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Abstract

We formulate the problem of dynamic texture synthesis as a nonlinear man-
ifold learning and traversing problem. We characterize dynamic textures as
the temporal changes in spectral parameters of image sequences. For contin-
uous changes of such parameters, it is commonly assumed that all these pa-
rameters lie on or close to a low-dimensional manifold embedded in the origi-
nal configuration space. For complex dynamic data, the manifolds are usually
nonlinear and we propose to use a mixture of linear subspaces to model a non-
linear manifold. These locally linear subspaces are further aligned within a
global coordinate system. With the nonlinear manifold being globally param-
eterized, we overcome motion discontinuity problems encountered in switch-
ing linear models and dynamics. We present a nonparametric method to de-
scribe the complex dynamics of data sequences on the manifold. We also
apply such approach to dynamic spatial parameters such as motion capture
data. The experimental results suggest that our approach is able to synthesize
smooth, complex dynamic textures and human motions, and has potential
applications to other dynamic data synthesis problems.

1 Introduction

In this paper, we focus on complex temporal changes in spectral or spatial parameters of
objects or image sequences. There is a broad interest in modeling parameter changes of
different dynamic data. For example, dynamic texture analysis concerns temporal changes
in pixel intensities in an image sequence, and human motion analysis concerns temporal
changes of the configurations of human body parts. By complex dynamic data, we refer
to model parameters that have multi-modal distributions, which can be often seen in the
real world. For instances, a flapping flag may exhibit various distinguishable shapes with
changes in wind, and a person may hop, skip, jump, tiptoe, leap, etc. in a dancing se-
quence. In general, we are interested in developing an algorithm to model and synthesize
complex dynamic data.

In dynamic textures [13], also called temporal textures [14] or video textures [2],
the existing generative models have been generally limited to using a linear dynamical
system (LDS). Due to the large dimensionality of images, learning of dynamic textures
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is usually accomplished in two stages: principal component analysis (PCA) and autore-
gressive (AR) process, that is, finding observation matrix with noise model by PCA and
estimating system matrix with noise model of an AR model. These methods are able to
generate reasonable results for temporally stationary dynamic textures. Yuan et al. [20]
analyze the stability of the LDS and conclude that the LDS based methods produce good
synthesis results only for an oscillatory system. Although they improve results by employ-
ing a non-causal feedback-based LDS, the use of a single PCA model has its limitations
in modeling temporally non-stationary dynamic textures which are common in the real
world. Non-stationary dynamic textures contain different data modalities in their appear-
ance distribution, which can not be captured by a linear dimensionality reduction scheme
such as PCA. In the standard dynamic texture database [14], for instance, flapping flags
in the presence of wind exhibit large variance in shapes and appearances, and therefore a
more sophisticated appearance model is required for acceptable modeling and synthesis.

Note that there are existing works focusing on creating novel dynamic data without
understanding underlying generative processes of the data. In the case of videos, synthe-
sized results by such approaches [6, 11] usually have excellent image quality since they
reuse original images, in the expense of storing entire input data. In this paper, while we
choose to learn the intrinsic low-dimensional parameters of input data, we significantly
improve synthesized image quality of existing approaches along similar directions.

2 Related Work

Although using nonlinear component analysis is an intuitive extension of PCA for man-
ifold representation, modeling dynamics in nonlinear subspace is not straightforward.
There exist several methods for nonlinear dimensionality reduction. Methods of global
nonlinear projection (e.g. LLE [9], Isomap [16]) aim at preserving spatial relationships
among given samples, and map them into a global coordinate system of the intrinsic low-
dimensional subspace. These methods typically find the low-dimensional embeddings
from the observed data in the high-dimensional input space, and the mappings are not
reversible. Hence, even if a dynamics model can be learned and simulated in the low-
dimensional subspace, these algorithms cannot be applied to infer data in the original
space based on the low-dimensional representations. Methods of locally linear projection
(e.g. [3, 17]) characterize a nonlinear manifold by fitting multiple locally linear models.
Their mappings preserve information in the original space, so data can be reconstructed
given low-dimensional representations. However, each local model has its own mapping
between data and its corresponding linear subspace, resulting in different coordinate sys-
tems. For the lack of a single and coherent coordinate system, these methods are not
appropriate for continuous video or motion synthesis.

A general switching linear dynamical system (SLDS) [4] contains multiple linear sys-
tems and has a transition matrix indicating the likelihood of switching from one LDS
to another. There is no continuity constraint in the observed variable, which is a main
problem for continuous dynamic data synthesis. It is also difficult to learn a SLDS for
high-dimensional image data. Li et al. [8] modify SLDS by setting end constraints for
each LDS to ensure smooth transitions between local models for human motion capture
data. These end constraints represent transition points that connect different linear sub-
spaces. Synthesized motions have to go through these pre-selected transition points (i.e.
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fixed key frames) in order to correctly convert coordinate systems between subspaces,
which limits its descriptive capability for motion transitions.

Most recently, Gaussian process latent variable models (GPLVM) [7] and its exten-
sions have been applied to solve inverse kinematics in pose estimation [5] and human
tracking [18]. Notwithstanding the demonstrated success in these tasks, these methods
utilize gradient-based optimization techniques and therefore rely on smoothness con-
straints for good performance. That is, GPLVM-based methods tend to oversmooth the
discontinuities in the latent space where non-stationary temporal or spatial changes oc-
cur, and in turn the synthesized results may be less satisfactory. Another side effect is that
the kernel matrix grows as number of training samples increases, although this problem
is alleviated by the use of greedy approximation algorithms. An extension to Gaussian
process dynamical models (GPDM), however, has even more difficulty to deal with large
data sets [19].

Algorithms such as GPLVM, GPDM, SLDS, variational methods and our method are
guaranteed to reach only local optimum as they all use gradient decent or EM algorithms
to learn complex data sets. However, our model can be learned more efficiently as we
adopt a two-stage learning approach using [17] and [15]. On the other hand, other meth-
ods, such as GPLVM using a kernel function to model nonlinearity, have to solve highly
complicated optimization problems. Also, methods like GPDM have to save all original
input data, while our algorithm saves only low-dimensional representations of input data.

3 Our Approach

Our approach is conceptually illustrated in Figure 1. In the learning stage, we learn a
mixture of PCA models that best represents the entire input data sequence. These PCA
subspaces are then aligned into a global subspace within a maximum likelihood frame-
work. The input data are projected onto this global subspace to form a continuous tra-
jectory, and their projected coefficients are stored, not raw data. In the synthesis stage,
we pick an initial point, usually a projection of given data point, in the global subspace.
We synthesize data sequences by traversing in the global subspace, according to the local
dynamics of projected input data. For each pointg in the subspace, we find the most
probable PCA model associated with the point, and compute its mappingz in the selected
PCA subspace. This PCA model then generates a data point using the mappingz.
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Figure 1: Overview of our approach to learning and synthesis of a given motion sequence.
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3.1 Globally-Coordinated Nonlinear Manifold Representation

We characterize the nonlinear manifold by a mixture of linear subspaces. Earlier, we have
proposed an algorithm that learns a globally-coordinated nonlinear manifold from a tem-
poral data sequence, and apply it to tracking applications. In that paper, we have shown
superior manifold learning results to those without exploiting temporal relationships be-
tween data points. However, for the synthesis problem we are solving here, we find that
the subspace alignment algorithm proposed by Teh and Roweis [15] gives satisfactory
results as well. Due to the anonymous review policy and the limited space allowed for
this paper, we will use the subspace alignment algorithm in the following.

First, we use a mixture of probabilistic PCA model (MPPCA) [17] to capture com-
plex multi-modal data. MPPCA is formulated within a maximum likelihood framework
and its parameters can be estimated by an EM algorithm. Although MPPCA is guaran-
teed to reach only local optimum, empirically, in our dynamic texture experiments, this
learning algorithm converges to a good estimate of model parameters within15 iterations
with coarse data clustering. Since each local linear model has an independent coordinate
system, we globally parameterize all linear models by incorporating some topological
constraints to align them into a single coordinate system. These topological constraints
are similar to LLE [9]: preserving the same neighborhood structure between the high-
dimensional input space and the low-dimensional embedding.

For each high-dimensional data pointyn, we denote its nearest neighbors asym (m∈
Nn) and minimize

E (Y,W) = ∑
n
‖ yn− ∑

m∈Nn

wnmym ‖2 (1)

with respect toW subject to∑m∈Nn wnm = 1. The weightswnm are unique and can be
estimated by constrained least squares. These weights represent the locally linear rela-
tionships betweenyn and its neighbors. Accordingly, we define the same cost function in
the low-dimensional global subspace

E (G,W) = ∑
n
‖ gn− ∑

m∈Nn

wnmgm ‖2
(2)

with respect toG, wheregn is the intrinsic parameter ofyn in the global coordinate system.
By minimizing E (G,W), with additional translation constraint1N ∑ngn = 0 and rotation
and scale constraint1N ∑ngngT

n = I , the mappings between local linear models and the
global coordinate system can be optimally determined without local minima problems by
solving a generalized eigenvalue system [15].

Alternative algorithms for nonlinear mapping exist, for instance, the global coordina-
tion method [10] and the manifold charting algorithm [1]. However, it is very difficult to
obtain satisfactory mappings and model parameters using [10] as a variational approxima-
tion method is employed which suffers from serious local minima problems in practice.
Further, it requires good initialization to obtain good results. On the other hand, the al-
gorithm of manifold charting [1] is not ideal in the sense that the mapping between data
and its globally-coordinated subspace is pseudo-invertible and may suffer from numerical
instability. Consequently, we adopt a two-stage learning strategy described above.
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3.2 Nonparametric Dynamic Model

Once we learn the global representations for the input data, we derive a dynamical model
as shown in Figure 2(a). Compared to the LDS (Figure 2(b)), we replace the hidden state
variablex with global coordinateg, and the inference fromg to y is nonlinear through
the mixture model{s,z}. Contrasted to a general SLDS (Figure 2(c)), where it defines a
transition probabilityp(st |st−1) to select the local model, our method implicitly switches
models depending on stateg so the synthesized data is continuous. Different from the
constrained SLDS [8], where it switches model only at transition points (pre-determined
states) to avoid random switches like SLDS, our state variableg has no such constraints.

y t-1 y t+1y t

g t+1g t-1
g t

,z t+1s t+1,z t-1s t-1 ,z ts t

(a) Our model
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s ts t-1 s t+1

y t-1 y t+1y t

x t+1

(1)
x t-1

(1)
x t

(1)

x t+1

(m)
x t-1

(m)
x t

(m)

...

...

...
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Figure 2: The proposed dynamic model, LDS and SLDS.

The essential idea of our nonparametric dynamic model is to traverse along the learned
trajectory in the global subspace without drifting far away from it. Therefore, we sample
and learn motions captured in the input data sequence withspatial localityandtemporal
similarity constraints. Figure 3 helps to visualize our motion prediction process. We
denote the projections of the input data sequence asg with subscripts indicating temporal
indices. We also denote the current position in the globally-coordinated subspace asxt ,
conventionally representing the current state in dynamic models.

g i+1

g i

g i-1

g j+1

g j

x t

g j-1

x t-1

x t+1
gk

x't

Figure 3: An illustration of our nonparametric dynamics in the nonlinear manifold.

To advancext to xt+1, we first find the nearest neighbors ofxt among{g}. We prefer
using motions of these neighbors (spatial locality) while encouraging temporal smooth-
ness (temporal similarity). In Figure 3, althoughgi is closer toxt , we prefer using the
motion fromg j to g j+1 because the motion used to advanceg j−1 is more similar to that
of xt−1. In other words, our dynamic model takes the temporal and spatial similarity into
account. After advancing tox′t , we perturb it with noise for motion variations. However,
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Algorithm 1 The motion synthesis algorithm for globally-coordinated subspace.

1. Sampling neighbors: At xt , find its K nearest neighbors{gi}, i ∈Nt , with weightsW(1)
i ∼

N (xt ,σ2
h ).

2. Temporal smoothness: Compute the motion similarity betweenxt and eachgi :

cos(θi) =
〈dxt ,dgi〉√

〈dxt ,dxt〉〈dgi ,dgi〉
, (3)

wheredxt = xt −xt−1, dgi = gi −gi−1, and〈·, ·〉 denotes an inner product. Scale the motion

similarity toW(2)
i = exp(α(cos(θi)−1)) whereα is a constant.

3. Noise perturbation: Sample noise{v j} ∼N (0,σ2
p). For each(i, j) pair, we form position

candidates at timet +1:
x(i, j)
t+1 = xt +dgi+1 +v j . (4)

4. Drift prevention: Weigh each position candidate using Parzen window

p(x(i, j)
t+1 ) = W(1)

i W(2)
i ∑

k

ϕ(
x(i, j)
t+1 −gk

h
), (5)

whereh is the window width andϕ is the window function.

5. Normalization: Normalize weights so that∑i, j p(x(i, j)
t+1 ) = 1.

6. Prediction: Samplext+1 with the weightp(x(i, j)
t+1 ).

to avoid drifting away from the given projected trajectory, we favor sample noise values
that pullx′t toward given data (spatial locality). In Figure 3, we eventually obtain the next
positionxt+1 as the predicted state because it is close togk. This synthesis algorithm is
depicted in Algorithm 1. By using this algorithm, if we set the initial condition asx1 = g1

andx2 = g2, and letσh = σp = 0, we are able to reconstruct the input motion data.
Hundreds or even thousands of data points are still a sparse data set in the global

subspace, normally no larger than 20 dimensions in our experiments. As a result, we
speed up the sampling algorithm by ignoring outliers. For instance, if the current position
xt is closest to the examplegi , then we can take the nearest neighbors ofgi as the nearest
neighbors ofxt , which can be computed beforehand. In addition, in (5), we can drop the
summation operator and compute the window function using only the nearest neighbor
gk because whenh is small, the probability of the occurrence of additional examples is
very small. Hence, the synthesis can be performed in real time. On the other hand, the
closed-loop LDS (CLDS) method [20] is not an online synthesis algorithm.

Note that Markov Chain Monte Carlo (MCMC) or other sampling methods may be
substituted in our method but they are less efficient due to slow convergence problems.

4 Experiments

We apply the proposed method to synthesize dynamic textures and human motions, thereby
demonstrating it is able to model temporal changes in spectral or spatial parameters of ob-
jects and image sequences. The synthesized videos are available on our web site.
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4.1 Dynamic Texture Synthesis

For dynamic texture synthesis, the input data are raw image vectors. The image sequences
used in our experiment are taken from a commonly used temporal texture database [14].
Most image sequences in the database have resolutions of 170 by 115 and contain 120
to 150 frames. They include both temporally stationary and non-stationary dynamic tex-
tures. In the following, we compare synthesized videos using our method and the LDS
based method which is implemented by PCA with AR approach. The order of AR model
is automatically determined by Schwarz’s Bayesian criterion [12]. In the literature of dy-
namic texture synthesis, the-state-of-the-art approach [20] also uses a PCA model, but
with a more sophisticated dynamic model. We use up to three PPCAs for each mixture
model because the data sequences from the temporal texture database are short.

For stationary dynamic textures, we take a river sequence of120frames as an exam-
ple. We use a 20-dimensional PCA for the LDS method, and align two 20-dimensional
PPCA models into a 20-dimensional globally-coordinated subspace for our method. The
synthesis results in Figure 4 show that our method is able to produce high-quality images,
while the LDS method produces images with decreasing visual quality over time. Al-
though CLDS [20] can fix this problem for stationary dynamic textures, for non-stationary
dynamic textures, using a single PCA model results in significant loss of image quality
after dimensionality reduction and reconstruction, while a mixture model alleviates such
problem. The artifact is more serious when shape variations are significant (see Figure 5).

Synthesis results of two flag sequences using our method and the LDS approach are
compared in Figure 6. Due to fast motion and dramatic shape variations, there is still some
small artifact around the flag by our method (Figure 6(c)), although when being displayed
as a movie, this artifact looks like motion blur and much less noticeable than the LDS
approach. It all thanks to our local linear models that confine the artifact to be local, in
contrast to the videos synthesized by the LDS method and other PCA based approaches.

Figure 7 shows the projected trajectories of the three dynamic texture sequences in the
respective globally-coordinated subspace. Note that the input sequence has to form loops
so that our synthesized sequence can be longer than the original video sequence, which
holds true for most approaches in video or motion synthesis. Additional images can be
interpolated and inserted between two similar but non-consecutive input image frames to
create new image paths and enrich synthesis results.

Several sequences are synthesized using the proposed approach and existing methods.
Notice that the synthesized sequences by our methods are smooth and crisp whereas the
results using [13] or AR models have significant blurry or jittery artifacts. These results
would further confirm that our method outperforms the existing methods.

4.2 Human Motion Synthesis

The inputs for human motion synthesis are 60-dimensional motion capture data for 20
body parts of a hierarchical kinematic model. All test sequences are between 200 and 500
frames. We use a mixture of up to three 12-dimensional PPCA models for each sequence.
Other than thebow sequence that has no repeated motion, we synthesize 1,000 frames
for all other input data. A few frames of each rendered motion sequence are shown in
the Figure 8. More synthesized videos are available on our web site. All these sequences
contain easily distinguishable poses. These experimental results show that our method is
able to produce smooth and complex human motions.
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(a) Our method.

(b) LDS approach.

Figure 4: Selected images from synthesized river sequences during extrapolation using
(a) a mixture of two PPCA models with global coordination, and (b) LDS approach.

(a) Original image. (b) PCA. (c) Our method.

Figure 5: An image from a flag sequence reconstructed by PCA and our method.

5 Conclusions

In this paper, we propose a new approach to learning and synthesizing multi-modal, com-
plex dynamic data. We have shown that smooth and realistic synthesis can be accom-
plished by mixtures of linear subspace models with global coordination. Although both
using mixtures of linear models, unlike SLDS, our model ensures continuous motion
and does not require constraints for local model transitions. We have demonstrated our
approach in two classes of motions: holistic textured motions and articulated human mo-
tions. In particular, compared to the existing works in dynamic texture analysis, our
method enhances the visual quality in synthesis of temporally stationary dynamic tex-
tures, and is able to model and synthesize non-stationary dynamic textures with fast and
large shape variations which have not been accomplished in the literature.
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Figure 7: The 20D trajectories of three dynamic texture sequences projected onto the first
2D of the respective globally-coordinated subspace.

(a) Selected images from our synthesizedbowsequence.

(b) Selected images from our synthesizedballetsequence.

Figure 8: Synthesized human motion sequences by our method.
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