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Abstract

We consider the problem of simultaneously estimating sur-
face texture map and the pseudo illumination, which is the
combined effect of illumination and surface BRDF, given
the object geometry and its calibrated images taken from
multiple viewpoints. We derive the bilinear reflection equa-
tion that relates the texture albedos and the pseudo illumi-
nation to the surface reflectance. The reflection equation
takes into account the diffuse/specular reflection, and cast-
ing shadows. The ambiguities in estimations are resolved
by grouping surface points of the same albedo into a single
cluster and performing the estimation for the cluster jointly.
A modified mean shift color clustering algorithm is used for
this purpose. We estimate the pseudo illumination, the dif-
fuse and specular albedos of each cluster by solving itera-
tively a system of bilinear equations. Experimental results
on synthetic and real objects are provided.

1. Introduction

Reconstructing the illumination and/or surface reflectance
properties from images is also known as the inverse render-
ing problem. In this paper, we propose a multi-view based
method to the inverse rendering problem. We show that
given the images of the object from multiple viewpoints and
the object geometry, we can reconstruct the pseudo illumi-
nation, which is the joint effect of illumination and surface
Bidirectional Reflectance Distribution Function (BRDF), as
well as the surface diffuse and specular texture map.

We assume that the object is under a fixed distant il-
lumination and its spatially varying Bidirectional Texture
Function (BTF) can be decomposed as a base BRDF mul-
tiplied by a diffuse and specular texture map. Due to the
ill-poseness of the problem, we only estimate the pseudo il-
lumination instead of the actual illumination. Our proposed
algorithm does not assume uniform surface albedo, and can
handle complex illumination and self shadows. Our major
contributions include:

a. We derive a bilinear reflection equation that relates the
surface reflectance to the diffuse/specular texture albedos
and the pseudo illumination.

b. We develop a texture map and pseudo illumination
estimation algorithm by solving iteratively the reflection
equations. Color space clustering is used to identify surface
patches that have the same albedo to remove ambiguities.

Over the years many researches have been proposed
to solve the inverse rendering problems. One of the ma-
jor categories is based on the manipulation of illumina-
tion [1, 2, 3]. By controlling different known illumination
settings, reliable surface reflectance properties can be ex-
tracted. However, these methods are often restricted to a
highly controlled laboratory environment.

Instead of varying illumination, one can also varying the
camera positions to solve the same problem [4, 5]. The ad-
vantages of using such a multi-view based method is that it
does not require the control of lighting. Therefore it can be
applied in less restricted situations, such as outdoors. In[5],
Ramamoorthi and Hanrahan propose a signal processing
framework and discuss the conditioning of different inverse
rendering problems in a multi-view setup. They mostly fo-
cuse on objects with homogeneous BRDFs. Due to the
ambiguity in estimation, they also assume the knowledge
of illumination when solving for the spatially varying sur-
face texture map. Zhang et al. [6] assume a directional
light model, and estimate the illumination and diffuse tex-
ture map as well as the surface shape by moving the object
with respect to camera and light source. Their approach
actually combines the advantages of the photometric stereo
methods and the multi-view methods.

Estimating illumination itself is an important problem.
An object with uniform or piecewise uniform albedo is usu-
ally used to assist the estimation of a complex illuminations
[5]. Intensity variations due to shadows of a known object
on a uniform or known texture surface can also be used to
estimate illumination [7, 8].

Estimating illumination and/or surface texture map given
only the geometry and the observed images is ambiguous.
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Figure 1: The viewing direction~e, surface normal~n, light
direction~l and the reflected viewing direction~r

This has been observed in several previous researches [2,
3, 5, 9]. To make the problem solvable, different type of
clustering methods are suggested. In this paper, we use a
modified mean shift clustering algorithm, which is specially
designed for a fixed unknown illumination, to group surface
patches that has the same reflectance property.

This paper is organized as follows: Section 2 derives our
simplified reflection equation for texture map and pseudo il-
lumination on a surface with both diffuse and specular tex-
tures. Section 3 presents our texture map and pseudo illumi-
nation estimation algorithm. Section 4 describes two exper-
iments and presents estimation results. Section 5 presents
conclusions and future work.

2. Reflection Equation for Texture
Albedo and Pseudo Illumination

We adopt the distant illumination model and assume that
the surface BTF is the product of a texture map and a single
BRDF. By merging the effects of BRDF and illumination
into the pseudo illumination, we can derive the simplified
bilinear reflection equation.

2.1. The Diffuse + Mirror Reflection Equation
Under the distant illumination assumption, the incoming il-
lumination is a 2D spherical functionL(Θ), whereΘ =
(θ, φ) are the spherical coordinates. Given the illumination
L, the reflection of a surface point depends on the surface
normal~n and viewing direction~e. It can be decomposed
into the diffuse partRd and the specular partRs:

R(~n,~e) = Rd(~n,~e) + Rs(~n,~e) (1)

Rd can be computed using the lambertian law:

Rd(~n,~e) =
td
π

∫

Γ

L(Θ)(~l(Θ) · ~n)dΘ (2)

wheretd is the diffuse albedo,~n is the surface normal,Γ
is the upper hemisphere around the normal and~l(Θ) is the
unit vector of illumination direction.

For Rs, parametric models such as Phong, Cook-
Torrance, or isotropic Ward model can be used. However,
Ramamoorthi and Hanrahan [5] have shown that it is in-
herently ambiguous to recover illumination and the Phong

exponent (or the equivalent surface roughness parameter in
Cook-Torrance model and isotropic Ward model), which
controls the BRDF’s “blurring” to the illumination. In ap-
plications where the separation of BRDF and illumination
is not necessary, we can replace them with the pseudo illu-
mination, which is the joint effect of illumination and the
BRDF roughness, and assume specular reflection is a per-
fect mirror. The pseudo illumination can be viewed as a
low pass filtered version of the original illumination. This
technique is frequently used in the environment map based
rendering. We can then write the specular reflectance as:

Rs(~n,~e) = tsL̃(Θr) (3)

whereL̃ is the pseudo illumination,ts is the specular albedo
andΘr are the spherical coordinates of the reflected view-
ing direction~r (mirror image of the viewing direction) in
Fig. 1. In this paper, we will only discuss the estimation
of this pseudo illumination. The actual illumination can be
estimated using a separate post-processing step if needed.

As shown in [10], most illumination energy that can af-
fect the lambertian component of the reflectance is in the
first 9 spherical harmonics. Therefore, we can replace the
illumination L(Θ) when computing the diffuse component
(Eq. 2) with the pseudo illuminatioñL(Θ), as long as it is
has higher frequencies than the first 9 spherical harmonics.
After substitute Eq. (2) and (3) into (1), we get:

R(~n,~e) =
td
π

∫

Γ

L̃(Θ)(~l · ~n)dΘ + tsL̃(Θr) (4)

To model the local illumination variations caused by
self-shadows, we use a shadow functions(Θ):

s(Θ) =

{

0, p is in shadow cast by light Θ
1, p is not in shadow cast by light Θ

(5)

The shadow function can be integrated into Eq. (4) as

R(~n,~e) =
td
π

∫

Γ

L̃(Θ)s(Θ)(~l ·~n)dΘ+ tsL̃(Θr)s(Θr) (6)

In this formulation, we do not consider any inter-reflection
effect in this paper. Also, due to the use of pseudo illumina-
tion instead of the actual illumination, we might lose sharp
shadow boundaries when using Eq. (6).

2.2. Parameterizing the Texture Map and
Pseudo Illumination

The shadow function in Eq. (6) is known given the object
geometry. The observed surface reflection color in Eq. (6)
can also be computed by projecting a point on the surface
to the calibrated images while taking into account the self-
occlusion. To represent the pseudo illumination, we decom-
pose it using spherical harmonics:

L̃(Θ) =

NL
∑

l=0

l
∑

m=−l

hlmYlm(Θ) (7)



whereNL is the maximum order of harmonic series we use,
hlm are the spherical harmonic coefficients andYlm are the
real basis functions.

We also tesselate the object surface using a triangular
mesh and associate uniform diffuse and specular texture
albedos within each triangle. Substitute Eq. (7) into (6)
and exchange the summation and integration, we get:

R(i)(~e) = t
(i)
d

∑

m,l

hmlC
(i)
ml + t(i)s

∑

m,l

hmlD
(i)
ml(~r) (8)

whereC
(i)
ml are the diffuse coefficients andD(i)

ml(~r) are the
specular coefficients:

C
(i)
ml =

1

π

∫

Γ

s(i)(Θ)Yml(Θ)(~l · ~n) dΘ (9)

D
(i)
ml(~r) = Yml(Θr)s

(i)(Θr) (10)

Equation (8) can also be written in a matrix product form:

R(i)(~e) = (t(i))T ∗A
(i)(~r) ∗ h (11)

Where t(i) = [t
(i)
d t

(i)
s ]T is the texture vector,h =

[...hml...]
T is the illumination vector, and

A
(i)(~r) =

[

... C
(i)
ml ...

... D
(i)
ml(~r) ...

]

(12)

is the reflection coefficient matrix. Eq. (11) becomes a bi-
linear equation int(i) andh. Each surface triangle observed
from a viewpoint gives one such bilinear equation. Estimat-
ing the texture map and the pseudo illumination amounts to
solving a system of such bilinear equations.

It is known that for diffuse objects estimating both il-
lumination and texture using only images as input is not
well-posed. There are more unknowns than independent
equations, which results in ambiguities in the estimation.
Similar ambiguity exists in the case of a surface with both
diffuse and specular component. To overcome these am-
biguities, we will group the under-constrained triangles to
solve a single system of bilinear equations.

3. Texture Map and Pseudo Illumina-
tion Estimation Algorithm

A schematic of our algorithm is shown in Fig. 2. Our input
is a set of calibrated images of the object and its 3D shape.
Based on the object geometry, we are able to compute the
reflection matrix in Eq. (11) for each surface triangle. A
modified mean shift color clustering algorithm is used to
group triangles into clusters to reduce the estimation am-
biguity. Based on the clustering information, our bilinear
system solver iteratively solve for the texture map and the
pseudo illumination. The estimated pseudo illumination is

������������	
����
�����	�� ������������
�������
 �
�������
�	�����	��
����
�
����������	����������� ��������	���� ��!�����
 �	���������	������
�	�����	��
����
"���
����#
������$��"���
����%	����

����
�����	
���
��
��$���	����������

Figure 2: Flow diagram of our texture map and pseudo illu-
mination estimation algorithm

sent back to the clustering algorithm to refine the partition
of triangles. The result is used to start another iteration of
the bilinear system solver. The following subsections will
discuss the three major blocks in the diagram.

3.1. Compute the Reflection Matrix
The diffuse and specular coefficients of the reflection matrix
in (9) and (10) encode the shading and shadowing effects of
different spherical harmonic components to each triangle.
However, to compute these coefficients exactly based on the
scene geometry is difficult. One central problem is to com-
pute the shadow functions(i)(Θ). We evaluate this function
only on a set of sample directions uniformly distributed on
the unit shpere. For each sample direction, we use OpenGL
to render the surface mesh orthographically onto a plane
perpendicular to that direction. The shadow function is set
to 1 for all the visible triangles in that direction, and set to
0 for the rest of the triangles. In computing the specular
coefficientD(i)

ml(~r), we use the value of the closest sample
direction toΘr to approximates(i)(Θr). For the diffuse co-
efficientC(i)

ml, we build another triangular mesh from these
sample directions on the unit sphere and compute the ap-
proximate integration on the mesh surface using:

C
(i)
ml =

∑

f

af ·
1

3

3
∑

k=1

s(i)(Θfk)Yml(Θfk)(~lfk ·~n
(i)) (13)

whereaf is the area of thefth triangle on the unit sphere
mesh andΘfk is one of its three vertices. A spherical mesh
with 2324 triangles and 1164 sample directions are used in
our experiments. We use spherical harmonics up to the10th

order to represent the illumination, which result in an121×
1 illumination vectorh and the reflection matrixA(i)(~r) is
of size2× 121.

3.2. Mean Shift Based Color Space Clustering
We use a modified mean shift algorithm [11] to identify
clusters of similar diffuse color. As noted in [9], the diffuse
colors of a single material have only 1-D intensity varia-
tions under a fixed single-color illumination. These colors
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Figure 3: Color space clustering results. (a) Mesh trian-
gles shown using their median colors extracted from multi-
ple views. (b) Mean shift based color clustering result using
the angular distance (6 clusters). (c) Clustering result using
the euclidean distance after illumination information is es-
timated (23 clusters). In (b) and (c) each cluster is coded
with a unique color.

lie along a line in RGB space that passes through the origin.
The angle between two RGB color vectorsv1 andv2 can be
used as the illumination invariant distance measure.

d1(va, vb) = cos−1(va · vb) (14)

According to the mean shift algorithm, an initial color
samplev0 can be iteratively updated and will converge to
one of the peaks of the underlying kernel density function.
We adopt the gaussian kernel and use this update equation:

vj+1 =

∑N

i=1 ci · exp
[

− (d1(vj , ci)/σ)
2
]

∑N

i=1 exp
[

− (d1(vj , ci)/σ)
2
] (15)

Whereci is the diffuse color ofith triangle andσ is the
bandwidth parameter. Note that our distance measure is in-
variant to the norm of the color vectorvj andci, and we
should normalizevj andci to unit length in each iteration.
The diffuse color of each triangle (ci) is estimated by choos-
ing the median value of its color observed from all the visi-
ble viewpoints (Fig. 3(a)).

We build a 3D histogram of the diffuse colors and the
center of each nonzero bin is used as an initial sample (v0) to
compute the converging density peak. Each triangle is then
assigned to the nearest peak based on the angular distance
d1 in (14). Fig. 3 (b) shows a color clustering result from
one of our experiments with a fish model.Each cluster is
coded with a different color in the figure.

The above method does not distinguish those triangles
with the same diffuse color but different albedo values. This
can be seen by comparing Fig. 3 (a) and (b) where the black
lines are merged with the yellow areas because their angu-
lar distances are very small according to (14). To deal with
these cases, we start a new round of clustering after we get
an estimation of the illumination from the bilinear system

solver. The diffuse colors are divided by their ”diffuse il-
lumination” (

∑

m,l hmlC
(i)
ml in Eq. 8) to get the corrected

diffuse albedos. We then use the same clustering algorithm
on these corrected albedos with the exception that the an-
gular distance is replaced by the euclidean distance in RGB
space:

d2(va, vb) = ||va − vb|| (16)

Actually we only need to perform the new clustering within
each cluster obtained from the angular distance, to further
partition the clusters. This saves a lot of computation and
increases the convergence rate. The new clusters are send to
the bilinear system solver for another iteration of estimation
until the clustering result converges. Fig. 3(c) shows the
final clustering result with 23 clusters.

3.3. The Bilinear System Solver
Given the reflection matrix, the observed color value
R(i)(~e) of the ith triangle from a viewpoint gives a bilin-
ear equation (Eq. 11) with unknownt(i) andh. Equations
from the same triangle imaged from different viewpoints
and triangles that belong to the same cluster can be merged
together, which gives a system of bilinear equations:







· · ·

R(i)(~ej) = (t(k))T ∗A
(i)(~rj) ∗ h

· · ·
(17)

i ∈ Ck, j = 1, 2, 3 · · ·

whereCk is the set of triangles belong to thekth cluster,
andj is the camera view index.

There is no closed form solution to the least squares
problem of such an over-determined bilinear system, but we
can derive the normal equations of this system, and solved
them iteratively [12]. This is equivalent to iterating between
fixing one set of parameters (illumination vectorh or tex-
ture vectortCk ) and solving a linear least squares problem
for the other.

4. Experimental Results
We performed two experiments to test our algorithm. The
first experiment shows that there is no ambiguity in estimat-
ing an arbitrary pseudo illumination and a specular texture
map. The second experiment shows the advantage of clus-
tering the surface triangles into distinct albedo clustersin
the joint estimation.

4.1. Texture Map and Pseudo Illumination Es-
timation for Specular Only Objects

In this experiment, we try to estimate the specular texture
map (diffuse component assumed to be 0) and the pseudo
illumination from a set of multiple view images of a sphere.
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Figure 5: Estimation results for the earth data set. (a) Estimated pseudo illumination as latitude[0, π]-longitude[0, 2π] plot
(b) Ground truth filtered illumination after DC normalized to 1 (c) Estimated specular texture map (d) Ground truth specular
texture map (e) Histogram of the ratio between estimated specular albeo to the ground truth albedo for all the triangles.

Figure 4: Light probe data used for synthesis (left) and 2 of
the 24 synthesized images of the earth data set.

We render 24 different images of the sphere with a pure
specular BRDF modulated by a texture map of the earth
using the Phong model. The Phong exponent used is 10
for the entire sphere. The illumination is a set of 40 direc-
tional sources obtained by clustering the light probe data
(http://www.debevec.org/Probes/). These light sources are
converted to white color during rendering. Fig. 4 shows the
light probe image and two of the synthesized images.

Fig. 5 shows the estimated texture map and pseudo illu-
mination after 20 iterations of our algorithm. The ground
truth illumination, after it is filtered by the same Phong
BRDF and normalized to have unit DC component, is
shown in Fig. 5(b). The ground truth specular texture map
is in Fig. 5(d). We also plot the histogram of the ratios be-
tween estimated and ground truth specular albedo of each
triangle in Fig. 5(e).

The histogram of the albedo ratios shows a distribution
with a sharp peak around 1, and the estimated pseudo il-
lumination closely match the filtered ground truth illumi-
nation. The estimated texture map appears a little blurred,
mostly due to the truncation errors in the spherical harmonic
expansion of the illumination, and the approximation in the
reflection equation. This experiment shows that Eq. (11)
can be used to extract the arbitrary specular texture map and
pseudo illumination without ambiguity.

Figure 6: 3 of the 25 input images of the fish data set.

4.2. Texture Map and Pseudo Illumination Es-
timation for Sparsely Colored Objects

We apply our estimation algorithm to a set of real images of
a ceramic fish captured from multiple views. This data set is
also used in [13] for surface light field extraction and com-
pression. We have the camera calibration information and
the scene geometry was obtained by structured light range
scan. The original data set has more than 600 images and
we select 25 of them that are distributed around the object.
Fig. 6 shows three of the input images we used.

The median color rendered fish model and the clustering
results have already been shown in Fig. 3. The diffuse and
specular albedos of the clusters as well as the pseudo illumi-
nation are estimated by solving iteratively the bilinear sys-
tem for each cluster. Fig. 7 shows the result of the estimated
pseudo illumination and the diffuse and specular albedo
maps after 15 bilinear solver iterations and 2 clustering it-
erations. The actual illumination is composed of two point
light sources, which is clearly shown in the estimated illu-
mination distribution. The recovered texture maps where
each triangle is estimated independently is shown in Fig.
7(d,e) for comparison. We can see clearly the effect of
estimation ambiguity in the results. The specular texture
map shows strong specular component only at those places
where highlights are present in the observed images, and
the tail of the fish has very bright diffuse albedos, which is
caused by the specular highlight.
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Figure 7: Estimation results for the fish data set. (a) Estimated pseudo illumination (b) Estimated diffuse texture map (c)
Estimated specular texture map (d) Estimated diffuse texture map without color clustering (e) Estimated specular texture map
without color clustering.

Figure 8: Ground truth image in a novel view (left), synthe-
sized image using the pseudo illumination and texture map
(middle), and synthesized image from the same view but
with illumination rotated by 40 degrees vertically (right).

The estimated pseudo illumination and texture map al-
low us to render novel views, and modify the illumination
or geometry to create animations. Fig. 8 shows the syn-
thesized image of the fish model from a novel view along
with the ground truth image. One problem of the image is
the blurring of the specular highlights. Again this might be
due to the approximation in our reflection equation, the 3D
shape error, the truncation error of the spherical harmon-
ics, and the incorrect clustering. We also render an image
with the illumination rotated around the z-axis. Our work
is different from [13], where only specular components are
adjusted to match the new illumination. We separate the
pseudo illumination and the diffuse/specular texture map
and can synthesize various shading and shadowing effects.

5. Conclusion and future work

We have considered the problem of simultaneously estimat-
ing the surface texture map and the pseudo illumination us-
ing a bilinear reflection equation. The reflection equation
takes into account diffuse and specular reflection, and cast-
ing shadows. We use a modified mean shift color clustering
algorithm to remove estimation ambiguities. We are go-
ing to investigate how to use the estimated texture map and
pseudo illumination to improve the shape estimation.
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