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ABSTRACT

In this paper, we present an interactive object selection
approach that appliess − t minimum cut on local contour
neighborhoods of the object boundary to segment the ob-
ject from the background. Using a simple interface, users
can extract accurate object contours interactively. Our ap-
proach has the following properties. 1) Interactivity: The
interface is easy to use and accepts flexible freehand inputs.
Realtime feedback is provided for user interactive correc-
tion. 2) Robustness: Thes − t minimum cut is insensitive
to image noise since it finds the global minimum within the
local contour neighborhood. Further, the approach is valid
for contours and objects defined by different features, e.g.,
color and texture. 3) Controllability: Object contours are
fully controllable through interactive correction by the user.
Experimental results for a wide range of objects are pro-
vided.

1. INTRODUCTION

Object selection is the task of extracting an object from a
digital image, e.g., for image/video editing and composi-
tion. Manual selection of objects is tedious, time consum-
ing and inaccurate. Therefore, computer vision techniques
assisted interactive tools are useful. Three properties are
desired in interactive object selection tools. 1) Interactiv-
ity: The interface should be easy to use and should provide
real time feedback. 2) Robustness: The tool should be able
to select objects with complex characteristics, e.g., textured
objects and in the presence of noise. 3) Controllability: The
user should be able to override the contours extracted by the
tool, force them to go through specific image parts/points,
and if necessary, supply some parts of the contours manu-
ally.

During the last decade, many interactive object selec-
tion tools have been developed. The Image Snapping tech-
nique [1] assists users by detecting high-contrast edges in
the vicinity of user-indicated locations, thus relieving users
of the need to trace over the exact boundaries. It is im-
plemented by using gradient descent on blurred versions of
feature maps made from the images. The Intelligent Scis-
sors tool [2] uses a dynamic programming based algorithm
to search for the optimal contours connecting user speci-

fied control points. It generates realtime feedback as the
user inputs control points, making it especially suitable for
interactive object selection. The dynamic programming al-
gorithm [3, 4] is also utilized in active contour models [5]
to extract the globally optimal contour within the neighbor-
hood of the initial contour provided by the user. The ICE
method [6] first finds reliable image contours and encodes
their location, orientation, blur and asymptotic intensity on
both sides. Then the user interactive selects and groups the
contours to extract objects. A tool described in [7] uses free-
hand sketches as input. It first segments the whole image
and then selection is made by associating the input sketch
with the best matching union of segments. Points, surround-
ing strokes and rough circumscribing loops are accepted as
input sketches. All the approaches mentioned above do not
consider the textured objects, which are very common in
general images.

In this paper, we present an interactive object selection
algorithm, having all three of the desired properties. 1) Our
approach accepts flexible freehand inputs, such as control
points along an intended contour or strokes along the de-
sired object boundary. 2) Our approach uses thes− t mini-
mum cut to find the optimal contour within a certain neigh-
borhood of the input sketch. The use of thes− t minimum
cut has the following advantages. First, graph cuts make our
method insensitive to noise since they find the global min-
imum within the local region. Second, graph cuts make it
possible to consider different cues, such as color and tex-
ture, within a single framework [8]. We use both color and
texture features in our approach and develop an automatic
scale selection algorithm. 3) Our approach is well suited for
interactive correction by the user. If necessary, the user can
even draw a part of the contour manually using the same
interactive tool. In addition, since we consider only local
regions specified by the user input, our approach is able to
provide realtime feedback for user interaction.

As a global minimization method, graph cut has been
applied in image segmentation problems [9, 10, 11]. Among
these graph cut based segmentation approaches, the method
proposed in [11] is most related to our approach. It uses
s− t minimum cut to segment an image into two parts with
the user interactively identifying the object and background



regions. The whole image is represented as a graph where
the s − t minimum cut is computed. This might lead to
two main disadvantages if object selection is considered to
be the application. First, by segmenting the entire image
into two parts, the method implicitly assumes that there are
only two modes within the input image, which is not true
for most of the real images. Thus, the method might require
many efforts to identify the object and background regions.
Second, segmenting the entire image makes it impossible
for realtime feedback. In our proposed approach, we only
uses − t minimum cut in a neighborhood area of a local
object boundary. This small neighborhood area is reason-
able to be modelled as a two-mode region and doings − t
minimum cut within this area ensures realtime feedback. In
addition, our proposed approach has much better interactiv-
ity and controllability, and considers both color and texture
features.

In the next section, we describe our proposed approach
in detail. Section 3 presents some experimental results ob-
tained using our algorithm. Section 4 presents concluding
remarks.

2. INTERACTIVE OBJECT SELECTION USING
S − T MINIMUM CUT

2.1. Overview

 

Input image 

User free hand input 
along desired contour 

Real-time feedback 

Satisfied? 

Interactive 
correction 

No Yes 
Output 

Fig. 1. An overview of our interactive approach.

Fig. 1 presents an overview of our approach. The user
interactive correction is carried out iteratively until the re-
sult is satisfactory. Given an image with an embedded ob-
ject to be selected, our approach accepts two kinds of free-
hand inputs: control points and strokes, as shown in Fig. 2.
Two input control points or the two endpoints of a stroke
specify a neighborhood around and containing a local seg-
ment of the desired object boundary (Fig. 2). The width of
the neighborhood, shown hatched in Fig. 2, is under user
control. Within the neighborhood, our algorithm finds the
optimal contour using thes− t minimum cut. The resulting
contours are provided as realtime feedback to the user for
interactive and iterative correction.

Fig. 3 presents a simple example illustrating the pro-
cedures of selecting an object. In this example, the user
inputs two control points,P1 andP2, and a strokeP̂3P4.
The user specifies the width of the neighborhood between
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Fig. 2. Two kinds of input. (a) Control points. Two con-
secutive control points specify a neighborhood around and
containing a local segment of the desired contour. The lo-
cal contour neighborhood is a rectangular window defined
by the two control points. (b) Strokes. The stroke width is
adjustable so that the user can draw the stroke to specify a
neighborhood similar in (a).

P1 andP2, and uses default width for the neighborhood de-
fined by the stroke and the regions between the two control
points and the stroke, i.e.P2P3 andP4P1. The two control
points and the two endpoints of the stroke separate the en-
tire contour into four parts:P1P2, P2P3, P3P4 andP4P1.
Our algorithm extract these four parts of object contour suc-
cessively, as shown in Fig. 4(a)-(h). The obtained contour
and the updated control/end points are shown in Fig. 4(h)
for user interactive correction. The user can make correc-
tion by adding a control point (Fig. 4(i)), or by drawing a
stroke (Fig. 4(j)).
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Fig. 3. The user inputs two control points,P1 andP2, and
a strokeP̂3P4. The user specifies the width of the neigh-
borhood betweenP1 andP2, and uses default width for the
neighborhood defined by the stroke and the regions between
the two control points and the stroke, i.e.P2P3 andP4P1.
The two control points and the two endpoints separate the
entire contour into four segments:P1P2, P2P3, P3P4 and
P4P1.

2.2. Extracting object contour from the user specified
neighborhood

The hatched area in Fig. 2 defines a local contour neighbor-
hood. We now describe how to uses − t minimum cut to
find an optimal contour within the neighborhood.

2.2.1. Related graph theory

Graph-theoretic description ofs − t minimum cut can be
found in many graph theory textbooks [12, 13]. The min-
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Fig. 4. Extracting an object contour step by step. (a) Obtain a contour within the neighborhood defined byP1 andP2. (b)
Update control pointsP1 andP2 to P ′1 andP ′2, respectively. (c) Obtain a contour within the neighborhood defined byP ′2 and
P3 (The neighborhood has a default width). (d) Update pointP3 to P ′3. (e) Obtain a contour betweenP ′3 andP4, within the
neighborhood defined by the stroke. (f) Update pointP4 to P ′4. (g) Obtain a contour betweenP ′4 andP ′1. (h) Obtained entire
contour and updated control/end points are shown for user interactive correction. (i) The user adds a new control pointP5 to
correct the wrong segment betweenP ′4 andP ′1. (j) The user draw a stroke to correct the wrong segment betweenP ′4 andP ′1.
The two end pointsP5 andP6 separate the segmentP ′4P

′
1 into three shorter segments. The contour betweenP5 andP6 is to

be updated by an optimal contour within the neighborhood defined by the strokeP̂5P6.

imum cut considered in this paper is required to separate
multiple source nodes from multiple sink nodes. We will
use a simple graph operation callednode identificationwhich
merges or identifies a set of nodes{V1, V2, ..., Vn} into a
single new nodeV , deleting self loops, if any, and merging
parallel edges. With the help of this, we can uses− t min-
imum cut algorithms to solve the multi-source multi-sink
minimum cut problem by simply identifying the multiple
sources as a single source and multiple sinks as a single
sink, respectively.

2.2.2. Formulation of the problem

First, the neighborhood in which the optimal contour is to
be found has two forms: 1) rectangular windows (between
two control points or between a control point and a stroke
endpoint), and 2) strokes. We would like to point out that
the neighborhood defined using a stroke is essentially the
same as a neighborhood defined using two control points.
The two end points of the stroke can be regarded as two
control points, and the center line of the stroke can be trans-
formed (virtually) into a straight line, Hence, the stroke it-
self is transformed into a rectangular area. Therefore, with-
out loss of generality, we only consider rectangular areas
defined by two control points in detail.

In our algorithm, the problem of extracting object con-
tour within a specified contour neighborhood is formulated
as a multi-source multi-sink minimum cut problem. We
first represent the specified contour neighborhood, as an 8-
connectivity graphG(V,E), which means each vertexv ∈
V (corresponding to a pixelp within the neighborhood) has
edges connecting it with 8 other vertices (corresponding to
the 8 neighboring pixels of the pixelp). In order to use the

s − t minimum cut algorithm to obtain an optimal contour,
the following problems need to be solved: 1) how to define
the multiple sources and the multiple sinks, and 2) how to
assign the edge-weights in graphG so that multiple segmen-
tation cues, for example, those based on color and texture,
can be used.

2.2.3. Defining sources and sinks
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Fig. 5. Extracting contour between two control points. (a) A
neighborhood is defined by two user specified control points
A andB. (b) The desired contour lies betweenl1 and l2.
(c) Extracted object contour within local neighborhood. (d)
The end points are now updated toA′ andB′.

A neighborhood specified by two control points is shown
in Fig. 5(a). Since the desired contour lies within the rect-
angular window formed by edgesl1 and l2, we can define
the points onl1 as sources and those onl2 as sinks, as shown
in Fig. 5(b). Then thes − t minimum cut on the resulting
graph will yield the optimal contour that separatesl1 and
l2 (Fig. 5(c). We update the control points by moving them
onto the contour obtained by the algorithm, as shown in Fig.
5(d).



In practice, we sequentially process the consecutive lo-
cal neighborhoods, as we have already seen in the exam-
ple in Fig. 4. A problem there is that how to ensure that
the obtained contour in 4(c) go throughP ′2, which has al-
ready been updated, so that the extracted contour segments
can be connected seamlessly. To address this problem, the
above strategy of defining the sources and sinks within a
neighborhood defined by two control points is slightly mod-
ified. Three different situations are distinguished according
to the characteristics of the two control points of the neigh-
borhood. 1) Neither control points of the rectangle is up-
dated before. This situation occurs only when we consider
the first pair of control points, both control points have not
been updated before and we will update both of them af-
ter we obtain the local contour segment. In this case, we
identify one of the long edges as a single sources and the
other long edge as a single sinkt, as shown in Fig. 6(a). 2)
One control point has been updated but the other has not.
This situation occurs commonly after the first contour seg-
ment is obtained. By identifying sources and sinks as in
Fig.6(b) (where the left control point is updated before), the
resulting contour is forced to pass through the fixed control
points, e.g., the left control point in Fig.6(b). After the op-
timal contour segment is extracted, the other control point
(the right control point in Fig.6(b)) is updated. 3)Both ends
have been updated before. This situation occurs only when
we are extracting the last segment of the object boundary.
In this case, the sources and sinks are defined as shown in
Fig.6(c) and the resulting contour has to pass through both
endpoints. Thus, the continuity of the final contour is guar-
anteed because the consecutive contour segments are linked
together at the fixed control points.
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Fig. 6. Three different cases of extracting sources and sinks.
(a)Neither, (b) one or (c) both of the two control points have
been updated before.
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Fig. 7. Using a single stroke as input. The outer contour is
identified as a single source and the inner contour is identi-
fied as a single sink.

The selection task can also be initialized using only one

stroke as in Fig.7. In this case, the vertices corresponding to
the outer contour are identified as a single sources and the
vertices corresponding to the inner contour are identified as
a single sinkt.

2.2.4. Defining edge-weights

Edge-weight assignment is very important for graph theory
based algorithms. The edge-weight between two vertices is
assigned as a measure of similarity between the two corre-
sponding pixels: the higher the edge-weight, the more simi-
lar they are. For example, the edge-weights can be assigned
inversely proportional to the color differences between pix-
els. If the region of interest is defined by other criteria, e.g.
texture, the edge-weights must be based on texture measures
at the two pixels.

Texture based segmentation and specifically what tex-
ture features to use is a major question by itself. Here we
will not address this problem but only discuss how a given
texture feature is used for object contour selection. For this
purpose, we will use a simply computed measure of tex-
ture scale. We will first estimate the texture scale in terms
of gray level variance and then blur the texture of the esti-
mated scale. We will then use this blurred image to assign
the edge-weights. Generally, it is difficult to measure the
texture scale because we do not know the extent of textured
regions and their boundaries. However, in our case, the in-
teractive input specified a neighborhood around the desired
object contour, which is assumed to contain two different
types of textures. (We will call one of them as the texture
of the object, the other as the texture of the background.)
Accordingly, we estimate the texture scales for each of the
two support regions, i.e., the region around the source pix-
els and the region around the sink pixels as follows. (1).
We apply a set of Gaussian filters with different variances:
σ1, σ2, ..., σN whereσ1 = 0 andσi < σj , if i < j, at each
pixel within this support region. (Hereσ1 = 0, so the output
of the filter is the same as input.) (2). We calculate variance
Vi for the region after applying a Gaussian filter withσi.
(3). If the varianceV1 is smaller than a thresholdT1, we set
the scale ass = 1, otherwise, we set the scales to be the
smallest numberi such thatVi−1 − Vi is smaller than an-
other thresholdT2. Once we have estimated the scale value
for each side, we select one of the two scales to blur the the
neighborhood. If there is a considerable difference between
the mean values of the two support regions, we select the
larger scale because then the object color will be different
from the background color after blurring. If the mean value
is almost the same, we select the smaller scale because then
blurring will homogenize the side with smaller scale while
the other side will still have some texture.

As previously explained, from texture analysis perspec-
tive, considering only the texture scale and blurring are far
from enough to obtain texture features. Many other tech-



niques, for example, Textons [14], can be used for this pur-
pose. However, we have not used elaborate schemes for this
purpose for the following reasons. 1. We need provide re-
altime feedback so the computation time should be small.
2. Considering only the texture scale in our selection tool
yields good results for a wide variety of textured objects.
3. Even for the rare cases such as the two regions having
the same color distribution, where the above simple features
will be most challenged, we could still extract a satisfactory
object contour through interactive correction.

2.3. Realtime feedback and interactive correction

The set of control points (including the endpoints of strokes)
as well as the estimated contour are shown as overlaps on
the input image for user interactive correction. Before we
discuss interactive correction, we will discuss how we con-
trol the computational complexity to ensure that realtime
feedback is available to the user.

2.3.1. Control of execution time

The most time consuming part of our algorithm is the com-
putation of thes − t minimum cut, which isO(n3), where
n is the number of vertices of the graph. Therefore, the
algorithm slows down very quickly as the vertex count in-
creases. To ensure realtime feedback, we limit the vertex
number within each graph, i.e. the pixel count within each
user specified neighborhood. In our implementation, when-
ever the neighborhood size exceeds a limit, we simply insert
some new control points between the user supplied two end
points to divide the neighborhood into several equal-length
parts, each of which has a pixel count smaller than the limit.

2.3.2. Interactive correction

The contours extracted by thes − t minimum cut is not
guaranteed to be correct. Moreover, user should have the
ultimate say about the selection. Therefore, a good interac-
tive correction method is necessary for the user to extract
the final contour.

Our algorithm accepts control points and strokes as in-
put for user correction. To use control points as input, the
user has two choices: 1) changing an existing control point,
or 2) adding a new control point. If the user intends to
change an existing control point, he or she clicks within a
small neighborhood of the existing control point. Other-
wise, to choose adding a new control point between two ex-
isting control points, the user clicks on the contour segment
between the two control points. Then the user clicks near
the desired new position, and this new point replaces the
old control point, or becomes a new control point, based on
the type of the first clicked point. After this second point is
clicked, two neighboring rectangular windows with default
widths are shown on the image. The user is able to adjust the

widths, and the algorithm extracts the two new contour seg-
ments within the two windows. This time, the clicked new
control point is assumed to be accurate such that the two
new contour segment connected at this point. To use stroke
as input to correct the estimated contour, the user first speci-
fies the width of the stroke, then draws a stroke which starts
and ends on the estimated contour. The start point and the
end point of the stroke then become the new control points,
and all the old intermediate control points are discarded. A
contour within the new stroke is computed using the same
method as before. After each correction, the newly obtained
object contour and the new set of control points are shown
on top of the input image for further correction, until the
estimated contour is satisfactory.

Thus, the user has full control of the final contour. In the
extreme case, the user can manually draw the entire object
contour using a stroke with a small width.

3. EXPERIMENTAL RESULTS
First, we show some experimental results for extracting op-
timal contour within a local contour neighborhood defined
by two control points. Fig. 8(a) and (b) show two compli-
cated boundaries. Fig. 8(c) and (d) show some synthetic
textured objects and background. Fig. 8(e) and (f) show
some real images with textured objects.

(a) (b) (c) (d) (e) (f)

Fig. 8. Extracting optimal contour within a neighborhood
defined by two control points. Control points are marked
with blue cross, and the obtained contours are marked with
red points.

Second, we show an example of using control points
as initial input to extract object contour, and for interactive
correction. Fig. 9(a) shows a set of initial control points.
The selected object is shown in Fig. 9(b). The result is quite
satisfactory except one of the feathers in the right corner is
not included. Fig. 9(c) shows how the user sequentially
inserts two new control points, one at a time, to correct this
error. The final result is shown in Fig. 9(d).

(a) (b) (c) (d)

Fig. 9. (a) Using a set of control points as input. Control
points are marked in yellow. (b) Result of (a). (c) User
adds two more control points, which are marked with yellow
points. (d) Final result after correction.
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Fig. 10. Examples of selected objects. (a)-(e) are original images and (f)-(j) are corresponding results.

Finally, some other object selection results are shown in
Fig. 10.

4. CONCLUSIONS AND DISCUSSION

In this paper, we present ans − t minimum cut based in-
teractive algorithm to extract objects from digital images.
The user interface is simple and provides realtime feedback
for interactive correction. The final object contours are fully
controllable through user interactive correction. We also de-
velop an automatic scale selection algorithm and apply it to
define the graph edge-weights, yielding a tool capable of
considering texture information.

Although our method is compared with others in section
1, we do not provide experimental comparisons. The rea-
son is that it is difficult to set up a standard for comparing
the performance of interactive object selection tools. Also,
this is why there is no experimental comparison provided in
those classic object selection papers [1, 2, 6, 7].

It would be useful to extend our selection method to in-
clude alpha channel estimates for objects with fuzzy bound-
aries. Other ongoing work is aimed at this extension without
sacrificing the realtime nature of the computation.
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