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Abstract jects, and each set of similar subimages in the image set
is said to define a category of objects. The categories, in
This paper proposes, and presents a solution to, thegeneral, have hierarchical mutual relationships. Thuata c
problem of simultaneous learning of multiple visual cate- egory may be defined recursively by specifying properties
gories present in an arbitrary image set and their inter- and configurations of its subcategories. Such hierarchical
category relationships. These relationships, also called category definitions may also include sharing of simple cat-
their taxonomy, allow categories to be defined recursively, egories by more than one, complex categories. For exam-
as spatial configurations of (simpler) subcategories edch o ple, category “leg” is shared by all legged animals, and, in
which may be shared by many categories. Each image isturn, “leg” is an articulated combination of the simpler-cat
represented by a segmentation tree, whose structure capegory of elongated shapes, which also occurs in the defini-
tures recursive embedding of image regions in a multiscaletions of the categories of stools and scissors. It is reason-
segmentation, and whose nodes contain the associated reable to expect that simple categories occur more frequently
gion properties. The presence of any occurring categoriesin real-world images, and their occurrences exhibit smalle
is reflected in the occurrence of associated, similar s@stre  variations than encountered in more complex categories.
within the image trees. Similar subtrees across the entire This makes learning of simpler categories more robust. In
image set are clustered. Each cluster corresponds to a dis-turn, representation and learning of complex categories be
covered category, represented by the cluster properties. Acomes more compact by exploiting the simpler descriptions
(subcategory) cluster of small matching subtrees may occurof their subcategories, and more efficient as subcategory
within multiple clusters (categories) of larger matchindps sharing makes the complexity of representation/learnfng o
trees, in different spatial relationships with subtreesnfr multiple categories sublinear in the number of categoties.
other small clusters. Such recursive embedding, group-this paper, we refer to the recursive representation of com-
ing and intersection of clusters is captured in a directed plex categories as spatial configurations of smaller, @mpl
acyclic graph (DAG) which represents the discovered tax- subcategories as the taxonomy of the categories.
onomy. Detection, recogmtlon gnd segmentatlon of_any of This paper is aimed at solving the following related prob-
the learned categories present in a new image are simulta-jo ¢ 1) simultaneous discovery of multiple categories of
neously conducted by matching the segmentation tree of thyigterent complexities occurring in an arbitrary image; set
new image with the Igarned DAG. Th|_s matching alsp yields 2) learning category-specific photometric (color), geomet
a semantic explanat_lon of the recognlzed cate_gory, in t(_armsric (area, shape), and topological (recursive region embed
of the presence of its subcategories. E_xpenments with ading) properties; 3) identification of categories of diffat
newly compiled dataset of four-legged animals demonstratecomplexitieS and their relationships, i.e., learning thenh-

good cross-category resolvability. omy; 4) simultaneous detection, recognition and segmenta-
tion of all objects from the learned categories present in a
. previously unseen image; and 5) retrieving the semantic ex-
1. Introduction planation of why a category is found in a new image, i.e.
in terms of the simpler categories detected and the learned

This paper is about unsupervised extraction of subim- | p . diff b
ages having similar appearances and topology from a giventaxonomy. Below, we first point out differences between

set of arbitrary images, as well as discovering the spatialth's_ papergnd_prlorwork, and then present an overview and
relationships among subimages belonging to all discovered™an contributions of our approach.

sets of similar subimages. Topology here refers to recairsiv Prior work: In general, object recognition approaches con-

embedding of homogeneous regions, captured in a multi-sist of four major stages: feature extraction, category rep

scale image segmentation. Subimages are called 2D obresentation, training, and recognition. We review here the
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Figure 1. The results of our algorithms: (left) segmentati@es of house images; (right) learned taxonomy. The sebtrepresenting
categories “roofs” (red), “windows” (blue), “window-palsg(green), etc., are each clustered, since they haveaiptiotometric, geomet-
ric and topological properties. The subtrees of “windowgla” are contained within the subtrees of “windows” anddidy” therefore,
categories “windows” and “doors” share category “windomnrpls.” The subtrees of “roofs” and “chimneys” are not comed within a
larger subtree but co-occur in the segmentation treesefitrer, they define co-occurrence category “roof-chimneyaiige). Similarly,
“roof-chimney,” “quad-window-groups” (pink), and “wines-door” define co-occurrence category “house-front” (gya

state of the art with respect to each of these stages. Regardhan tree-union, i.e., the taxonomy of shared categorias. F
ing the first stage, most recent work uses local features (e.g training, most prior work requires each training image be la
keypoints [9], and curve fragments [10]). There is also a beled with the category or a few categories it contains. For
significant number of region-based approaches[12, 13, 14].example, [2] solves the problem of translation from visual
Advantages of region features are that (i) they are higher-features to semantics, provided training images are ldbele
dimensional and thus in general richer descriptors than lo-with semantics. Recently, the required degree of supervi-
cal features, (ii) their boundaries often coincide with-rel sion has been reduced such that each training image does
evant boundaries of objects, facilitating simultaneous ob not have to be labeled [13, 14]. However, unlike our ap-
ject detection and segmentation, and (iii) they enable easyproach, [13] requires specification of the total number of
use of the constraints dealing with spatial cohesiveneds an categories present. Object recognition, in stage fouypis t
multiresolution structure of images. For these reasons, weically evaluated only through image classification (catggo
use image regions as features. For category representatiopresent/absent) [3, 6]. Few approaches, like ours, pilgcise
in the second stage, most approaches partition features int delineate the boundaries of detected objects [14, 13].

clusters, called “parts,” whose boundaries are ingen&ald 5 anjiew of our approach: (1) An image is represented

tinct from those of the true object parts. They representy,, o sagmentation tree [1, 14] which captures the low-level,
the objects as either a planar, or hierarchical graph okthes spatial and photometric image structure. Nodes at upper

‘parts.’ Forexample, th‘? constellation“modeln[S] is_a plang levels correspond to larger segments, while their children
graph with a user-specified number of “parts,” configuredin 04 capture embedded, smaller details (e.g., the quad-

a known model structure. The hierarchical models of, €.9- window-group nodes in Fig. 1 are parents to the window
[5, 4, 15] are derived by hierarchical clustering of feagre nodes). (2) Category instances (e.g., roofs, doors, wisdow

where smaller feature clgsters can be shargd by _Iarger ones, Fig. 1) appear as similar subimages, whose correspond-
The structure of these hierarchical models is typically-con ing subtrees are accessible in the segmentation trees. To

trolled by a pre-specified hierarchy depth. Our hierardhica identify the instances, we measure the similarity of alFseg

model (i.e., taxonomy) differs in that it has an a priori un- entg' across the image set, in terms of their intrinsic pho-
known hierarchy depth, and arbitrary number of subparts o metric, geometric and topological properties, as well as

forming arbitrary qutial layout configurations, all of whi in terms of the same properties of their embedded subre-
are I(_aarned f“?m the Image set. Also, purtaxor_10my enCOdeSgions. (3) The identified similar subimages are clustered,
Sha””g of entire Catego”es' while prior work is concerned and the resulting clusters are treated as evidence and exact
only with feature sharing. . Related to ours are a_pproac_heqnstances of the categories present. The similar subimages
that use the graph-_theoretlc framework to learn h|e_raaih|c within a cluster (e.g., of all doors) together provide for ro
models of categories [8, 14]. In [14], the tree-union of & gt |earming of the subtree properties characterizingshe
single category is learned. Instead, we simultaneously dis 5o iated category. (4) The clusters containing less comple
cover multiple categories, and learn a more general graphsubimages are associated with more common, simple cate-
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gories (rectangular panels). These subimages form compoenly point out the major differences.
nents of the hierarchical definitions of subimages in other Images are represented by trees obtained by a multi-
clusters representing more complex categories (windows,scale segmentation algorithm, presented in [1, 14]. Any
doors). The clusters inherit the containment properties of cutset of the segmentation tree corresponds to one possi-
their constituent subimages, which allows us to establishble image segmentation, while parent-child node relation-
hierarchical, containment links between the clustersidchi ships capture recursive region embedding. The number of
link from the window cluster to the panel cluster), yielding nodes & 150-200), branching factorf(0-5), and the num-
a directed acyclic graph (DAG). The root nodes of the DAG ber of levels & 10-15) in different parts of the segmen-
represent the set of most complex categories, while thosetation tree are image dependent. A vectyr of region
near the leaves represent the simplest, often most sharegroperties is associated with each nad@ the tree, de-
subcategories, as illustrated in Fig. 1. (5) The categoriesfined relative to the corresponding properties/sfparent-
found in (3) may indeed represent different parts of a com- nodeu, to allow scale and rotation-in-plane recognition in-
plex category. (roof and front wall of the house), and, may variance. The region’s principal axis is estimated as the
not belong to any single subtree in the segmentation tree.eigenvector of matrix H—}m [ﬁf‘; ﬁ};] associated with the
The detection of the parts can be used to encode such “cofarger eigenvalue, wheye,, are the region’s standard cen-
occurrence” categories (house front marked cyan in Fig. 1).tral moments. The components ¢f, are as follows: (1)
(6) To recognize the occurrence of any of the learned cat-gray-level contrasy, betweenv and its parent:; (2) nor-
egories in a new image, its segmentation tree is searchednalized intensity Varian033:XZ{EZ§: (3) normalized area
for matches with the DAG. Any matches found denote the aaredv). g dispersion ADE 3 (i)
occurrences of the corresponding categories as well as alf" aredu) ’.( ) area disp - ZeweC(v) v dw
the associated subcategories. The subcategories, altng wi °V&" V'S ch|IdrenweC(v); ) bendlnLg energy (a measure
their hierarchical structure within the DAG, serve as a se- Of boundary jaggedness) BE - . w7, where L, is
mantic (category-space) explanation of why the category isthe length in pixels ofv’s boundary, and{x;} is an ar-
found. Simultaneously, the matches also specify the exact@y of curvature values computed at each boundary pixel
boundaries of the detected objects. from the standard 8—conne(§ted chain code; (6) squared
Contributions: 1) To our knowledge, this is the first solu- perimeter over area, E’é%@; (7) angley, between
tion to completely unsupervised learning of hierarchicala  the principal axes of andu; (8) normalized displacement
sharing relationships, or taxonomy, of visual categorigs. Zvé duw 77 whered,, ({7 .. ) is the distance (unit
Unlike in prior work, each unlabeled training image in our \/aredu) . _
. T . vector) from the centroid of to that ofv; (9) context vec-

case may contain multiple instances of multiple target cat- """ aredw) — .
egories, whose total number is unknown. 3) Our approach'°" _q)”f Zw_eNv @, ow Fhat re(.:ords the general di-
derives a generative, hierarchical model of a category's im "ection in whichv sees its sibling regionse\V,,, and disal-
age structure, instead of learning a classifier of pre-§peci ~ 10WS matching of scrambled layouts of regions. Each entry
categories. 4) While prior work learns only sharing of Of %. is normalized to take a value in the intery@/1].
features among known categories, and establishes similar- Having obtained the tree representation of a given im-
ity relationships between the categories with respectéo th a9€ SetT={t1, s, ...ty }, we proceed with estimating the
number of shared features, we instead learn sharing of enSimilarity between all pairs of subimages (i.e., subtrées)
tire categories. 5) Recognition capabilities of priorware 1 Accordingly, we define a similarity measui,,, be-
extended by providing a semantic basis of recognition. 6) tWeen two regions (nodes),and’, in terms of their in-
We introduce a new co-occurrence category, which cannottfinsic region properties), andq,, as well as the prop-
be handled by most existing approaches (e.g., [14]). 7) Wweerties of their embedded subre_glowsandw’, ie., Qescen-
introduce a new graph similarity measure. 8) A new datasetdant nodes underneathand«’ in the segmentation trees.
of four-legged animals is compiled and used for evaluating v’ IS computed by the well-known tree matching algo-
resolving subtle cross-category differences. r_|thm pre_sented in [11, 16, 14], WhICh for two given trees

Next, we describe our image representation and estima-finds their common subtrees. Given two tréegV;, E)
tion of similarity between subimages in Sec. 2, clustering @nd#’=(Vi-, Ei1), whereV” and ' are the sets of nodes and
of similar subimages in Sec. 3, organizing the clusters of €dges, the goal of matching is to find the topologically con-
similar subimages into a DAG in Sec. 4, and finally experi- Sistent subtree isomorphisnf.U;—Uy., whereU;CV; and
mental evaluation of these algorithms in Sec. 5. Uy CVy, which maximizes their similarity measure

. . . . St £ ’ v v — My’ ), 1
2. Locating Subimages of Potential Categories " m.?xzw yes (oo =) @)

This section describes Steps 1 and 2 of our approachwherer, is the saliency of regiom, andmw/é|7’v—rv/|
Since these steps are similar to those used in [14], we heras the cost of matchinget andv’et’ in bijection f. The
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region saliency is defined as a linear combination of region ing together all clusters whose similarities are closentha
properties, 2£74p,,, whereg is a vector of weighting coef-  the specified level of sensitivity).

ficients so thaf|£||=1 and§>0. From (1), for all node pairs We conduct the standard, complete linkage, agglomera-
(v, v)€txt’, S,y can be computed recursively, bottom-up: e clustering over the entire set of regiansT from all the
images, where the two most similar clusters are merged into
Svvr = To 10 = Mo + 32 wec,,, Swwrs (2) a larger one at each stage, provided that none of the nodes
within the clusters has a descendant or ancestor present in
the other. This is done until there are no more clusters that
can be merged. The pairwise cluster merging is based on the
minimum intercluster similarity value (Hausdorff dista)c

whereC,,, is the maximum weight clique of the association
graph constructed from all descendaptsw’) of the node
pair (v,v") [11, 16, 14]. If each of the two trees has no more

than|t| nodes, complexity of their matchin t|4). . .
l piexity 9a3(lt[") Some of these mergers may combine two clusters contain-

The main deficiency of the similarity measure, given by .~ . : .
S . ing instances of the same category, while others might force
(2), versus our objectives is that the measure depends on ) :
. : . . : two different populations to merge. Although each merger
the size of the hierarchies being matched. In particular, th

: . selects the best candidates available for merging, in the la
matches of more structured image regions are favored over, : . . .

. . . . ter case it combines two categories which we may want to
those of simple, homogeneous regions. It is not clear if and

to what extent should the similarity between two nodes de- keep as separate, because the difference in their geomet-

pend on their subtree depths and branching factors. For the < photorr_u_et_nc and topological propertles is above our de
; Sired sensitivity level. In contrast, in the former cases th
purpose of this paper, we have chosen to make the match . . .
. o merger is desirable and enlarges the set of samples in the
quality depend only on the intrinsic matches between the
. : . common category of the merged clusters. To formally eval-
paired nodes, without any direct dependence on the subtre%ate the validity of agglomerative merging of two clusters
depths. To this end, we weight the contributions to similar- Y 99 ging

. > i at any given stage, we will assume that similarity values
ity of each node-pair in (2) as follows: 5 e .
Sy Within a cluster are samples drawn from a probability
~ ~ density function (pdf) characteristic of the associatetg-ca
A ’ ! r— ’ ’ / ’ . . . B
Svvr = pur (0, 07) (o0 =gy )+ Z pov (W, W) Swur, gory. Then, erroneous merging of two distinct categories,
Covr into an artifact category, would amount to treating two dif-

(3) .
where the weight,,, (w,w’) make the contributions of ferent pdf's as the same.

the regionsw andw’ proportional to the relative areas they Distinguishing Categories:To prevent erroneous category
occupy withinw andv’. We definep,, (w,w’) as the total ~ merging, we use the well-known Kolmogorov-Smirnov test
outer-ring area of w Uw'} that is not occupied by the other (KS-test). The null hypothesis for the KS-test is that the tw
descendants af andv’ in C,,, expressed as a percentage Sample sets of similarity values are drawn from the same
of the total area ofv U v'}. With this new similarity mea- ~ continuous pdf, While the alternative hypothesis is thyth
sure, the matching algorithm yields a set of pairs of matchedare drawn from different pdf's. The null hypothesis is re-
subimages drawn from images in the entire set, along withjected if the test is significant at level which we set to
their similarity values, which are then used for identifyin  the standard value af=5%, thus quantifying our level of

different categories present. sensitivity to inter-category differences. The attraetihar-
acteristics of the KS-test are that it does not require apsum
3. Discovering Multiple Categories tions about the distribution of data, and binning of the sam-

ples (as, e.g.x2-test), and that the distribution of the KS-

The matched subtree pairs obtained above link multiple test statistic itself does not depend on the underlying pdf
occurrences of the same category with high similarity val- being tested. Rejection of the null hypothesis results én th
ues. Thus, all occurrences of the same category across theetention of both clusters as distinct categories. Sinee th
image set are expected to be transitively connected by a seKS-test is more reliable over large clusters, we first create
guence of high-value links. This section describes the nextthe complete binary merger tree, and then prune erroneous
step (Step 3 in Sec. 1) in our algorithm, which is aimed at mergers top-down, which results in a forest of binary cluste
clustering together all highly similar subimages. The re- mergers. The pruning process ends when no null hypothe-
sult is one cluster per category thus discovered. Since wesis is rejected. The roots of the agglomerative clustering
do not know how many categories exist in the data, and hierarchy (i.e., the largest clusters) that remain at tlteodn
what the extent of their intra- and inter-category variasio  the pruning process are taken as representing the categorie
are, we conduct hierarchical, agglomerative, binary elust ~ discovered in the image set. Each cluster root is guaranteed
ing. The result of this hierarchical clustering can be eas- to be a category by itself, because it has passed the KS-test
ily transformed into a particular categorization, givenea d  for being distinct from all others. Each category discodere
sired degree of cross-category resolvability (e.g., bygner is assigned a labet, and a vector)., which is the mean
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of the property vectorsg), associated with all subtrees why the categories are found in the test image. To this

contained within clustex. end, we use two benchmark datasets, and another newly
compiled one. Specifically, we use 40 categories from
4. Taxonomy of All Categories Discovered Caltech-101 [3] (including 435 faces, 800 motorbikes, 800

airplanes, 526 cars-rear), as well as 108 UIUC multiscale

This section presents Steps 4 and 5 of our approachcarimages. Each Caltech-101 image contains only a single,
(Sec. 1) aimed at organizing the clusters of similar subtree prominently featured object from the category. The Caltech
(described in Sec. 3) into a DAG, and thus obtaining the tax- cars-rear and the UIUC cars-side increase complexityesinc
onomy of the discovered categories. Each cluster containgnhe images contain multiple cars, which appear at differ-
the transitive closure of matched pairs of subtrees achess t ent scales, have low contrast with the textured background,
image set. Subtrees in one cluster may contain those in angn(d may be partially occluded. UIUC images also contain
other cluster. These subtree containment relationshim fr other frequent'y Occurring Categories (e_g_’ treesy blglﬂ),
the original segmentation trees can be directly extended tog|lowing us to test identifying multiple instances of multi
the clusters (i.e., categories). If a subtree in clustés con-  ple categories per image. However, the main deficiency of
tained within a larger subtree in cluster thenc, becomes  these benchmark sets is that their categories significantly
a child of Co. When subtrees iml are contained within differ in appearance and topo'ogy' and thus are not conve-
larger subtrees in a number of other clusters — the case ohjent for evaluating how well the algorithm resolves subtle
sharing a simpler category by many more complex cate-cross-category differences, and identifies subcategany sh
gories —c; may have more than one parent cluster. This caning. To address this issue, we have compiled a new dataset,
be represented by a directed acyclic graph (DAG), whosereferred to as Animals, containing 200 images of horses,
nodes are the categories and edges capture their paréht-chicows, camels, deer, sheep and goats (Fig. 4). This dataset is
relationships. Each category may have an arbitrary numbethe most challenging of the three, since each image contains
of child and parent links emanating from it. The property muyltiple instances of several very similar categories.(e.g
vectorap. of categoryc (explained in Sec. 3) is associated horses and deer), co-occurring in the images at different
with the noder in the DAG. scales, possibly partially occluded. Since the animals are

The image set may also contain categories that are moresimilar, they share a number of similar parts, which should
Complex than those at the hlghest level of the taxonomy Ob-be Captured by our model. The animals also have Category-
tained. One such type of a complex category may be definedspecific, discriminative subcategories (e.g., only deeeha
by simultaneous occurrence of some of the discovered catantlers), which allow for categorization, and thus showd b

egories in the images (house front in Fig. 1). Such a co- |earned as non-shared subcategories in the taxonomy.
occurrence category appears as a forest of disjoint subtree

in the segmentation trees, and thus could not be discovered Multiple-category learning with the Caltech dataset is
by using the similarity measure defined in (3), since it ac- carried out on a training set that contains a total o
counts only for the substructure within given regions. Dis- target categories, whet€ca={4, 10,20, 30,40} but is un-
covering co-occurrence categories can be easily addresselgnown to the algorithm. WhefVca=4, we use the Caltech
by explicitly checking for simultaneous appearance of al- faces, motorbikes, airplanes, and cars-rear. Fgg>10,
ready discovered categories. In case such a category is dish addition to these four, the training set contains a mix
covered, we introduce a new node in the DAG, and connectof other randomly drawn categories. A number of im-
it as a parent to its co-occurring subcategories. The newlyagdes, Nga,=1{5, 10, 15,20, 25,30}, are randomly drawn
obtained co-occurrence categories are recursively checke Per each category, resulting in the training set of size
if they concurrently appear with any other categories. Nuain=Ncarx Ngai,.  From the remaining images, the test
Given a new image, all instances of the learned cate-Set is randomly drawn so that it containg3=50 images
gories present in the image are simultaneously identified byPer each target category, including the background cate-
matching the segmentation tree of the new image with the90ry, totalingNiese=(Necart 1) x N3 test images. People in

DAG, using the same algorithm as used in Sec. 2. the Caltech test and training images for faces are different
Varying N2l and Nac allows us to test the algorithm’s per-
5. Results formance against the number of available training samples,

and its sensitivity to the total number of categories to be

Experiments are designed to evaluate the algorithm'’s ca-learned. As for UIUC cars and Animals, the training sets
pability to: (i) extract the taxonomy from a given set of containNy.in={10,40} randomly drawn images from the
unlabeled training images; (ii) simultaneously detect; re entire dataset, respectively, while the remaining images a

ognize and segment all instances of the learned categoriesised for testing. Detection, recognition and segmentation

present in a test image; (iii) resolve small cross-categoryis performed simultaneously, by matching the learned DAG

differences; and (iv) provide a semantic explanation as to (i.e., taxonomy) with the test-image trees. Each experimen



in Proc. 11" IEEE International Conference on Computer Vision (ICCVip Be Janeiro, Brazil, October 2007

is repeated 10 times to estimate the average performance.
For quantitative evaluation, we define detection, seg-
mentation and recognition errors. We use manually delin-
eated outer contours of each category instance appearinL
in the test images as ground truth. Those matched sub-
trees in the test images whose similarity measure is Iarge

UIUC Sideview Cars

— Todorovic—Ahuja
—Leibe et al. no MDL

than a specified threshold are adjudged as detected o 0.7 :izguwsa:e;?;l
jects. The threshold is varied to plot the recall-precision 3 os —ours
curves, while for the purposes of showing specific re- e — 00l 02 03 04

sults in ta;]blesh algd _fl(\lgdu_res,hwi. uhse use the S|rrr1]|Iar|ty- Figure 2. UIUC cars: (left) Contours of detected objectsome-
measure threshold yielding the highésimeasure, where laid on the original. In addition to “cars” (red), the DAG enfes

F£2-PrecisiorRecall/ (PrecisionrRecal). Let the area  windows” (yellow), “park-meters” (green), “trees” (bliamong

that a matched subtree covers in the test imagd heand other categories.Nyain=10. (right) Recall-precision curves for
the ground-truth object area b¥,. Then, the matched sub-  UIUC cars. The comparison is with [14, 3, 7].

tree is said to be false positive (FP) d3’25<0.5. The

remaining cases are declared true positives (TP). Segmen-

tation error is defined as the raﬁ@%. The recogni-  Qualitative evaluation — Semantic Explanation:Fig. 5 il-

tion performance is evaluated 0n|y Ongthe TP’s as follows. lustrates a part the DAG learned over the training set shown
Each node in the DAG represents a cluster of subimagedn Fig. 4a. Specifically, the matched parts of a given testim-
from one learned category. For testing purposes, the mean2gde, showing a horse and five cows, depict the correspond-
ing of each learned category is assigned manua”y, by ob_ing DAG nodes. As can be seen, the rider and horse are
serving the majority of entries in the corresponding cluste Matched with a DAG node representing “rider-on-horse”
Thus, for example, if mostly faces are grouped in cluster ~ category, learned from the training images that do indeed
then category will mean faces. Then, recognition is done contain horseback riding scenes. This complex category is
by assigning to each TP this user-specified meaning of thefound, because its subcategories “rider” and “partialshbdr
matched node in the DAG, and if different from the ground are identified. Similarly, only four cows are detected, véher
truth (verified by visual inspection) the TP is declared er- the three are recognized as category “cow,” and one as
roneously recognized. Depending on specific training im- “spotted cow,” which is a co-occurrence category learned
ages in each experiment, a different number of categoriesfom frequent co-occurrences of disjoint cow parts. The
of varying complexities are discovered. For testing pur- DAG also provides an explanation that “horse” and “cow”
poses here, we focus only on labeled categories in the Cal-share learned subcategories “hind leg” and “muzzle,” and,
tech dataset (i.e., faces, motorbikes, etc.), cars in theoul ~ further down the taxonomy, “limbs.” We do detect and rec-
dataset, and the six animal categories in Animals. We will 0gnize “hind leg” of the occluded, leftmost cow, and do
call them target categories. Evaluation of other discavere Not confuse its contours with those of the occluding cow
categories (road, grass, sky, etc.) is omitted for brevity. in front. Such identification of subcategory instances can
Qualitative evaluation — SegmentationFigs. 2-5 demon- ~ P€ used in some applications with a higher level of super-
strate high accuracy in simultaneous object detection andVision for indicating the presence of partially visible par
segmentation on Caltech, UIUC and Animals images, for €Nt categories. Dogs appearing in the test image are not
the training sets containinyyan=1{40, 10, 40} images, re- detected, as they are not present in the tram_lng set, and
spectively. Detected instances of the target categories dethus are not learned. In Fig. 4b we also depict subcate-
clared TP’s are shown in Figs. 2, 3 and 5 by drawing their 90ries of each of the six target categongs, Whlch_ are npt
outer contours on the original image, and in Fig. 4 by mask- Shared among them. These subcategories are discrimina-
ing undetected image parts. Each TP in the figures is cor-tiveé, category-specific, and facilitate cross-categosphe
rectly recognized. Segmentation performance is good even_abnny. T_hese results suggests that the discovered targno

in cases when object boundaries are jagged and blurredS meaningful.

(e.g., motorbikes in Fig. 3), when objects are partially oc- Quantitative evaluation: Averages of object detection,
cluded (e.g., faces in Fig. 3), and when objects from the segmentation, and recognition errors are summarized in Ta-
same category occlude each other, forming a complex re-ble 1. In comparison with [14], we outperform their 9.3%
gion topology with low-intensity contrasts (e.g., smaldlan segmentation error obtained for the simpler, single-scale
large camel in Fig. 4). Objects that are not detected, for theUIUC cars images, and have similar performance to their
most part, have low intensity contrasts with the surround, 6.8% segmentation error on Caltech faces (within a standard
and thus do not form category-characteristic subtreesein th deviation). Also, our segmentation error is close to 6.0% re
segmentation tree that can be matched with the DAG. ported in [17] for a much simpler dataset of sideview cars,
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Caltech-101: 4 Categories Caltech-101

max recog. error

0 S A B |

Recog. error (%)
w
o

et H ~SPM
min recog. error —ours
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--Recall 10
—Precision
. 0
5 1 25 30 4
number of training |mages per category

il = 2 ey
Figure 3. Caltech-101: (left) Contours of detected objactsoverlaid on the originalNca=4 and N&.=10. (right) The plots of recall-
precision rates against the number of tralnlng images ftegogy for Nca=4, and recognition errors versus the number of randomly drawn
categories present in the training set /6§, =10. The comparison is with the spatial pyramid matching (SPpraach [6].

number ogcategorlesoN

contain multiple instances of very similar anlmals posing
challenge for cross-category resolvability.
camels COWS sheep deer goats horses

JE>
&3&‘9{{ 4

(b) Learned discriminative, non-shared subcategorieshef t
target categories. (c) Masked out are the image parts not occupied by detecstahices of target categories.

Figure 4. Animals: detection, recognition and segmematiothe test images shown in (c; rows 1,3) using the DAG lehonethe training
images shown in (a). The DAG successfully resolves the suliffierences among the animals, since it learns the sugmags of each of
these six that are not shared, namely: camel's hump and beats udder and head, deer’s antlers, goat’s beard and Hoorse’s reins
and mane; shown in (b) are the parts of the testimages ingtptdt matched with the non-shared DAG nodes.

as compared to the UIUC multiscale dataset we use. Oursize of the training set/{($a. >20 for Nca—4 Caltech cat-
recall and precision rates for the Caltech faces are sitailar egories). Finally, we plot the recognition error versus the
those of [14], reporting recall 84.6% and precision 78.2%, number of categories present in the training set, randomly
but they learn “faces” as a single category, while we simul- selected from the Caltech database, in Fig. 3. These results
taneously leariVqa=4 categories. Recall-precision curves are compared against the best classifier on Caltech-101 that
over the UIUC cars are compared with those of [14, 3, 7] in uses spatial pyramid matching (SPM) [6].

Fig. 2. Despite the fact that most of these methods use simParameters and Run-time: Since the entries in region
pler and more forgiving evaluation metrics (e.g., bounding property vectorp, are chosen to represent distinct char-
boxes containing detected objects), our detection rates ca acteristics of regions, we sét=1/|1),|, where|v,| is the

be seen to be very close to the state of the art. For the Ca'-number of components ig,. The Computation time of
tech faces, motorbikes, airplanes and cars-rear, we as$o pl our training (steps presented in Sec. 2, 3, and 4) for the 40
recall-precision rates against the number of training iesag  Caltech training images took 4.5 hours on a 2.4GHz, 2GB
per category in Fig. 3. As the training set becomes larger,RAM PC. Matching the DAG model with the test-image
we get only modest improvements after reaching a certainsegmentation tree takes approximately 10-30s, depending
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Faces Motorbikes Alrplanes Cars rear UTUC cars side Horses Cows Deer Sheep Goats Camels
Recall % 88.617.3 80.1E£3.5 84.518.2 82.61+12.3 87.616.9 78.9+112.3 75.6114.8 84.315.9 78.2110.4 72.1£9.5 86.618.1
Precision % 78.1E15.8 87.613.8 87.1F11.4 78.6E11.3 81.616.4 82.8E7.5 79.9E£11.7 82.2F14.9 78.1E7.2 78.815.3 86.2E7.2
Seg. error % 9.7£6.5 16.6£6.9 16.3£9.5 19.7+14.3 8.513.4 16.1£7.3 18.1+4.2 12.2+7.24 25.918.2 21.3F11.2 12.1+4.2
Rec. error % 6.414.6 7T.7TET7.3 4.7E4.5 8.614.8 4.7£2.8 8.613.2 7.2F+4.1 9.2+2.4 9.2+6.1 15.9+6.4 3.6£4.9

Table 1. Average recall, precision, segmentation, andgr&tion error (in %) on the Caltech, UIUC, and Animals datader the highest

F-measure; for Caltech-1Q¥ca=4,

-~

s T3 /m“\

Figure 5. A part of the taxonomy of animals learned over thm#r

==
-4
)

ing images shown in Fig. 4. Contours of detected objects\ae o
laid on the original. Segments represent the matches of #& D

(2]

(3]

(4]

(5]
(6]

(7]

(8]

9]

nodes with the corresponding parts of the test image. The DAG
learned that cows and horses share hind legs and muzzlds, whi

their respective non-shared subcategories are horns isd ta

on the number of nodes in these graphs.

6. Conclusions

[10]

[11]

[12]

We have proposed the problem of simultaneous learning
of multiple visual categories present in an arbitrary image
set, and their hierarchical relationships or taxonomy. Our [13]

solution yields state-of-the-art recognition and segment

tion of all instances of multiple categories present in & tes

image. Moreover, a semantic explanation of each categor

y[14]

found is provided in terms of the presence of its constituent

subcategories.
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