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ABSTRACT

This paper is concerned with depth estimation from focus
for acquiring 3D models of objects from multiple views.
Depth-from-focus usually involves a single viewpoint but
many different focus settings. Our approach uses multi-
ple viewpoints, but for each viewpoint only two different-
aperture settings, one small, showing the entire visible sur-
face in focus, and the other large, showing only a narrow
depth slice of the object in focus. Since only the aperture
value is changed, the camera needs to be calibrated only
once for each viewpoint. Depth estimate follows directly
for those parts of the image that are in focus in both images
for the same viewpoint. The depth estimates from differ-
ent viewpoints are merged to obtain a complete surface esti-
mate. This estimate serves as the initial estimate for the next
stage which refined the estimate using multi-baseline stereo
matching. This design has been implemented using a single
camera, with a controllable aperture, and aimed at an object
located on a rotary platform that sequentially captures the
required set of images. Criteria are discussed for selecting
camera parameters to achieve the narrowest possible depth-
of-field, to obtain the best depth-from-focus estimates. Ex-
perimental results for two simple objects are presented to
validate our approach.

1. INTRODUCTION

3D models of real world objects are often needed for virtual
reality (VR) and multimedia systems. There are two main
approaches to the acquisition of real world object models.
One uses structured lighting to acquire images from multi-
ple views, while the other uses regular lighting. The first
approach [1, 2] projects a structured light pattern, usually
a stripe of laser beam generated by a semiconductor laser,
onto the surface of an object and captures the reflected im-
age with a CCD camera. The image yields a depth map
of the visible part of the surface. If such a scan is ob-
tained from different viewpoints around the object, the re-
sulting depth maps can be combined to compute a 3D sur-
face model of the object. Laser scanners typically produce
accurate results but are very expensive. The second ap-
proach uses regular images obtained from multiple view-

points and recovers from them a 3D description of the ob-
ject. 3D model reconstruction from regular images is still
an open problem. Two basic classes of such approaches can
be distinguished. The first class computes depth maps from
individual viewpoints and then registers them into a single
3D surface model. To obtain the depth maps from differ-
ent viewpoints, various methods such as depth from focus
[3] or defocus [4, 5] stereo vision [6, 7], structure from mo-
tion [8] and shape from shading [9] have been proposed,
each of which has different degrees of applicability in differ-
ent conditions. The second class of algorithms is based on
volumetric representations and is often referred to as shape
estimation from silhouettes [10, 11] and shape from space
carving [12].

This paper presents a method that belongs to the first
class of the second approach mentioned above. The method
is aimed at reconstructing 3D object models in a tabletop
environment using multiple views with the help of depth-
from-focus. When we are using depth-from-focus with mul-
tiple views, only two different-aperture images are required
from each viewpoint, and these two different-aperture im-
ages share the same calibration parameters, which means
the camera needs to be calibrated only once for each view-
point. Depth estimates using focus from different view-
points are integrated as a rough object surface estimate. Since
we have images from many viewpoints, multi-baseline stereo
can be used to refine this rough surface, while the search
range for stereo are narrowed. In addition, we derive the
criteria for camera parameters selection in order to achieve
the narrowest possible depth-of-field which is useful to im-
prove the accuracy of the focus based depth estimates.

Section 2 presents a brief review of other work related
to the proposed method. Section 3 through 6 describe our
approach in detail. Section 7 presents experimental results.
Section 8 contains concluding remarks.

2. RELATED WORK

Below we briefly review the work done on the different sur-
face estimation methods related to our approach.



2.1. Depth from focus or defocus

For a camera with focal lengthf , an object point at a dis-
tanceu from the lens can be in focus only if the image sen-
sor plane is at a distancev from the lens on the other side,
andu, v andf satisfy the equation:1f = 1

u + 1
v .
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Fig. 1. A schematic diagram of the process of image forma-
tion.

As in Fig.1, the image sensor must be located at position
1 to capture a focused image of the object point. If the im-
age sensor is at a different position, say 2, the image of the
object will be blurred. Thus, if an image point is in focus,
the depth of the corresponding object point can be estimated
using the equation given above, and the known focal length
f and image distancev [3]. Depth estimates can also be
obtained for the out-of-focus points if the degree of defo-
cus can be measured and a model of defocusing is available
[4, 5, 13]. An illumination pattern that is projected via the
same optical path used to acquire images helps to realize a
real time range sensor for estimating both textured and tex-
tureless surfaces [14].

2.2. Multi-baseline stereo

Stereo vision [6] involves using two calibrated cameras to
take images of the same scene from two slightly different
viewpoints. The 3D surface is estimated by finding pairs of
points in the two images, each corresponding to a point on
a 3D surface, and computing the depth of the scene point
as a function of the positional disparity between its two im-
ages. The task of matching points between the two images
is known as the correspondence problem. Multi-baseline
stereo [7] uses multiple images of a scene taken from differ-
ent known viewpoints, yielding multiple stereo pairs of im-
ages which provide redundancy in surface estimation. The
further apart a given pair of stereo viewpoints are, the higher
the accuracy of the resulting surface estimate.

2.3. Integrating focus and stereo

There are also some approaches trying to integrate focus and
stereo [15, 16]. The approach in [15] estimates surface with
the integrated use of focus, camera vergence and stereo dis-
parity information. A vision system that using shape from
focus and rotational stereo to model 3D object is proposed
in [16]. In these works, depth-from-focus from each view-
point requires many different focus settings.

3. THE USE OF DEPTH-FROM-FOCUS IN
MULTI-VIEW CASES

In this section, we present how to use depth-from-focus in
3D modelling from multiple views, and how it differes from
traditional depth-from-focus methods.
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Fig. 2. Traditional depth-from-focus considers single view-
point but many different focus settings. Two in-focus parts
are shown for two of the focus settings.

Traditional depth-from-focus methods compute depth maps
from a single viewpoint, and require many different focus
settings for this viewpoint. Each focus setting yields depth
estimate of a small in-focus part. For example, Fig. 2
shows two in-focus parts for two different focus settings for
the same viewpoint. The complete depth map is obtained
by merging all these in-focus parts. For each focus setting
used, the projection matrix will be different since the cam-
era parameters (including focal lengthf , object distanceu,
and image distancev) will change. Thus, camera should be
calibrated for each focus setting.
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Fig. 3. Depth-from-focus considered in multiple-viewpoint
case. Two viewpoints and their corresponding in-focus parts
and depth-of-fields are shown.

In our approach, only two different focus settings are re-
quired for each viewpoint. These two settings are acquired
by changing aperture which does not affect the camera cal-
ibration parameters. Thus, we only need to calibrate the
camera once for each viewpoint. The input image captured
with a small aperture shows the entire visible surface in fo-
cus, and the other one with large aperture shows in focus
only a small part of the object surface contained within the



narrow depth-of-field. The depth map of the in-focus part
for each viewpoint is estimated and all in-focus parts from
different viewpoints are merged as a rough object surface
model. Fig. 3 shows an example of two in-focus parts es-
timated from two different viewpoints. If many viewpoints
are used, the shaded in-focus parts will cover the surface of
the object.

Those images obtained with small aperture cameras from
different viewpoints can then be used as input to a multi-
baseline stereo algorithm to refine the result, while the search
ranges are narrowed by the rough surface estimate from fo-
cus.

4. CAMERA PARAMETER SELECTION

The large aperture camera is used to distinguish those points
on the object surface within the depth-of-field from those
outside the depth-of-field — the former are in focus and
the latter are blurred. The narrower the depth-of-field, the
higher the accuracy of the depth estimate desired from fo-
cus, and therefore, we need to select camera parameters to
yield narrowest depth-of-field. The exact depth-of-field de-
pends on imaging parameters including aperture size, focal
length and object distance. It is calculated [17] as

d =
2A · p · u · f · (u− f)
A2 · f2 − p2 · (u− f)2

,wheref is the focal length,u is the distance between object
point and lens,A is the radius of aperture andp is the largest
possible radius of the blur circle around a single pixel before
it crosses into the next pixel in the image sensor. In the
equation above,A, p, u andf are the four parameters that
can be adjusted to minimized. Obviously,p is given for
given sensor and independent of other parameters. Since
we always haveu > f ,

∂d

∂p
=

2A · u · f · (u− f) · [A2 · f2 + p2 · (u− f)2]
[A2 · f2 − p2 · (u− f)2]2

> 0,

we need to minimizep to maked as small as possible. The
rest of the parameters need to be selected under two other
constraints. First, the maximum value ofA is limited. Ev-
ery lens has its ownf -number range, whose smallest value
corresponds to the largest aperture of the lens. For differ-
ent lenses, their smallestf -numbers are approximately the
same, says. Thens · A/2 ≤ f ⇒ A ≤ 2/s · f . Let
a = 2/s, then we haveA ≤ a · f . Second, ifO denotes
object size,I denotes image sensor size andM = O/I, we
must haveu ≥ (1 + M) · f in order to capture the image of
the entire object. Since

∂d

∂A
= −2p · u · f · (u− f) · [p2 · (u− f)2 + A2 · f2]

[A2 · f2 − p2 · (u− f)2]2
< 0

and

∂d

∂u
=

2A3 · p · f3 · (2u− f) + 2A · p3 · f2 · (u− f)2]
[A2 · f2 − p2 · (u− f)2]2

> 0,

we know that for a givenf , we need to maximizeA and
minimize u to make d as small as possible. Substituting
A = a · f andu = (1 + M) · f , we get

∂d

∂f
=

4a · p · (1 + M) ·M · f3 · (a2 · f2 − 2p2 ·M2]
[a2 · f2 − p2 ·M2]2

and ∂2d
∂f2 > 0. Thus the optimalf value is given byf =√

2 · p · M/a. Considering some typical values ofp, M
anda, e.g. p = 6.7/2µm, M = 60 anda = 2/1.6, it can
be seen that the resultingf value of0.23mm is quite small
in comparison with f values of common lenses. Therefore,
we need to select the smallest available focal length lens
and adjustu andv accordingly to be able to capture the full
object on an image sensor of a given size.

5. SYSTEM SETUP AND CAMERA CALIBRATION
5.1. System setup
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Fig. 4. The flowchart of our approach.

Fig. 4 presents an overview of the entire system. Ide-
ally, cameras will be placed such that the depth-of-field of
those cameras with large apertures will roughly cover the
object surface, i.e., all parts of the object surface appear in
focus in one or more blurred (large aperture) images. How-
ever, in our implementation, we will assume, without loss
of generality, that a single stationary camera acquires the
multiple required images of the object as it rotates about a
vertical axis. Two images are captured for each object orien-
tation, one using a small aperture and the other using a large
aperture. This configuration corresponds to our current im-
plementation, as shown in Fig.5. A CCD camera is used to
take both sets of images as the object is rotated on a rotary
stepper. A positioning system is used to adjust the optical
axis of the camera so it intersects with, and is perpendicular
to, the rotation axis of the rotary stepper.

 Object 

Rotary stepper 

 Camera Rotation axis 

Sharp focused plane Positioning system 

Fig. 5. Experimental layout.



5.2. Calibration

Calibration is required to estimate the various imaging pa-
rameters. This is done in two steps. First, we determine
the intrinsic parameters of the camera by using a calibra-
tion grid placed at various distances from the camera, as de-
scribed in [18]. Second, we adjust the camera’s optical axis
using a positioning system so that it intersects with the ro-
tation axis of the rotary stepper at right angle. Then, we use
the large aperture camera to take an image of the grid while
it is rotated by a certain angle. By manually identifying the
in-focus parts of the grid in the images, we can calculate the
distance between rotation axis and the sharp-focused plane.

After the system is calibrated, a CCD camera is used
to take both sets of images as the object is rotated by 720
degrees using a rotary stepper. For the first 360 degrees, the
camera aperture is set to a small value, and for the second
360 degrees, it is set to a large value. The large aperture
gives a blurred image, and the small aperture gives an in-
focus reference image. By adjusting the shutter speed, the
relative irradiances are adjusted so that both images capture
the same amount of light.

6. ALGORITHM IMPLEMENTATION

From each viewpoint and for each aperture setting, multi-
ple images are captured sequentially and then averaged to
reduce additive sensor noise. The images are also used to
estimate the variance of additive noise. In addition, the ob-
ject boundary in each reference image is identified, which
is easily done since the object is placed against a very dark
background.

6.1. Depth from focus
Since the depths of the in-focus pixels in the large-aperture
images can be computed from the known depth-of-field of
the camera, the task in this step is to identify these in-focus
points in the large-aperture images. In our approach, these
in-focus pixels are located by analyzing intensity variations
in their vicinity and their conformity with the correspond-
ing pixels in the small-aperture images. Specifically, for
each pixel in the large-aperture images, three questions are
asked. First, is this pixel inside the object boundary? If it is,
and if it is sharply focused, (i.e. the depth of this pixel in the
current setting is equal tou, which is the distance between
optical center and sharp focused plane), we calculate the lo-
cations of its corresponding pixels in the images from other
viewpoints, and check whether they are all inside the cor-
responding object boundaries. Obviously, a surface point
of the object will never have its image outside of the object
boundary regardless of the viewpoint from which it is seen.
Second, is the variance of this pixel’s neighborhood greater
than that of the noise estimated in the pre-processing? If
the neighborhood of a pixel has a smaller variance than the
noise, no difference can be perceived between its blurred
image and its reference image. Third, is the correlation

between a small window around this pixel and the corre-
sponding window in its reference image higher than a given
threshold? The correlation value is assumed to be higher
than the threshold if the pixel is in-focus. Those pixels sat-
isfying all three conditions are selected as focused and their
depths in the current images are estimated to beu.

6.2. Using multi-baseline stereo

With input images from multiple views, multi-baseline stereo
is used in our implementation to refine the surface estimates
from focus. For each reference image, two previous ref-
erence images and two following reference images are se-
lected for multi-baseline stereo analysis. The reason we se-
lect only5 consecutive reference images is that if the cam-
eras are further apart, the perspective deformation of the
neighborhood region of the pixel is significant and affects
the result of correlation. Dense correspondences are esti-
mated within the object boundary using conventional window-
based correlation methods, while the searches are constrained
within a small range around the depth estimates given by
depth-from-focus. The resulting 3D surface points are rep-
resented using cylindrical coordinates along the rotary axis.
Then we simply average those points sharing the same height
and angle, and use bilinear interpolation to obtain depth es-
timates for the points without depth estimates. Thus we ob-
tain a surface estimate of the object represented using polar
coordinates along the rotary axis. Finally, the whole object
surface is smoothed using a sliding average window of a
small size.

7. EXPERIMENTAL RESULTS

To validate our approach of using focus to help stereo match-
ing in multi-view cases, we present our experimental results
on two real objects in this section. Since it is not our pur-
pose to fully develop a system giving the best performance,
which could be achieved by improving and optimizing the
techniques for depth-from-focus and multi-baseline stereo
individually, we only use simple objects to experiment with,
and use cylindrical coordinate representations to simplify
the computation.

In the first experiment, we use a cylinder with a highly
textured surface as our test object. The cylinder is put on the
rotary stepper whose rotation axis coincides with the ver-
tical cylinder axis and is rotated by2 × 360 degrees.36
different stepper positions are used,10 degrees apart. Each
of the two rotations yields36 different viewpoints. At each
viewpoint of each rotation,5 images are taken and aver-
aged. The first rotation is performed using a small aperture
and shutter speed of1/60 second. In the second rotation
when the aperture size is increased, the shutter speed is de-
creased to1/10, 000 second so as to maintain the same total
image irradiance in both rotations. Two sample image pairs
are shown in Fig. 6.



Fig. 6. (a) Two sample image pairs obtained in the first ex-
periment. The upper row shows large-aperture images and
the lower row shows small-aperture, reference images. Im-
ages in the same column are captured from the same view-
point.

(a) (b)

Fig. 7. Points obtained by the depth-from-focus algorithm.
(a) A side view of the 3D points. (b) A top view of the 3D
points.

We first apply our depth-from-focus algorithm and ob-
tain the depth estimates of the in-focus pixels in large-aperture
images. The resulting 3D points in this step are shown in
Fig. 7. Fig .7(a) shows a side view of these 3D points, while
Fig. 7(b) shows the top view. It can be seen that the result
of the depth-from-focus is approximately correct. The final
estimated surface model is shown in Fig. 8. For comparison
with the ground truth, the result is represented using polar
coordinates at each height value, as shown in Fig. 9. The
RMS error of the depth estimates is calculated to be1.55%
of the cylinder radius.

In the second experiment, we consider another cylinder
identical to the first one, except that some parts of the cylin-
der surface are textureless. Camera settings are the same as
in the first experiment. Two sample image pairs are shown
in Fig. 10. The corresponding surface represented in the

Fig. 8. 3D surface model derived in the first experiment.

Fig. 9. Estimated distances of cylinder surface points from
the axis.

Fig. 10. Two samples of image pairs obtained in the sec-
ond experiment. The upper row shows large-aperture im-
ages. Images in the same column are captured from the
same viewpoint.

polar coordinates is shown in Fig.11. The RMS error is cal-
culated to be about 2.49% of the cylinder radius.

In the third experiment, we consider a cubic object of a
different size. We choose a suitable set of camera param-
eters and take the same number of images as in pervious
experiments. Two sample image pairs are shown in Fig. 12.
The estimated 3D surface model is shown in Fig. 13.

8. CONCLUSIONS AND DISCUSSION

We have presented an approach that uses depth-from-focus
and multi-baseline stereo on multiple views of a small ob-
ject to obtain its 3D surface model. For each viewpoint,
our depth-from-focus algorithm requires only two different-
aperture images and the camera needs to be calibrated only
once. (Traditional depth-from-focus methods usually re-
quire many images using different focus settings for each
viewpoint and calibrate camera for each focus setting.) The
criteria for camera parameter selection to achieve the nar-
rowest depth-of-field are also derived in this paper.

Fig. 11. Estimated distances of cylinder surface points from
the axis.



Fig. 12. Two samples of image pairs obtained in the third
experiment. The upper row shows large-aperture images
and the lower row contains reference images. Images in
the same column are captured from the same viewpoint.

Fig. 13. 3D surface model derived in the third experiment.

When applying multi-baseline stereo, the search for match-
ing points is simplified by using the depth-from-focus esti-
mates as constraints. Most previous methods for 3D mod-
elling from regular images captured using a turntable are
based on stereo or motion. The proposed design uses both
focus and stereo cues.

The surface parts that have weaker textures yield poorer
depth estimates using both depth-from-focus and stereo meth-
ods. For such parts, optical texture may be projected on the
object to improve the quality of the estimates.
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