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ABSTRACT

In this paper, we present a method to estimate the shape
of a three dimensional (3D) object by enforcing color con-
sistency in the views of object points in images acquired
from different viewpoints. The estimated shape and color
information of the object can be used to render new views
of the object. We first construct a 3D voxel space and as-
sign to each voxel a photo inconsistency value, and then
represent this voxel space using a node capacitated graph.
We use s-t node cut to obtain a surface that minimizes the
summation of photo inconsistency values of surface voxels.
Experimental results for simulated and real objects are pro-
vided. We also simulate how the calibration errors of cam-
era intrinsic and extrinsic parameters affect the performance
of our algorithm.

1. INTRODUCTION

In this paper, we present a shape from color consistency
method to estimate the three dimensional (3D) model of a
real world object given its images acquired from different
viewpoints. Three dimensional models of real world objects
are very important to manufacturing systems, virtual reality
systems and multimedia applications.

Computer vision techniques have a long history of use
in the reconstruction of 3D graphical models of real world
objects [1, 2, 3]. They use regular images obtained from
multiple viewpoints and recover a 3D description of the ob-
ject from them. Two basic classes of algorithms can be dis-
tinguished. The first class computes depth maps from in-
dividual viewpoints and then registers the depth maps into
a single 3D surface model. To obtain the depth maps from
different viewpoints, various methods such as depth from
focus [4] or defocus [5], stereo vision [1], structure from
motion [6], and shape from shading [7] have been proposed,
each of which has different degrees of applicability in differ-
ent conditions. The second class of algorithms is based on
volumetric representation and is often referred to as shape
from silhouettes [8, 9], and shape from photo consistency
[10, 11, 12]. Our proposed algorithm belongs to the second
class.

Reconstructing 3D object models can also be posed as
a global minimization problem. There have been many ap-

proaches in the literature to formulate stereo, from two views
or multiple views, as a global minimization problem and
solve the problem using graph cuts [13, 14, 15, 16]. These
graph-cut based approaches result in improved depth maps.
Graph cut is also applied in volumetric representations to
minimize the energy given two sets of images, one with the
object and one with only the background [17], yielding an-
other solution to the problem of shape from silhouettes.

In this paper, we present an approach to reconstruct 3D
object models using photo consistency information in vol-
umetric representation. Each voxel in the 3D space is as-
signed a photo inconsistency value according to the input
images. Then the 3D reconstruction problem is formulated
as an optimization problem to minimize the photo incon-
sistency of the object surface voxels. We represent the 3D
voxel space, with photo inconsistency value assigned to each
voxel, as a node capacitated graph and apply s-t node cut on
this graph to obtain a surface that minimizes the summation
of photo inconsistency values of surface voxels.

Section 2 presents our approach in detail. Section 3 pro-
vides experimental results. Section 4 presents concluding
remarks and discussion.

2. OUR APPROACH
2.1. Related graph theory

2.1.1. Basic concepts

In this section, we will give a graph theoretic description of
s − t minimum cut. Let a flow networkG = (V, E) be a
connected graph with vertex setV and edge setE. Each
edge(u, v) ∈ E has a nonnegative capacityc(u, v) ≥ 0. If
(u, v) /∈ E, we assume thatc(u, v) = 0. Two vertices inV
are distinguished: a sources and a sinkt. A cut (S, T ) of
the flow networkG is a partition ofV intoS andT = V −S
such thats ∈ S andt ∈ T . The capacity of a cut is defined
as the summation of the capacities of the edges across the
cut, i.e.c(S, T ) =

∑
u∈S,v∈T c(u, v). Thes − t minimum

cut problem is to find a cut inG that separatess andt with
the smallest capacity. This problem is very closely related
to the max-flow problem in graph theory. A flow inG is
a real-valued functionf : V × V → R that satisfies the
following properties [18]:



1. for all u, v ∈ V , f(u, v) ≤ c(u, v);

2. for all u, v ∈ V , f(u, v) = −f(v, u);

3. for all u ∈ V − s, t,
∑

v∈V f(u, v) = 0.

The value of a flowf from s is defined as

|f | =
∑

v∈V

f(s, v).

In the maximum-flow problem, we are given a flow network
G with a sources and a sinkt, and we wish to find a flow
with maximum value froms to t. There is an important
correspondence between flows and cuts in networks, as we
can see in the max-flow min-cut theorem as follows:

[Ford-Fulkerson Theorem [19]] The maximum flow from
a vertexs to vertext, |f |, is equal to the value of the capacity
c(s, t) of the minimum cut separatings andt.

With this theorem, thes − t minimum cut problem can
be solved using existing max-flow algorithms.

The minimum cut considered in this paper is required
to separate multiple source nodes from multiple sink nodes.
An operation callednode identification[20] enables us to
uses− t minimum cut algorithms to solve the multi-source
multi-sink minimum cut problem by simply identifying the
multiple sources as a single source and multiple sinks as a
single sink, respectively. There is also another standard ap-
proach to transfer a multi-source multi-sink minimum cut
problem into a singles − t minimum cut problem in the
literature [18] by adding a new source nodes and connect-
ing it to all sources with weight infinity and adding a new
source nodet and connecting it to all sink nodes with weight
infinity.

2.1.2. Node capacitated graph

In some cases, it is more convenient to formulate a problem
as a minimums−t cut problem on a node capacitated graph
G = (V, E), i.e., each nodev ∈ V has a nonnegative capac-
ity c(v) ≥ 0. An s − t node cut in such a node capacitated
graph is a node setC ⊂ V , and by removingC from G,
s andt are disconnected. Neithers nor t can be contained
in C (otherwise, it is called separation instead of cut [21]).
The capacityc(C) of a node cutC is summation of the ca-
pacities of all nodes inC ⊂ V , i.e. c(C) =

∑
v∈C c(v). An

s − t minimum node cut yields a minimum capacity of all
possible node cuts that separates andt.

There is a standard technique [19] which can transform
node connectivity graphG(V,E) to directed edge connec-
tivity in another graph̄G(V̄ , Ē) with edge capacity function
ē. For each nodev ∈ V , there are two corresponding nodes
v1 and v2 in the node set̄V of the new graphḠ. Edge
(v1, v2) ∈ Ē is capacitated with̄e(v1, v2) = c(v). For all
(u, v) ∈ E, the corresponding(u2, v1) and(v2, u1) will be
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Fig. 1. Transform from node capacitated graph to corre-
sponding edge capacitated digraph.

the edges of̄E with capacityē(u2, v1) = ē(v2, u1) = ∞.
An example of this transform is shown in Fig. 1.

2.1.3. S-t node cut algorithm

With the techniques to transform a node capacitated graph
G(V, E) into an edge capacitated graphḠ(V̄ , Ē), s−t min-
imum node cut onG can be solved by applyings− t mini-
mum edge cut on correspondinḡG.

Let s andt be the source node and sink node inG(V, E),
andC(s, t) ⊂ V is thes− t node cut onG(V, E), then

C(s, t) = {v|(v1, v2) ∈ C̄({s1, s2}, {t1, t2})},

where C̄({s1, s2}, {t1, t2}) is the s − t minimum cut in
Ḡ(V̄ , Ē), with {s1, s2} as sources and{t1, t2} as sinks.

2.2. Constructing Node Capacitated Graph

In order to apply s-t minimum node cut, we construct a node
capacitated graph and formulate the 3D modelling problem
as a minimization problem on the constructed graph.

We first construct a voxel space and assign each voxel
a photo inconsistency value. We divide the 3D space into
a grid of voxels, each voxelx is assigned a photo inconsis-
tency valueP (x) according to the colorsCi(x), i = 1, 2, ..., N ,
whereCi(x) is the color of the pixel in imageIi projected
from voxel x. Theoretically, we want to set the photo in-
consistency valueP (x) based on a subset of{Ci(x)|i =
1, 2, ..., N}, i.e.,{Cj(x)|j ∈ J}, whereJ ⊆ {1, 2, ..., N}
and voxelx is visible in each imageIj , j ∈ J . However,
without knowing the real object surface, it is impossible to
check the visibility of voxelx to each camera. To avoid the
problem of visibility checking, we assume that each sur-
face point of the object is visible to at leastM cameras and
cluster theM nearest colors, out of theN possible colors
associated with voxelx, under the condition that the corre-
spondingM cameras should lie on one side of the voxelx.
The variance of theseM nearest colors is set as the photo
inconsistency valueP (x) of the voxelx.

Then we represent this 3D voxel space as a node capac-
itated graph. Each voxelx corresponds to a nodev ∈ V
in the graphG(V,E). Two nodesu, v are connected, i.e.
(u, v) ∈ E, if their corresponding voxels are neighbors to



each other. Here, we use 6-connection neighborhood. For
each nodev, we setc(v) = P (x), wherec(v) is the node ca-
pacity of nodev corresponding to voxelx. After the graph
is constructed, the 3D reconstruction problem becomes a
problem of minimizing the summation of photo inconsis-
tency values of the surface voxels.

2.3. Minimization using s-t node cut

To solve the above minimization problem, we use an s-t
node cut algorithm. The algorithm can be described as fol-
lows:

1. Define a near plane and a far plane such that the ob-
ject surface lies between them.

2. Use node identification to identify nodes correspond-
ing to the voxels on the near plane as a single nodes, and
identify nodes corresponding to the voxels on the far plane
as a single nodet.

3. Applys−t node cut on the resulting node capacitated
graph and transform the resulting cut into a surface in the 3D
space.

4. For rendering, assign each voxel on the resulting sur-
face an average color from all visible cameras.

Thus, we obtain a surface that is globally optimal within
the voxel space and estimate the colors of the surface voxels.

2.4. Implementation considering computation limits

Since graph cut algorithms are usually memory and time in-
tensive for large graphs. The maximum number of nodes
that can be processed is limited by the available memory.
Smaller voxel sizes yield better resolution of estimated sur-
face but larger number of nodes. For improving resolution
under the memory limitation, we use small voxel size and it-
eratively compute minimum cut in a part of the graph, which
represents the volume around the resulting surface from pre-
vious iteration.

To do this, we first obtain an initial plane parallel to the
near plane and far plane and across the object surface. Then
we iteratively perform the following steps: 1. Dilate the
current surface to obtain a neighborhood. 2. Extract the
near surface and far surface of the dilated neighborhood and
identify all the nodes corresponding to voxels on the near
surface as a single nodes, and identify all the nodes corre-
sponding to voxels on the far surface as a single nodet. 3.
Apply s-t node cut to compute a minimum surface. 4. Re-
peat step 1-3 until the resulting surface has been obtained
previously. This iterative scheme will converge to a surface
that is globally optimal within its own neighborhood. The
proof of convergence is analogous to the proof provided in
[20].

The dilation process we use consists of a number of
single binary dilations with a structuring element which is
3 × 3 × 3 tensor of 1. For example, if the initial surface
is a sphere with radius of100, after 5 single dilation steps,

the inner surface will be a sphere with radius of95 while
the outer surface will be a sphere with radius of105. Other
structuring elements could also be used. The number of sin-
gle dilation in each step will determine the size of the neigh-
borhood spaceDi. This number is selected according to the
size and shape of the object.

3. EXPERIMENTS

In this section, we present our experimental results and also
simulate how the calibration errors of camera intrinsic and
extrinsic parameters affect the performance of our algorithm.

Fig. 2. Twelve input images of experiment 1.

3.1. Experiment 1

The object in our first experiment is a synthetic human face.
We capture 12 images in front of the face as input images.
The size of each image is640× 480. Input images are sim-
ulated with a 3D head model using 3D Studio Max. Five
single dilations are performed in the direction perpendicu-
lar to the plane. Each voxel in 3D space is assumed to be
visible to at least 8 cameras. Fig. 2 shows all the 12 input
images. Fig. 3 shows some new images rendered from the
reconstructed face model.

Fig. 3. Three rendered new images from the reconstructed
3D model. Note that we are viewing the object from angles
very different from those used to acquire the input images.



3.2. Simulating calibration errors

The above results are obtained with calibration matrixes free
of error. In order to examine how our algorithm works in
real applications, we simulate the camera calibration errors
as follows.

3.2.1. Camera intrinsic parameters

Camera intrinsic parameter matrix is usually defined by




α 0 u0

0 β v0

0 0 1


 ,

whereα andβ are focal lengths along imageu andv axes,
and u0 and v0 are the coordinates of the principle point.
Here, we do not consider the skewness of the two image
axes since compared to the error caused by other parame-
ters, the calibration errors from skewness are negligible.
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Fig. 4. (a) Reconstruction errors v.s. calibration errors of
focal lengths. (b)Reconstruction errors v.s. calibration er-
rors of image principle points.

We use relative error forα andβ, and absolute error for
u0 andv0. We vary the error level ofα andβ from 0.1% to
0.5%, and vary the error level ofu0 andv0 from 0.5 pixel to

6.5 pixels. The reconstruction errors are measured as aver-
age RMS error of the depth of surface voxels. Experiments
are performed for the following six error combinations:α
only, β only, bothα andβ, u0 only, v0 only, and bothu0

andv0. Fig. 4 shows the errors of reconstructed surface
v.s. the simulated errors on these camera intrinsic parame-
ters. As indicated in [22], the errors inα andβ are less than
0.3% and the errors inu0 andv0 are around 1 pixel. For
these achievable accuracy of intrinsic parameters, the aver-
age RMS errors of our algorithm are smaller than 1 voxel.

3.2.2. Camera extrinsic parameters
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Fig. 5. (a) Reconstruction errors v.s. camera direction er-
rors. (b) Reconstruction errors v.s. calibration errors on
camera position errors.

Camera extrinsic parameters include rotation matrixR
and translation vectorT . We simulate these errors by vary-
ing camera look-at vectorLi and position vectorTi, where
i = 1, 2, ..., 24. We use absolute error forLi in terms of
angle and use relative error forTi in terms of percentage re-
ferring to the distance between camera and object. We vary
the error level ofLi from 0.01◦ to 0.06◦, and vary the er-
ror level of Ti from 0.05% to 0.3%. For each error level,
we perform 10 independent trials with random errors of that
level for all cameras and the results shown are the average.
Fig. 5 shows the errors of reconstructed surface v.s. simu-



lated errors on these camera extrinsic parameters. As indi-
cated in [23], the achievable accuracy is about0.02◦ for Li

and about0.1% for Ti. For these achievable calibration ac-
curacies, the reconstruction errors of our algorithm are also
smaller than 1 voxel.

3.2.3. Performance with calibration errors for both intrin-
sic and extrinsic parameters

With the achievable accuracies of calibration parameters as
mentioned above (i.e.0.3% for α andβ, 1 pixel for u0 and
v0, 0.02◦ for Li and0.1% for Ti), we perform 100 inde-
pendent experiments. The mean of the average RMS error
is 1.0575 voxels and the standard deviation is 0.0699. This
results shows that our iterative node cut algorithm is robust
to camera calibration errors. Some rendered images from
new viewpoints are shown in Fig. 6. Visually there is little
difference from the rendering results with parameters free
of calibration errors.

Fig. 6. Three rendered new images from the reconstructed
3D model. Note that this model are reconstructed after con-
sidering the possible calibration errors.

3.3. Experiment 2

Fig. 7. A six-camera system.

We set up a real six-camera system to model human
face. Fig. 7 shows the system setup. We calibrate the cam-

eras using the Camera Calibration Toolbox for Matlab [24].
Each surface point is assumed to be visible to at least three
cameras. Fig. 8 shows all the six input images. Fig. 9
shows some new images rendered from the reconstructed
face model.

Fig. 8. Six input images of experiment 3.

Fig. 9. Six rendered new images from the reconstructed 3D
model.

4. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a shape from color con-
sistency method to generate 3D object model given multi-
ple calibrated pictures acquired from different viewpoints.
Node capacitated graph is used to represent the 3D voxel
space with photo inconsistency value assigned to each voxel.
Our node cut based algorithm is able to reconstruct a sur-
face that is globally optimal within its neighborhood, in the
sense that the summation of photo inconsistency values of
the surface voxels is minimized.

The disadvantage of our approach is that the graph cut
algorithm is memory exhausting and time consuming if the
node number of the graph is large. Currently we are using
P4-1.8GHz desktop with 1GB memory, the running time
of the algorithm is within several minutes when the graph
has one million nodes. Using more nodes will cause out
of memory error. However, our algorithm is coded in Mat-
lab. No particular effort is made to minimize the memory
occupancy. (Although where it is possible to achieve signif-
icant improvements in execution time, routines are coded as



MEX files in C, for example, the s-t min cut routine.) On-
going research includes how to seamlessly combine other
depth information in this iterative node cut algorithm to ob-
tain better results.

Furthermore, if the reflectance model of object surface
can be modelled as combination of diffuse reflection and
specular reflection, using clustering of M nearest colors in
our algorithm will be able to handle the specular reflection
problem if we assume that each surface point can be seen by
at least M cameras which are not in the specular reflection
directions.
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