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Abstract. We consider the problem of estimating the 3D shape and
reflectance properties of an object made of a single material from a
calibrated set of multiple views. To model reflectance, we propose a
View Independent Reflectance Map (VIRM) and derive it from Torrance-
Sparrow BRDF model. Reflectance estimation then amounts to estimat-
ing VIRM parameters. We represent object shape using surface trian-
gulation. We pose the estimation problem as one of minimizing cost of
matching input images, and the images synthesized using shape and re-
flectance estimates. We show that by enforcing a constant value of VIRM
as a global constraint, we can minimize the matching cost function by
iterating between VIRM and shape estimation. Experiment results on
both synthetic and real objects show that our algorithm is effective in re-
covering the 3D shape as well as non-lambertian reflectance information.
Our algorithm does not require that light sources be known or calibrated
using special objects, thus making it more flexible than other photomet-
ric stereo or shape from shading methods. The estimated VIRM can be
used to synthesize views of other objects.

1 Introduction

Many multiple-view algorithms have been proposed over the years for 3D recon-
struction. These algorithms can be generally classified into image centered or
object/scene centered. Image centered algorithms [1] first search for pixel cor-
respondences followed by triangulation. Object/scene centered approaches are
another category that has been explored recently [2,3]. A model of the object
or scene is built and a consistency function is defined over the input images;
maximizing the function achieves a 3D model that is most consistent with all
the input views. In each approach, objects are frequently assumed to have Lam-
bertian reflectance to facilitate finding correspondences. One exception is the
radiance tensor field introduced by Jin, et al [3]. They propose a rank constraint
of radiance tensor to recover the 3D shape. This is essentially a local reflectance
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constraint to model both lambertian and non-lambertian objects. However, con-
structing the radiance tensor requires that every scene point be seen by a sub-
stantial number of cameras. In addition, the estimates obtained by most of these
algorithms are confined to individual pixels and they usually cannot recover fine
details of the shape, e.g., those encoded by shading.

Shape from shading algorithms, on the other hand, have the potential to
recover greater details about surface shape, e.g., surface normal changes from
image shading. However, shape from shading algorithms are usually developed
for constrained environments, such as single material objects, lambertian re-
flectance, single viewpoint, known or very simple light source, orthographic pro-
jection, and absence of shadows and interreflections. Zhang, et al.[4] present a
recent survey of shape from shading methods. Samaras, et al.[5] propose to in-
corporate shape from shading method into multiple-view reconstruction. They
consider lambertian objects and recover piece-wise constant albedo as well as sur-
face shape. In their method, specularities are detected and removed. Although,
for lambertian objects complex lighting can be well modeled locally using a sin-
gle point light source, this is not the case for specular objects. Hertzmann and
Seitz [6] use a calibration sphere together with the object to obtain a reflectance
map that can be used to recover the shape. Their approach works with a single
view and can deal with multiple non-lambertian materials as well as unknown
lighting; it however requires placement of calibration objects in the scene and
change of lighting.

The approach we present in this paper is object centered and extends the
work on shape from shading to allow non-lambertian surface reflectance, un-
controlled lighting, and the use of multiple views. We focus on single material
objects, and assume that light sources are distant and there are no shadows
or interreflection effects. Our approach does not require the knowledge of light
sources or light calibration tools. In fact, the object itself serves as the cali-
bration source. We show that by imposing a global lighting constraint, we can
recover the 3D shape of the object, as well as a view-independent reflectance
map (VIRM) which allows us to render from any view point the same or any
other object, made of the same material and under the same lighting.

This paper is organized as follows: Section 2 formulates the problem as a
minimization problem. Section 3 derives the VIRM. Section 4 presents our es-
timation algorithms. Experimental results on both synthetic and real data are
given in Section 5. Section 6 presents conclusions and extensions.

2 Problem Formulation

Our objective is to reconstruct the 3D shape and reflectance information from
multiple images of an object, given images of the object from different view-
points, the intrinsic and extrinsic camera parameters for each image, and the
knowledge that the object is made of a single material. This problem can be
posed as that of minimization of the differences between the input images and
the images synthesized using the underlying shape, lighting and BRDF model.
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Suppose the surface of the object is S(V'), where V is the parameter vector of
the object shape. The BRDF of the surface is denoted as p(¢}, ¢}, 0., ¢}) , where
(0, 8%), (0, #.) are polar and azimuthal angles of the distant light direction and
viewing direction in the local surface coordinates. Consider a patch P on S, small
enough so that the surface normal remains nearly constant over the entire patch.
The brightness of the patch when viewed from a certain direction R(6., ¢)) can
be computed by multiplying the BRDF with the foreshortened lighting distri-
bution L(0}, ¢;) and integrating the product over the upper hemisphere of the
patch, as in (1):

/ / 8,01, 6L (0!, &) cos B sin 0146, (1)

Mesh Model

Fig. 1. Project a patch on the surface onto image planes

Given the shape S(V), BRDF model p and lighting L, we can synthesize
the images of the object using (1) as follows. Let m; : R? — R? denote the
perspective projection that maps the 3D world coordinates onto a 2D image
plane corresponding to the jth view. For each P, let O; = m;(P) be the projection
of P onto jth input image (Fig.1). If P is visible in jth view, then we can compute
the intensity value of O; in the synthesized jth view using (1). Our goal is to
estimate the model parameters, V', p and L, that minimize the difference between
the input images and these synthesized images:

<‘/7 P L> = arg min Fmatching (Isyna Iinput) (2)

where Fiuatching denotes the matching cost function between input images and
synthesized images. It is defined as the sum of all intensity differences between
the corresponding patches in the input and synthesized images:

2 : (4)
Fmatching(Isyn7 znput D IS%)”, znput)

= > ST {dO;(19),), 0,10, 1Y (3)
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where D(I, é(g],)n, Ii(i;ut) is the difference between an entire synthesized image and
entire input image and d(-, -) is the analogous difference between image patches.
O, (I) is the set of pixels covered by patch O; in image I. We will use the following
d('v )

d[0;(19),), 0;(I3) )] = {R;(P) — mean[O; (1) )]} - n(0;) (4)

syn nput
where R;(P) is the reflectance of P in jth image computed from (1), mean[:]
is the average pixel value in the patch, and n(-) is the number of pixels in the
patch.

3 View Independent Reflectance Map

Reflectance map is used in shape from shading research to give the mapping
between surface normal and the brightness value viewed from a certain direc-
tion. It avoids the separate estimation of the lighting and BRDF, yet contains
enough information to recover shape from shaded images. However, reflectance
map is viewpoint dependent, which makes its use inconvenient for multiple-view
algorithms. Ramamoorthi and Hanrahan [8] point out that given a shape, there
is an inherent ambiguity when one tries to fully recover the BRDF p and lighting
L. A blurred light source and a sharp BRDF lead to the same results as a sharp
light source and a low-pass BRDF. We use this property to model the specular
light reflected by a BRDF as the same light passing through a circular symmet-
ric low-pass filter and then reflected by a perfect mirror. Based on this idea, we
introduce the notion of View-Independent Reflectance Map (VIRM) which we
use to represent the combined effects of lighting L and BRDF p independent of
the viewpoints. In this section we show that we can derive VIRM by separating
the diffuse and specular parts of reflectance.

As mentioned in Section 2, the brightness value of a surface point can be
computed from (1). Specifically, we can use the Torrance-Sparrow microfacet
model [7] as the BRDF model and simplify it to derive our VIRM. According to
the model, the BRDF of a material can be written as:

(M’ n’ l7 e)G(n7l7 e)D(O—’ n’ l’ e)
4(1-n)(e-n)

(0}, 6.0, 6,) = p(n.Le) = Ky + K, )
where n, I and e are surface normal, light direction and viewing direction vectors.
F(u,n,l,e) is the Fresnel term, related to the material’s index of refraction
u. G(n,l e) is the geometric attenuation term. D(o,n,l, e) is the microfacet
normal distribution function described below. The reflectance value when a patch
is illuminated by a directional source L is given by

(l’[/’ n? l? e)G(n7 l’ e)D(J7 n’ l? e)

F
R(n,e,L,p) = |L| - [Ka(l - m) + K i(e )

I (6)

where L = |L| -1 is the light vector for the directional source.
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For simplicity we assume F' and G to be constant and absorb them into K .
Now let us consider the microfacet normal distribution function. A simple form

of D is
D(o,n,l e) ! e )" coslp, =n-h (7)
o = —— ex — | — = .
s 10y 6y P P p ) h

where h is the mid-vector between I and e (Fig. 2) and o is the variance of the
microfacet normals. Let us take the mirror image of viewing direction e with
respect to the surface normal and denote it as the reflection vector r, as in Fig.
2. If the light direction Il is co-plane with the surface normal n and viewing
direction e, we will have

0.1 = 20y (8)

where 0, is the angle between the reflection vector r and the light direction
vector I (Fig. 2). Substituting (8) into (7), and denoting it as D, we get:

D(0,6,) = % exp < (%)j (9)

Fig. 2. Reflection vector » and mid-vector h

Generally, D is not symmetric around 7. So strictly speaking, D # D when
l deviates from the plane determined by e and n. However, Ramamoorthi and
Hanrahan [8] point out that when viewing angle is small, assuming D is sym-
metric around 7 is a good approximation. Under this assumption, we can use
D(o,0,;), which is a function of o and 6,; to approximate D. Now the reflectance
value in (6) is

|L|D(c,6,;)

R(naeaLap):|L|'Kd(l'n)+KS 4(67’1,)

(10)

In (10) the first term is the diffuse part, and the second term is the specu-
lar part. If all the patches have the same material and the lighting is constant
with respect to the world coordinate system (e.g. all the surface patches are illu-
minated under the same lighting), the diffuse term depends only on the surface
normal n, and the specular term depends only on ,; and the viewing angle e-n.

Furthermore, in the specular term, we can merge |L| and 5(0, 0,1) together and
view it as the result of filtering the single directional light source with a circular
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symmetric function D. Since the light source is fixed, the merged term depends
only on 7 and we denote it as Rs(r). Similarly, the first term on the right side
of (10) depends only on n and is denoted as Rq(n). So (10) becomes:

Rs(7)

L. o) =
Rin,e.L,p) = Ra(n) + ~*

(11)
Meanwhile, since 7 is the mirror vector of e, the right side of equation (11) only
depends on e and n. Equation (11) gives a very compact way to represent the
reflectance of a surface patch under fixed lighting. It is just a linear combina-
tion of two components, the diffuse part and the specular part, and each can be
represented as a 2D function (since n and r are both unit vectors). The approx-
imation is derived under single directional light source assumption, but it can
be extended to the cases of multiple directional light sources since both distant
illumination model and the circular symmetric filtering are linear operations.

The simplified model in (11) implies that if we can estimate the diffuse and
specular distributions Ry and R, we can compute the reflectance of any point
given its surface normal and viewing direction. We call R; and R the diffuse
and specular components of the VIRM. They serve the same roles as reflectance
map in single view shape from shading.

If we assume that all the surface patches have the same BRDF and the
lighting remains constant, then the VIRM is constant for all the patches and
viewing directions. This is equivalent to a global constraint over all the surface
patches and input views. By using VIRM as our reflectance model, we can write
(2) as:

<‘/7 Rd; Rs> = arg min Fmatching (Isyna Iinput) (12)

However, we should point out that when there are local variations of lighting such
as due to a non-distant light sources, self-shadowing or inter-reflection, VIRM
will not necessarily be constant. Our derivation of VIRM makes the assumption
that F' and G in (6) are constant and D can be approximated by D, both
assumptions require the viewing angle away from /2 to approximates accurately
the Torrance-Sparrow model.

4 Algorithm and Implementation

In this section we present the various aspects of the algorithm we have used to
implement the approach described in Section 2 and 3.

4.1 Data Representation

We use a triangular mesh to represent the object surface, where each triangle
serves the role of patch P in (4), and the 3D positions of all the vertices in
the mesh are the shape parameters V. VIRM is represented by a collection
of samples of the diffuse and specular distribution functions. We choose the
longitude-latitude grid to sample the azimuthal and polar components at a fixed
angular interval. Function values that are not on the sampling grid are computed
using cubic interpolation.
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4.2 Iterative Optimization

Equation (12) defines a nonlinear optimization problem with a large number of
parameters to be chosen. However, note that the VIRM parameters are only
linearly constrained. If we fix all the shape parameters, estimating the optimal
VIRM is just a constrained linear least squares problem. Because of this, we
choose to optimize the shape and VIRM parameters separately and interleave
these optimization processes, as illustrated in Fig. 3.

Shape & VIRM
. Optimization
Camera
Parameters — View
4 Independent

VIRM Optimization Reflectance Map

Images from
multiple |
viewpoints

Shape

Initial Shape: Optimization — ' w 3D Shape

Visual Hull

— = Data Flow —_— C";‘]‘;:'

Fig. 3. Flow chart of the iterative optimization algorithm

The inputs to our algorithm are the object images taken from different view-
points and the corresponding camera parameters. A coarse visual hull is com-
puted from the silhouettes of the object (silhouettes can be obtained by seg-
mentation or background subtraction) and used as the initial shape for the first
VIRM optimization. During VIRM optimization, we fix all the shape parameters
and find an optimal VIRM that minimizes the matching cost function in (3).
During shape optimization, we fix the VIRM parameters and find an optimal set
of shape parameters that minimize the matching cost function. The iteration is
terminated when the average vertex change after shape optimization is smaller
than a preset threshold.

4.3 VIRM and Shape Optimization

When shape parameters are fixed, optimizing (12) to find VIRM is equivalent
to solving a set of linear equations in least squares sense. Each visible triangle
patch in one view gives a linear equation of R4(n) and R4(r). Because of the
discretization, we let the equations constrain the nearest samples of VIRM. We
filter out patches that have large viewing angles (> 80 degree in our experi-
ments) to avoid poor constraints being used in estimating VIRM. The optimal
solution gives estimates of all values of Ry(n) and R,(r) on the sample grid.
Some samples on the VIRM grid may not have any constraint; we obtain their
values by interpolation.

Shape optimization in (12) for a fixed VIRM is a non-linear least squares
problem. Again, for the same reason, patches that are tilted away from the
camera are not used in computing Figtching in (3). This won’t create many
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unconstrained patches though, since in a multi-camera configuration every patch
must has some cameras facing toward it. We solve the optimization using the
large scale optimization method called Trust Region Reflective Newton (TTRN)
method [9]. In TTRN method, the matching cost function is viewed as the square
of norm of a multi-input multi-output (MIMO) function. Every iteration of the
optimization involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG). TRRN method requires
the Jacobian matrix of the MIMO function, and this can be computed using
finite difference.

Since each vertex on the mesh model has 3 degree-of-freedom, the number
of parameters that represent the shape is 3 times the number of vertices. To
reduce the number of parameters, we impose a restriction that each vertex can
only move along a specific direction. This direction, called the weighted average
normal direction (WAND), is the average of the surface normal vectors over
all the triangles sharing the vertex, weighted by the areas of these triangles.
In addition to reducing the number of shape parameters, this restriction also
prevents vertices from clustering together during optimization. At each iteration,
the visibilities and WANDs of vertices are updated according to the current
estimate of the shape. Also, the visual hull computed from silhouettes is used as
an outer bound of the shape being estimated.

4.4 Multi-scale Processing

To avoid local minima and for computational efficiency, we use multi-scale pro-
cessing in the optimization. We first optimize the shape parameters using a
coarse triangular mesh and use a low sampling rate for VIRM. Then we itera-
tively reduce the triangle size and increase the VIRM sampling rate. Triangles
having larger gray level variations at a coarse scale are subdivided into four
small triangles to obtain finer scale triangles. They are constructed from 3 new
vertices which are the mid-points of three edges of the coarse triangle.

5 Experiments

5.1 VIRM Validation

We first perform a synthetic experiment to validate our VIRM model. A set
of 20 images of a sphere is synthesized and used as the input to VIRM opti-
mization described in 4.3. We assume the sphere radius are known and want
to check whether the simplified VIRM model can reproduce the non-lambertian
reflectance of the sphere.

Fig. 4 shows four of the input sphere images as well as the corresponding
images rendered using reconstructed VIRM. The sampling grid for diffuse VIRM
is 18x9, and specular VIRM is 32x16. The result shows that the reconstruction
matches the originals well except for some highlights where image values are
saturated, and some areas where viewing angles are large. The average absolute
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image difference between the input and reconstructed images over the entire set
is 0.017 on a scale of [0,1]. The grid representation of the reconstructed VIRM

is shown in Fig. 4(c).
(c)

(a) -

(b)
Fig. 4. (a) 4 of the 20 input sphere images (b) Sphere rendered using estimated VIRM
(average absolute image difference over all 20 views is 0.017 on a scale of [0,1]) (c)

Estimated specular(left) and diffuse(right) component of VIRM along a grid defined
by longitude and latitude.

5.2 Buddha Data Set (Synthetic)

The Buddha data set is synthetic and consists of 24 views of a Buddha sculpture
made from a single shiny material. The sculpture is illuminated by 60 directional
light sources. Some input images are shown in Fig. 5. We run our algorithm at
three different scales. The numbers of triangles at each scale are around 6300,
21000, and 50000. The sampling grid for diffuse VIRM is 6x3, 12x6, 18x9, and
specular VIRM is 12x6, 24x12, 32x16. The final reconstructed shape is also shown
in Fig. 5, compared with the ground truth shape and the initial shape.

By comparing Fig. 5(d-f) and 5(j-1), we can see that Buddha'’s ears are not
well recovered. Thin surface parts are difficult to recover since they do not cause
enough image differences to affect the cost function.

To obtain more quantitative measures of the performance of our algorithms,
and to seperately evaluate the quality of shape and VIRM based estimates, we
compute the range images of the reconstructed shape and the images of a sphere
using the estimated VIRM for both the input viewpoints as well as some novel
ones. They are compared with ground truth images. The synthesized gray scale
image (Fig. 6a), range image (Fig. 6¢) and sphere image (Fig. 6e) for one of the
novel views are shown in Fig. 6. In Fig. 6(e) the specular highlights on the sphere
are not fully recovered. One reason for this is that the surface normal along the
surface of the sculpture is not continuous. For example, the shape does not have
many surface normals facing downward, so the VIRM estimation is not well
constrained in the corresponding direction. Low sample rate of VIRM, noise in
the recovered local surface orientation, and other noises such as shadow and
inter-reflection that VIRM did not assume also contribute to the reconstruction
error.
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Fig. 5. (a, b, ¢): Three input images of the data set. (d, e, f): The ground truth 3D
model rendered with a dull material to eliminate specularities, which makes visual
evaluation of shape easier. (g, h, i): The initial 3D shape computed from silhouettes in
the input images. (j, k, 1): The recovered 3D shape after optimization.

(a) (b) (¢) (d) (e) ()

Fig. 6. (a) Synthesized gray scale image with estimated VIRM and shape. (b) Ground
truth image. (¢) Range image computed from the estimated shape. (d) Range image
computed from the ground truth shape. (e) Synthesized sphere with estimated VIRM.
(f) Rendered sphere with ground truth material and lighting. All images are from a
novel viewpoint.
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We evaluate the performance of our algorithms using several measures (Fig.
7). We compute the average absolute pixel difference between ground truth and
synthesized intensity images. Average Object Image Difference (AOID) and Av-
erage Sphere Image Difference (ASID) denote the differences for the rendered
object and sphere images, respectively. AOID reflects the quality of both shape
and VIRM estimates, whereas ASID reflects the quality of VIRM estimate. Ra-
tio of Uncovered Area (RUA) is the percentage of the non-overlapping silhouette
areas between the ground truth and synthesized objects. Pixel values in these
uncovered areas are not defined in either synthesized image or ground truth im-
age, so we do not include them in the calculation of image differences. Finally,
Average Range Image Difference (ARID) measures more directly the errors in
estimated shape by computing average absolute object range difference between
synthesized range images from estimated shape and those from ground truth.
In Fig. 7(b), images with high ARID values are from views that have occluding
boundaries. Since the recovered occluding boundaries are not fully aligned with
the actual boundaries, they will create large differences in the range image.

= AR

Nomalzed Value i [0, 1]
Range Difference (absolute valie)

Fig. 7. The various performance measures shown for different viewpoints. (a): AOID,
ASID and RUA (value normalized to [0,1]) (b): ARID (absolute value); the object’s
bounding box is about 5x5x7 and distance to camera is 15. For both (a) and (b),
datapoints 1-24 are from input views, and 25-27 are from novel views.

We also synthesize an image from a novel viewpoint using estimated VIRM
(Fig. 8a) and another image with VIRM rotated by 60 degree (Fig. 8c). The im-
ages are compared with ground truth images in Fig. 8. Another object rendered
using the same VIRM is shown in Fig. 8(e).

5.3 Van Gogh Data Set(Real)

The Van Gogh data set is by courtesy of J.-Y. Bouguet and R. Grzeszczuk
(Intel). It consists of more than 300 calibrated images of a Van Gogh statue.
We select 21 images taken from different directions. These images are manually
segmented to remove the background and the silhouettes are used to compute
the initial shape. We segment out the base of the statue since it is made of a
different material. Three of the input images are shown in Fig. 9(a-c). We have
the reconstruction result from laser scanning of the statue (Fig. 9(d-f)). The
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Fig. 8. Synthesized novel view using estimated VIRM (a), novel view with VIRM
rotated by 60 degree (c), to be compared with ground truth (b, d). (e) is another
object synthesized using the same VIRM as used in (a).

scanned shape is processed by manual mesh cleaning process to make a smooth
surface.

The minimization is done at two different scales. The numbers of triangles at
the two scales are arround 10000 and 40000. Since the statue is made of polished
metal, which exhibits a typical metal BRDF with almost no diffuse component,
we choose a very low sampling rate for the diffuse part in VIRM. The sample
grids at two scales for diffuse VIRM are 6x3 and 6x3, and specular VIRM are
24x12 and 48x24. The reconstructed shape is shown in Fig. 9 (j-1). Note that
calibration errors are present in the reconstruction and they affect both the
recovered VIRM and the shape.

We again use AOID and ARID defined in Section 5.2 to evaluate the per-
formance of our algorithm. But since we do not have the lighting data from the
original data set, we cannot compute the ASID. The synthesized gray scale image
(Fig. 10a) and range image (Fig. 10c) for one novel view are shown below. We
also synthesize the sphere image (Fig. 10e) and Buddha image (Fig. 10f) with
the estimated VIRM. Performance measures for all viewpoints are summarized
in Fig. 11 .

This data set is also used in [3]. Interested readers can compare the two
results. Our major improvements are the recovery of shape details, and since
VIRM is estimated, we get a compact reflectance map that can synthesize images
of any shape from any viewpoint.

6 Conclusion and Fugure Works

In this paper we have proposed an algorithm to reconstruct 3D shape and the
view independent reflectance map (VIRM) from multiple calibrated images of
the object. We pose this problem as that of minimizing of difference between the
input images and the synthesized images using estimated 3D shape and VIRM.
VIRM is derived from Torrance-Sparrow model, and used as a simplified model
for single material reflectance under distant lighting with no self-shadowing and
inter-reflections. An iterative method is used to minimize the matching cost
function in order to find the optimal shape and VIRM. Our algorithm does
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(8) i j M

Fig. 9. (a, b, ¢): Three of the input images. (d, e, f): Shape obtained by laser scanning
rendered with a dull material for better shape comparison. (g, h, i):Initial shape of our
algorithm computed from silhouettes of the input images. (j, k, 1): Reconstructed 3D
shape of our algorithm.

Fig. 10. (a): Reconstructed gray scale image with estimated VIRM and shape from a
novel viewpoint (b): Ground truth image from the same viewpoint. (c): Range image
computed from estimated shape. (d): Range image obtained from a laser scan. (e): Syn-
thesized sphere with the estimated VIRM. (f): Synthesized Buddha with the estimated
VIRM.
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Range Diference (absolte value)

Fig. 11. The various performance measures of Van Gogh data set, shown for different
viewpoints (a): AOID and RUA (value normalized to [0, 1]). (b): ARID (absolute value);
the bounding box of the object is about 90x80x200, distance to camera is about 950.
For both (a) and (b), data points 1-21 are from input images, and 22-24 are from novel
viewpoints.

not require the light source to be known, and it can deal with non-lambertian
reflectance. Experimental results on both synthetic and real objects show that
our algorithm is effective in recovering the 3D shape and the VIRM information.

Our ongoing and planned work includes the following. The estimated VIRM
can be used to render other objects with the same material and lighting, or to
create animations that are consistent with the original lightings. Alternatively,
the material /lighting of the synthesized image can be changed by directly modi-
fying VIRM. Other directions include taking into account the effect of shadowing
and inter-reflection and allowing objects with multiple materials.
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