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ABSTRACT proaches in the literature to formulate stereo, from two views

In this paper, we present a method to estimate the shapé)r multiple views, as a global minimization problem and

of a three dimensional (3D) object by enforcing color con- solve the problem using graph cuts_[1_3, 14, 15, 16]. These
. . X . . L ; graph-cut based approaches result in improved depth maps.
sistency in the views of object points in images acquired

: . ) . Graph cut is also applied in volumetric representations to
from different viewpoints. The estimated shape and color ~. " . . . )
: . : : minimize the energy given two sets of images, one with the
information of the object can be used to render new views

of the object. We first construct a 3D voxel space and as—ObJeCt and one with only the background [17], yielding an-

) ) ; other solution to the problem of shape from silhouettes.
sign to each voxel a photo inconsistency value, and then In thi ¢ ht truct 3D
represent this voxel space using a node capacitated graph., . n this paper, We present an approach o reconstruc
We use s-t node cut to obtain a surface that minimizes theObject models using photo consistency information in vol-

summation of photo inconsistency values of surface voxels, UMetric representation. Each voxel in the 3D space is as-

Experimental results for simulated and real objects are pro-,s'gned a photo inconsistency value according to the input

vided. We also simulate how the calibration errors of cam- 'Magdes. T_hep the 3D reconstruct!on problem Is formulated
era intrinsic and extrinsic parameters affect the performancea_S an optlmlzat|on problem to minimize the photo incon-
of our algorithm sistency of the object surface voxels. We represent the 3D
' voxel space, with photo inconsistency value assigned to each
1. INTRODUCTION voxel, as a node capacitated graph and apply s-t node cut on

In this paper, we present a shape from color consistencyth's graph to obtain a surface that minimizes the summation

method to estimate the three dimensional (3D) model of aOf photo. inconsistency values of surfgce voxels. )

real world object given its images acquired from different _ SECtion 2 presents our approach in detail. Section 3 pro-

viewpoints. Three dimensional models of real world objects VId€S experimental results. Section 4 presents concluding

are very important to manufacturing systems, virtual reality remarks and discussion.

systems and multimedia applications.
Computer vision techniques have a long history of use 2. OUR APPROACH

in the reconstruction of 3D graphical models of real world 2.1. Related graph theory

objects [1, 2, 3]. They use regular images obtained from 1 1 Basic concepts

multiple viewpoints and recover a 3D description of the ob-

ject from them. Two basic classes of algorithms can be dis-In this section, we will give a graph theoretic description of

tinguished. The first class computes depth maps from in-s — ¢ minimum cut. Let a flow network; = (V, E) be a

dividual viewpoints and then registers the depth maps into connected graph with vertex skt and edge sef. Each

a single 3D surface model. To obtain the depth maps fromedge(u,v) € E has a nonnegative capacitfu, v) > 0. If

different viewpoints, various methods such as depth from (u,v) ¢ E, we assume that(«,v) = 0. Two vertices in//

focus [4] or defocus [5], stereo vision [1], structure from are distinguished: a sourgeand a sinkt. A cut (S, T') of

motion [6], and shape from shading [7] have been proposed,the flow network is a partition ofV” into S and7T = V — S

each of which has different degrees of applicability in differ- such thats € S andt¢ € T. The capacity of a cut is defined

ent conditions. The second class of algorithms is based oras the summation of the capacities of the edges across the

volumetric representation and is often referred to as shapecut, i.e.c(S,T) = >_,,cg ,er ¢(u,v). Thes — ¢ minimum

from silhouettes [8, 9], and shape from photo consistency cut problem is to find a cut 6 that separates and¢ with

[10, 11, 12]. Our proposed algorithm belongs to the secondthe smallest capacity. This problem is very closely related

class. to the max-flow problem in graph theory. A flow @ is
Reconstructing 3D object models can also be posed asa real-valued functiorf : V x V' — R that satisfies the

a global minimization problem. There have been many ap- following properties [18]:



1. forallu,v € V, f(u,v) < c(u,v);

—f(U,U);
3. forallu eV —s,t,3 oy flu,v) =0.

2. forallu,v € V, f(u,v)

The value of a flowf from s is defined as

1= f(s,0).

veV

In the maximum-flow problem, we are given a flow network
G with a sources and a sinkt, and we wish to find a flow
with maximum value froms to ¢t. There is an important
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() =

()

Fig. 1. Transform from node capacitated graph to corre-
sponding edge capacitated digraph.

the edges of2 with capacityé(us, v;) = é(va,u1) = oc.
An example of this transform is shown in Fig. 1.

correspondence between flows and cuts in networks, as we

can see in the max-flow min-cut theorem as follows:
[Ford-Fulkerson Theorem [19]] The maximum flow from

2.1.3. S-tnode cut algorithm

avertexs to vertext, | f|, is equal to the value of the capacity With the techniques to transform a node capacitated graph

¢(s, t) of the minimum cut separatingandt.
With this theorem, the — ¢ minimum cut problem can
be solved using existing max-flow algorithms.

The minimum cut considered in this paper is required

G(V, E) into an edge capacitated grapliV, £), s—t min-
imum node cut oz can be solved by applying— ¢ mini-
mum edge cut on correspondiGg

Let s andt be the source node and sink nodé&iV, E),

to separate multiple source nodes from multiple sink nodes.andC'(s,t) C V is thes — ¢t node cut orG(V, E), then

An operation callechode identificatior{20] enables us to
uses — t minimum cut algorithms to solve the multi-source
multi-sink minimum cut problem by simply identifying the
multiple sources as a single source and multiple sinks as

single sink, respectively. There is also another standard ap-

proach to transfer a multi-source multi-sink minimum cut
problem into a singles — ¢ minimum cut problem in the
literature [18] by adding a new source nodand connect-
ing it to all sources with weight infinity and adding a new
source nodeand connecting it to all sink nodes with weight
infinity.

2.1.2. Node capacitated graph

a

C(s,t) = {v[(v1,v2) € C({s1, 52}, {t1,12})},

where C({s1, 52}, {t1,12}) is the s — ¢ minimum cut in
G(V,E), with {s1, s2} as sources anft;, t;} as sinks.

2.2. Constructing Node Capacitated Graph

In order to apply s-t minimum node cut, we construct a node
capacitated graph and formulate the 3D modelling problem
as a minimization problem on the constructed graph.

We first construct a voxel space and assign each voxel
a photo inconsistency value. We divide the 3D space into
a grid of voxels, each voxel is assigned a photo inconsis-
tency valueP(z) according to the color§; (z),i = 1,2, ..., N,

In some cases, it is more convenient to formulate a problemwhereC;(z) is the color of the pixel in imagé; projected
as a minimuns —t cut problem on a node capacitated graph from voxel x. Theoretically, we want to set the photo in-

G = (V,E),i.e., eachnode € V' has a honnegative capac-
ity ¢(v) > 0. An s — t node cut in such a node capacitated
graph is a node set' C V, and by removing” from G,

s andt are disconnected. Neithemort¢ can be contained
in C (otherwise, it is called separation instead of cut [21]).
The capacity:(C) of a node cutC' is summation of the ca-
pacities of all nodes i’ C V,i.e.c(C) =, .o c(v). An

s — t minimum node cut yields a minimum capacity of all
possible node cuts that separatendt.

consistency valué’(z) based on a subset ¢{’;(x)|i
1,2,..,N}, i.e.{C;(z)|j € J}, whereJ C {1,2,..,N}
and voxelz is visible in each imagé;, j € J. However,
without knowing the real object surface, it is impossible to
check the visibility of voxek: to each camera. To avoid the
problem of visibility checking, we assume that each sur-
face point of the object is visible to at leakt cameras and
cluster theM nearest colors, out of thd possible colors
associated with voxet, under the condition that the corre-

There is a standard technique [19] which can transform sponding)M cameras should lie on one side of the vaxel

node connectivity grapli¥(V, E) to directed edge connec-
tivity in another grapl@ (V, E) with edge capacity function
€. For each node € V, there are two corresponding nodes
v and v, in the node sel” of the new graphi. Edge
(v1,v2) € E is capacitated witlk(v,,v2) = c(v). For all
(u,v) € E, the correspondin@us, v1) and (v, uq) will be

The variance of thes&/ nearest colors is set as the photo
inconsistency valu®(z) of the voxelz.

Then we represent this 3D voxel space as a node capac-
itated graph. Each voxel corresponds to a node € V
in the graphG(V, E'). Two nodesu, v are connected, i.e.
(u,v) € E, if their corresponding voxels are neighbors to



each other. Here, we use 6-connection neighborhood. Foithe inner surface will be a sphere with radius9sfwhile
each node, we sete(v) = P(x), wherec(v) isthe node ca-  the outer surface will be a sphere with radiug 0. Other
pacity of nodev corresponding to voxet. After the graph structuring elements could also be used. The number of sin-
is constructed, the 3D reconstruction problem becomes agle dilation in each step will determine the size of the neigh-
problem of minimizing the summation of photo inconsis- borhood spac®,. This number is selected according to the
tency values of the surface voxels. size and shape of the object.

2.3. Minimization using s-t node cut 3. EXPERIMENTS

TodsoIVF:'[ tf|1e e}:)hove _I[?]lnerlzaFLG probl;zmé we 'l;sz an fs-lt In this section, we present our experimental results and also
nhode cut algorithm. The aigorithm can be described as 10l gimjate how the calibration errors of camera intrinsic and

lows: _ extrinsic parameters affect the performance of our algorithm.
1. Define a near plane and a far plane such that the ob-

ject surface lies between them.

2. Use node identification to identify nodes correspond-
ing to the voxels on the near plane as a single nqdnd
identify nodes corresponding to the voxels on the far plane
as a single node

3. Apply s—t node cut on the resulting node capacitated
graph and transform the resulting cut into a surface in the 3D
space.

4. For rendering, assign each voxel on the resulting sur-
face an average color from all visible cameras.

Thus, we obtain a surface that is globally optimal within
the voxel space and estimate the colors of the surface voxels.

2.4. Implementation considering computation limits

Since graph cut algorithms are usually memory and time in-
tensive for large graphs. The maximum number of nodes
that can be processed is limited by the available memory.
Smaller voxel sizes yield better resolution of estimated sur-
face but larger number of nodes. For improving resolution
under the memory limitation, we use small voxel size and it-
eratively compute minimum cut in a part of the graph, which
represents the volume around the resulting surface from pre-The object in our first experiment is a synthetic human face.
vious iteration. We capture 12 images in front of the face as input images.

To do this, we first obtain an initial plane parallel to the The size of each image &8l0 x 480. Input images are sim-
near plane and far plane and across the object surface. Theqlated with a 3D head model using 3D Studio Max. Five
we iteratively perform the following steps: 1. Dilate the single dilations are performed in the direction perpendicu-
current surface to obtain a neighborhood. 2. Extract thelar to the plane. Each voxel in 3D space is assumed to be
near surface and far surface of the dilated neighborhood andsisible to at least 8 cameras. Fig. 2 shows all the 12 input
identify all the nodes corresponding to voxels on the near images. Fig. 3 shows some new images rendered from the
surface as a single nodeand identify all the nodes corre-  reconstructed face model.
sponding to voxels on the far surface as a single node
Apply s-t node cut to compute a minimum surface. 4. Re-
peat step 1-3 until the resulting surface has been obtained
previously. This iterative scheme will converge to a surface
that is globally optimal within its own neighborhood. The
proof of convergence is analogous to the proof provided in
[20].

The dilation process we use consists of a number of Fig. 3. Three rendered new images from the reconstructed
single binary dilations with a structuring element which is 3D model. Note that we are viewing the object from angles
3 x 3 x 3 tensor of 1. For example, if the initial surface very different from those used to acquire the input images.
is a sphere with radius df00, after 5 single dilation steps,

D @ @ D
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Fig. 2. Twelve input images of experiment 1.

3.1. Experiment 1



3.2. Simulating calibration errors 6.5 pixels. The reconstruction errors are measured as aver-

The above results are obtained with calibration matrixes free 29 RMS error of the depth of surface voxels. Experiments

of error. In order to examine how our algorithm works in are performed for the following six error combinations:

real applications, we simulate the camera calibration errors®™Y: # 0nlY, botha and 5, uo only, vy only, and bothug
as follows. andvy. Fig. 4 shows the errors of reconstructed surface

v.s. the simulated errors on these camera intrinsic parame-

ters. As indicated in [22], the errors inand are less than
3.2.1. Camera intrinsic parameters 0.3% and the errors inyy andvg are around 1 pixel. For
these achievable accuracy of intrinsic parameters, the aver-

Camera intrinsic parameter matrix is usually defined by 546 RMS errors of our algorithm are smaller than 1 voxel.

a 0 wuo 3.2.2. Camera extrinsic parameters
0 B Vo ’
0 0 1 .
wherea andg are focal lengths along imageandv axes, ' ‘

and uy and v, are the coordinates of the principle point.
Here, we do not consider the skewness of the two image
axes since compared to the error caused by other parame-
ters, the calibration errors from skewness are negligible.
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Averaged RMS error of reconstructed surface (voxel)
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s Fig. 5. (a) Reconstruction errors v.s. camera direction er-
i § rors. (b) Reconstruction errors v.s. calibration errors on
camera position errors.
L. | Camera extrinsic parameters include rotation maiix
0 : R TN g 7 and translation vectdf. We simulate these errors by vary-
ing camera look-at vectat; and position vectof’;, where
(b) i = 1,2,...,24. We use absolute error fdr; in terms of

Fig. 4. (a) Reconstruction errors v.s. calibration errors of angle and use relative error fy in terms of percentage re-
focal lengths. (b)Reconstruction errors v.s. calibration er- ferring to the distance between camera and object. We vary
rors of image principle points. the error level ofL; from 0.01° to 0.06°, and vary the er-
ror level of T; from 0.05% to 0.3%. For each error level,
We use relative error far and3, and absolute error for  we perform 10 independent trials with random errors of that
ug andwvy. We vary the error level af ands from 0.1% to level for all cameras and the results shown are the average.
0.5%, and vary the error level af, andvy from 0.5 pixel to Fig. 5 shows the errors of reconstructed surface v.s. simu-



lated errors on these camera extrinsic parameters. As indi-eras using the Camera Calibration Toolbox for Matlab [24].
cated in [23], the achievable accuracy is ab@Qp° for L; Each surface point is assumed to be visible to at least three
and abou®.1% for T;. For these achievable calibration ac- cameras. Fig. 8 shows all the six input images. Fig. 9
curacies, the reconstruction errors of our algorithm are alsoshows some new images rendered from the reconstructed
smaller than 1 voxel. face model.

3.2.3. Performance with calibration errors for both intrin-
sic and extrinsic parameters

With the achievable accuracies of calibration parameters as
mentioned above (i.6.3% for o and 3, 1 pixel for uo and
vg, 0.02° for L; and0.1% for T;), we perform 100 inde-

is 1.0575 voxels and the standard deviation is 0.0699. This \ = ‘ \ '

pendent experiments. The mean of the average RMS error

results shows that our iterative node cut algorithm is robust Fig. 8. Six input images of experiment 3.
to camera calibration errors. Some rendered images from
new viewpoints are shown in Fig. 6. Visually there is little
difference from the rendering results with parameters free
of calibration errors.

) 2K

Fig. 9. Six rendered new images from the reconstructed 3D

é model.

Fig. 6. Three rendered new images from the reconstructed
3D model. Note that this model are reconstructed after con-
sidering the possible calibration errors. 4. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a shape from color con-
3.3. Experiment 2 sistency method to generate 3D object model given multi-
ple calibrated pictures acquired from different viewpoints.
Node capacitated graph is used to represent the 3D voxel
space with photo inconsistency value assigned to each voxel.
Our node cut based algorithm is able to reconstruct a sur-
face that is globally optimal within its neighborhood, in the
sense that the summation of photo inconsistency values of
the surface voxels is minimized.

The disadvantage of our approach is that the graph cut
algorithm is memory exhausting and time consuming if the
node number of the graph is large. Currently we are using
P4-1.8GHz desktop with 1GB memory, the running time
of the algorithm is within several minutes when the graph
has one million nodes. Using more nodes will cause out

Fig. 7. A six-camera system. of memory error. However, our algorithm is coded in Mat-
lab. No particular effort is made to minimize the memory

We set up a real six-camera system to model humanoccupancy. (Although where it is possible to achieve signif-
face. Fig. 7 shows the system setup. We calibrate the camicant improvements in execution time, routines are coded as




MEX files in C, for example, the s-t min cut routine.) On-

going research includes how to seamlessly combine other
depth information in this iterative node cut algorithm to ob-
tain better results. ) ) ) ) )
Furthermore, if the reflectance model of object surface [13] H. Ishikawa and D. Geiger, “Occlusions, discontinu-
can be modelled as combination of diffuse reflection and

specular reflection, using clustering of M nearest colors in [14] Y. Boykov, O. Veksler, and R. Zabih, “Fast approx-
our algorithm will be able to handle the specular reflection ' ’ '

problem if we assume that each surface point can be seen by

at least M cameras which are not in the specular reflection
directions.
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