping frognto g is described by:

P(gly) = P(gly, s)P(sly) (4)
where |
P(glys) = [ Plals,z0)Pacls. iz, ©)
and the mapping from to y is defined as:
P(ylg) =>_ P(ylg, s)P(s]g). 6)

Although P(g|y) and P(y|g) are in the form of mixture of Gaussians, the distributions
of P(g|y) andP(y|g) are expected to be unimodal since ideally the mapping betgee
andy should be one to one. For example given two mixture compengrinds;, the
posterior distributions for global coordinates of a dataapcomputed by (6) should be
as identical as possible singés the global coordinate @f Thatis,P(g|y, s;) should be
close toP(gly, s;) as possible, i.eP(gly, s;) ~ P(gly, sj). This unimodal constraint
is imposed in learning the global coordination of local &inenodels by Roweis et al.
[3], and we take a similar approach. For mappings betweand g, E[P(g|y)] and
E[P(y|g)] are used in this work.

Learning the global coordination model is equivalent tinesting parameter§A;,
is, As, 5) } from a set of observed data. This is an ill-posed problenesihabal coor-
dinates of the data set are unknown. A few methods have beenthg been proposed
to address this issue. Wang et. al. [5] apply Isomap [1] t@iobglobal coordinates
of the data, and learn the model parameters by solving assigreproblem. Roweis
et. al. [3] present an algorithm in which a regularizatiomtés introduced to enforce
the alignment constraints, and model parameters are @stinnging variational algo-
rithms. Nevertheless, both approaches have limitationth@snethod in [5] requires
a good Isomap embedding, and the algorithm in [3] might havi®sgs local minimal
problems. In addition, both methods assume observatierid.ar samples without tak-
ing the temporal dependence into consideration.



3 Dynamic Global Coordination M odel

To account for the temporal relationship among data sanwkegcorporate the global
coordination method into a dynamic model. Now observatign$ are a temporal se-
quence generated from a Markovian procégs and the mapping frong; to y; is
based on (6). The resulting dynamic Bayesian network isoteghin Figure 1.

Fig. 1. Our dynamic Bayesian networks that is based on the tempe#ritlency among the
global coordinates.

3.1 Inference

We now provide the inference algorithms for the model. Alilo the DBN shown in
Figure 1 is structurally complex, it becomes a simple stgi@ee model if we marginal-
ize outs; at each time step.

P(gely1:) o ZP(ZMQt,St)P(5t|9t)/P(9t|9t71)P(9t71|y1:t71)d9t71

= P(yilge) / P(gelge-1) P(gor|y1.e—1)dgr—1 @)

Note thatP(y:|g:) is composed of a mixture of Gaussians. If we compute (7) di-
rectly for exact inference, the number of mixtures in thetpoar distribution will grow
exponentially as the time index increases, thereby makiagtoblem intractable. As
discussed earlier, the ideal mapping betwgandg at any time instance should be one
to one. For efficient inference, we apply the first order Galiwed Pseudo Bayesian
(GPB) algorithm [11] to approximatB(y:|g: ), which can be shown to be the best sin-
gle Gaussian approximation in the KL sense.

In this work, we computé®(y|g;) with Bayes rule

(9elye) P ()



and neglect the effect d?(g;) for the reason that will be explained in the next section.
That is, we approximat®(y;|g:) using the joint probability”(y;, g:). SinceP(y;) is
a constant with knowp;, we carry out GPB approximation usidf g: |y ).

Let (u:, ;) denote the mean and the covariance matrix of the Gaussitwehase
to approximateP (g:|y:), and likewiseP (g.|y:, s¢) ~ N (i, X5). From (4),(pe, Xv)
can be estimated by minimizing the weighted KL-distance:

(ey ) = argmin 3 | P(sely) K LOV (5, Z) IV (11, 20). (9

and the analytic solution is

He = ZP(St|yt),Uf7 2y = ZP(St|yt) (Ef + (e — pg) (e — Mf)T) . (10)

In our work, the dynamic model is set to B¥g;|g:—1) = N (Cgs—1, Q) whereC
is the system matrix. Sind@(y;|g:) andP(g:|g:—1) are now both Gaussians, as a result
the posterior distributio®(g:|y1.¢) in (7) is also a Gaussian.

Let P(gelyr.e) ~ N(gt, XF) and P(ge|yr.e—1) ~ N(gi~t, 1), It can be shown
that in our dynamic Bayesian network,

g t=CgZ, Dt =0x7CT +Q (11)

, and
S=((ZHY T )T (12)
g =2l ((Z7 ) e+ 2 ) (13)

Likewise, it follows that for the cases of smoothing and tage smoothing with our
model:

i = g+ Je(uy — pesq) (14)
=i+ g (25, - X)) I (15)
Jy=Xicr et )t (16)
Shoao=SJdl v (B, o) Jn, (17)

whereX[,_; = E (g — uf )(ge—1 — =) " lyr.r].

It should be emphasized that although our filtering and shiogtprocedures are
similar to the ones used in standard Kalman filter, our mosl@ generalized filter.
While Kalman filter performs dynamic inferences on a lineamnifold, our model ex-
tends this framework and performs dynamic inference on $imemar manifold. There-
fore, unlike a standard Kalman filter which uses a fixed Gawnsfgir the measurement
function P(y¢|g:), in our modelu; and X; are adaptively updated accordingypto
account for the nonlinearity on the manifold as in shown ) (1



3.2 Learning

We take a vgriational approach to learn the model paraméterd = {(As, us, As,
ks, U5 ), C, Q} denote the set of model parameters. Using Jensen'’s ingguali

P Ay Ly : 9
log P(y1.7]0) > @ = Z/Q(gl:T7sl:T|9) log ( (él(';lil :1;;)' )) dgr.t
(18)

We first define a proper functiof) and then learn the model parameters using an
EM algorithm. Starting with the initial valug(®), in the E-step we maximizé with
respect taQ(g1.7, s1.7|0(?). In the M-step we fixQ and update the model parameters
# to maximized. This iterative procedure continues until it reaches cayece.

In this work, we factoriz&)(g:1.r, s1.7|#) into two components:

S1:T

Q(g1:7, s1:7|0) = Q(s51:7(0)Q(91:710) (19)

ForQ(g1.7|0), we wantit to be close t&(g1.7|y1.7, 0) as possible. LeP(gl;T|y1:T, 0)
denote the approximation ét(g1.7|y1.7, 8) computed by our inference algorithm dis-
cussed in Section 3.1, and €2tg1.7|0) = P(g1.7|y1.7,0). ForQ(s1.7|#), we further
factorize it toQ(s1.7]0) = Hthl Q(s¢]0), and defingl(s¢|0) = g5+ Whereg,, is a
scalar.

It follows that,

T
M=
M
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Notice that in the E-step we do not compityy.|y1.7, 0), but rathetP (g |y1.r, )
andP(g:, gi—1|y1.7, 0) for all t. With known P(g:|y1.7, 6), the dynamic model is fac-
torized intoT’ global coordination models at each time instance,@nds:

exp(—Es.,t) /~
st —=—="—"""—, Est= | P 1,0)1log P(y¢, g¢, 5¢|0)d 21
st S exp(—Es) it (g9tly1:7, 0) log P(yt, gt, 5¢0)dge (21)
In the M-step with knowrP(g; |y1.7, 6) andg, +, the model parameters are updated
as follows. Letgs = ), 5.+,



= QQ/Z qs (22)
. Z qs t,ut (23)
=qy Z Qs,tYt (24)

Also denoteys + = yi — s, st = fi — ksy My = Y, qs7ty5,tgsT’t and N, =
> 4s.t[EF + gs.e9l,], we obtain the remaining model parameterg:in

Ay = M N7'A, (25)
(A 12«;”{ Yo = AAT o]} + [AAT S ATTAT] ) (26)
A7l = (I+AZW5 ") AT g, + ATw M N (27)

As for the dynamic model, denot®,, 1 = X7, + (uf)(p{ ;)" and D} =
S+ () ()™

T —1
Crew = | Y_ DJ,_ 11 [ZD ] (28)
t=2
1 T
A T
Qnew - ﬁ tz:;(Df - Cneth,t—l) (29)

These equations bear similarities to the work by Roweis .34l but at its core
they are rather different by design. In our model, the egtonaf g; is conditioned on
the whole observation sequenger, i.e.,]:j(gt|y1;T, 0), whereas in [3] the estimation
of g is conditioned on a single, i.i.d. sampje That is, our model is developed within
a dynamic context in which temporal correlation is takep icinsideration.

Note that in our algorithm, when factorizid®(y:.7, g1.7, $1.7),

T T
P(yr.r, grr, sir) = P(gr) [ [ Plaelge-1) [ P(welse, 1) P(selge)  (30)
t=1

t=2

we use joint probability” (s, g;) instead ofP(s;|g:). NeglectingP(g:) here makes the
model consistent with our inference procedure describdlerprevious section. As a

matter of factP(g;) has little effect on computinigg (P(yl;T, g1.T, 31;T|)/]5(91;T|y1;T))
sinceP(g:) in P(y1.7, 1.7, S1.7) andP(gl;T|y1;T) can be canceled out.



4 Experiments

We apply the proposed algorithm to learn nonlinear manffeldd sample dynamics
from time series for a few applications. Comparative stsidie carried out to show the
merits of the proposed method that takes temporal depeadeioadesign, thereby bet-
ter recovering the underlying manifold from time seriesad&tore experimental results
are available on our web sitet{p://www.ifp.uiuc.edu/ rlin1/dgcm.html ).

4.1 Synthetic Data

We first test our algorithm with a synthetic data set gendrixitean a 2D manifold and embedded
in a 3D space as shown in Figure 2. The data points are geddnate 2D random walk, similar
to the data set tested in [8], in a rectangle dfed] x [—3, 3], and then embedded in 3D by
a mapping functionf (z,y) = (z, Jy|,sin(ry)(y* + 1)~2 + 0.3y). Notice that this data set is
challenging as it is difficult to estimate the neighborhotdicture around the neck where the
manifold is folded.

Fig. 2. Synthetic data: (left column) ground truth data points getesl from a random walk path
in 2D and its embedding in 3D space. (middle column ) recal/2f2 manifold and its 3D lifting
using the method by Roweis et al. after 15 iterations [3y§htricolumn) recovered 2D manifold
and its 3D lifting using parameters after 15 iterations.

The second and third columns of Figure 2 show the resultgubim method by Roweis et
al [3] and our algorithm. Notice that without taking the tesrgd information into considera-
tion, the random walk path on the 2D manifold cannot be re@a/eorrectly and thereby the
3D lifted points near the neck region are tangled togethemg@ared to the ground truth on the
first column, our method recovers the 2D manifold better th@unsupervised nonlinear man-
ifold learning algorithm without taking temporal dependerinto consideration. In contrast to
the semi-supervised method presented in [8], our algorithable to discover the underlying
2D manifold from 3D time series as the temporal correlat®miploited in estimating local
neighborhood structures without any supervision.



4.2 Object Tracking

We apply the proposed dynamic model to an object trackinglpro based on appearance. Im-
ages of an object appearance are known to be embedded orireeaonhanifold, and a sequence
of observations is expected to form a smooth trajectory emthanifold. Exploiting this strong
temporal dependency, we can better track an object by emplthe trajectory of the mapped
global coordinates on the appearance manifold from obdemages. The graphical model for
object tracking is shown in Figure 3 whereis the video frame at timg location parameteris
specifies the location of the tracked object:if) andg; is the global coordinates of the object’s
appearance im;.

Fig. 3. Extension of our dynamic global coordination model for @bjeacking. Based on this
model, we apply Rao-Blackwellized patrticle filter for eféat tracking.

The state vector includes the location parameters and tiialgtoordinates of the observed
image, thereby making it ineffective to employ a simple iséeftfilter for tracking. However, we
can factorize the posterior as:

P(lt, gtlyr:t) = P(gt|ziee, be) P(le|w1:e) (31)

According to our inference algorithm in Section 3A(g:|z1:¢, l+) is approximated as an Gaussian
distribution. Therefore, our tracker can sample partioldy onl; and modelP(g¢|x1:¢, l+) using

an analytical distribution. That is, our tracker can use-BR&axkwellized particle filter (RBPF)
[12] for efficient tracking.

We test our model on a face tracking experiment which underdarge pose variations. In
our tracking video, there are other faces around the talgetb We first test the video using a
baseline tracker that tracks location parametemnly, and use a mixture of factor analyzers as
the measurement function. The result shows that this tranight track the wrong target when
the two faces are close. On the other hand, our tracker ig@kiack the target well even though
several similar objects appear in close proximity becausexploit the temporal dependency in
the appearance images of the target (i.e., global coosihatigure 4 shows the tracking results
using the proposed method. More detail on incorporating  RBito our dynamic model and
experimental results are available on our web page.

4.3 Video Synthesis

We demonstrate merits of the proposed algorithm on a vidathegis problem. The image se-
quences are taken from a database of textured motion [13jewhest videos have 170 by 115
pixel resolution and contain 120 to 150 frames. Such protiembeen referred to a dynamic
texture problem where scene appearance is modeled in & 8obapace [14]. However, scene



Fig. 4. Tracking results (left to right on each row): a target wittglpose variation and moving
in close proximity of similar faces. Our algorithm is ablettack the target person in different
pose, without confusing with other people.

appearance is usually complex and rarely linear. In addifar a short video, thus a sparse data
set, temporal correlations between image frames offetiaddi information to robustly learn its
underlying low-dimensional manifold.

In our experiment, we learn the nonlinear manifold of scqueearance using our proposed
algorithm by setting the system matriX in our dynamic model to be an identity matrix, i.e.,
P(gtlgi—1) = N(gi-1,Q). For each sequence, we model the underlying scene dynasiics a
a continuous low-dimensional trajectory along a globatiprdinated manifold using a mixture
of 20-dimensional factor analyzers. From each learneddtajy, we then generate synthesized
videos by drawing samples and mapping them back to the ingEgesNote that care needs to be
taken in sampling points along the learned trajectory tegmedrifts. Otherwise the synthesized
images may not look realistic. The details of our samplirgpathm can be found on our web
site.

Figure 5 shows the synthesized results of our method (a neixtitwo factor analyzers for
river sequence and a mixture of three factor analyzers fgrsiéguence) and the dynamic texture
approach [14]. More videos are available at our web page.

Clearly the images synthesized by our method (first and tioings) are significantly crisper
than the ones generated by the dynamic texture algorithcoigsieand fourth rows). The results
are not surprising as complex scene dynamics inherent ieogidan be better modeled on a
globally coordinated nonlinear manifold rather than adindynamic system (LDS). Although
the closed-loop LDS approach [15] improves results by [it4]lso models scene appearance in
a linear subspace and therefore cannot synthesize hidityqtideos of complex scenes such as
our flag example.



Fig. 5. Synthesized results by our method (first and third rows) hadlynamic texture algorithm
(second and fourth rows). Clearly the images synthesizemlibynethod are significantly crisper
than the ones generated by the dynamic texture algorithm.

5 Concluding Remarks

Numerous vision problems entail analyzing time series witlee underlying nonlinear manifold
as well as strong temporal correlation among the data sHmeiléarned and exploited. In this
paper, we extend the global coordination model within a dyinacontext to learn the nonlinear
manifolds and the dynamics inherent in time series datatiRgshis problem within a Bayesian
framework, we present an approximate algorithm for efficieference and parameter learning.
The proposed algorithm finds numerous applications fronthviiie merits are demonstrated.
Our future work includes finding better initialization metts in learning model parameters, and
applying the proposed algorithm to other problem domains.
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