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Abstract more efficient. These two orientation searches yield an
estimate of the surface orientation and a more reliable

that takes into account surface foreshortening effects to ::Iept(;\ d(f,tst|mate smc;a LV.VO pallrs Qtthterel‘o |nt"|a|?esla;e used.
match image feature points and provides surface normal n adadrtion, our matching aigorithm aiso taxes into ac-

directions at these points as a by-product. Compared to count the presence of a 3D edge in the vicinity of the
other existing, similar algorithms that consider surface Point to be matched, so that it can detect and match sur-
foreshortening effects, our algorithm is more efficient face points near 3D edges.

since it decomposes a 2D surface orientation search into

two 1D searches along two pairs of epipolar lines, and Our Approach

more robust since two pairs of stereo images from three Three calibrated cameras, two displaced horizontally and
cameras are used and the decomposition makes it possi- ! P y

ble for our algorithm to detect and match surface points WO vertically, are used to acquire two stereo pairs of im-
near 3D edgesl Experimenta| results Show|ng correspon- ageS The dIStance betWeen eaCh camera and the ObjeCt IS
dences, surface normal directions, reconstructed surfaces approximately the same. Since their viewing directions
are presented and evaluated. are quite different, we do not use rectification as tradi-
tional stereo matching algorithms do. Below, we first
discuss the matching algorithm for two views and then

_I ntroductlon ) ] follow with the three-view cases.
The task of matching points between two images is cen-

tral to computer vision [1, 2]. Many existing stereo Two views

matching approaches use afixed windowagfiori cho- 1, jg 1(a), 0, andO, are the two camera centers and
sen size [3] or an adaptive window [4] of variable size p is an object surface point. Plar O, P intersects
chosen based on local variations of intensity and disparg,o object along the surface cur&P(, whose projec-
ity. These methods do not take into account viewing 9€3ion in each imageR; P,Q;,i — 1,2 is on a straight
ometry and local surface orientation, which will affect io ‘cajled epipolar line. The two epipolar lines are de-
the shapes of corresponding windows. Therefore, the g a1, andes;, respectively, in images, and I,
accuracy of the above matching algorithms will be af-, o shown in Fig. ‘1(b). For simplicity, we first consider
fected if this foreshortening effect is considerably large (geformation within the epipolar plar(e’lOgP, which is

which is common in wide baseline cases. Devernay and one._dimensional deformation along the epipolar line.
Faugeras [5] propose a fine correlation method that al-

lows a matching window to locally deform between a

In this paper, we present a three-view matching algorithm

stereo image pair to estimate accurately both the dispar- &.\.\.‘
ity and its derivatives directly from image data. Mai- Ri PG
mone [6] models the deformation using local spatial fre- I

guency representation, but the scheme still needs brute

force search over the surface orientation in addition to S
the depth search. Hattori and Maki [7] propose an algo- R; P2 @
rithm which computes the surface depth and orientation I2

simultaneously by first getting an initial depth estimate (@) \ (b)
assuming the local surface to be frontal parallel and then

considering the surface orientation to refine the depth esgigure 1: Two camera case: @) 0. P plane.O; and

timate. . O, are two camera centers aftds a point on the object
Compared to these methods, our proposed three-viewrface. Plan&,0,P intersects the object along the

matching algorithm is more efficient and more robust.gyrface curveR PQ. (b) Epipolar lines in images,

The use of a three-camera setting to decompose the 2Bhq1,. PointR;, P, Q;, and R., P», Q, are images of
surface orientation search into two 1D searches alongp point R, P, Q on I, andI», respectively.

two pairs of epipolar lines makes our matching approach
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Figure 2: Viewing geometry within the epipolar plane.

PP’ is a short segment on cunfePQ

The viewing geometry within the plan®,05P is

whereY andY” follow if the corresponding image points
x1 Oneps andx, Onegy are known, ands, fo, Ri1, R
follow from the calibration parameters.

By considering the deformation within the epipolar
planeO, 0, P, we can estimate the depth of a given point
P1in I; and its foreshortening ratio simultaneously us-
ing

(d, ratio) = arg nax Corr(d, ratio),
where Cor(d, ratio) is the correlation value based dn
andratio. In practice, we use a pair of parallelogram
shaped windows with a small height as in Fig. 3 along
epipolar lines to correlate poird®; in I; and candidate
P, in I,. For each candidat&,, we change the ratio
of the lengths of the two windows. The ratio yielding

shown in Fig. 2. Suppose the 2D world frame is placedthe best correlation is kept as the match qualityPof

at cameraD; and the coordinate frame of camets

The candidate yielding the best match quality is selected

is related to the world frame with a 2D rigid body mo- as the matched point. For the best maféh and the

tion (R, T). The rotation matrixk = | g; g;z ]
T

and the translation vectdfF = | T

] are obtained

corresponding ratio, we estimate both the depthand
slopea (and therefore the surface normalfatvithin the
epipolar plane) simultaneously.

To simplify the computation, we make two approxi-

from calibrated extrinsic parameters. Without loss ofmations. First, we do not consider the deformation along

generality, we approximate a short curizP’ on the
object surface as a straight line whefe = (X,Y)7

and P’ = (X + 6X,Y + §Y)T. The coordinates of

P and P’ viewed from camera), are (X', Y’)T and
(X" +6X',Y' + 6Y")T, respectively, inOy’s coordi-
nate frame. Camer@; projectsP and P’ onto the 1-
dimensional epipolar line,» with local coordinates:;

andz; + dx1, while cameraD, projects them onto the

epipolar lineey; with local coordinatess andxzs + dxs.
From the perspective projection model, we have

xlzéX,
l’1+(5l’1: fl (X+5X)
Y 4+ 0Y ’
Ty = %(RHX + R12Y + 1),
[R11(X +6X) + Ria(Y +6Y) + T
oy, = L X O + Ruall + V) + 7],

where f; is the distance between optical cenr and

epipolar lineeqs, f> is the distance between optical cen-
ter O, and epipolar line,;. Since we are considering a
short curvePP’, and P’ is very close toP, we assume

thatdY <« Y anddY’ <« Y’'. Suppose linePP’ is:
Y = aX + b, then we haveY = a - §X. From the
above equations, we have

0xe = g(a) - 6z

where Y
g(a) = f—i . ? . (R11+G~R12)
is a function ofa, which denotes the orientation &P’
in the epipolar plane. So, if we know the ratj¢a) of
dx anddz, we can calculate the orientation of lifieP’
using
_ . ratiO-fl-Y/~R12—f2'Y'R11
a = g (ratio) = )
g (ratio) fo Y R

the direction perpendicular to the surface curve, which
is within planeO, O, P. However, from our assumption
thatO; P ~ O, P, this deformation will be very similar
for both imagel; andl,. Moreover, since we use a par-
allelogram shaped window with a small height, the de-
formation differences in the vertical direction can be ne-
glected. Second, the use of rectangular windows aligned
with an epipolar line for matching is only an approxi-
mation. Truly, the windows should be trapezoid shaped
since adjacent rows of the window should lie on adja-
cent epipolar lines and epipolar lines intersect at epipole
However, in our case, since the epipole is far away from
the object in the image, adjacent epipolar lines can be
approximated by parallel lines.
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Figure 3: Parallelogram windows with small height
along epipolar lines. The width of these windows are
varied to yield a best correlation value.

So far, we have not considered the situation when the
point of interestP is close to a 3D edge, which is not
assured since we select the points based on their image
space salience. To address this problem, we consider two
different windows extending to the left and right®fand
calculate the correlations for each for a range of ratios. If
we assume that 3D edges do not occur nearn both
sides of it, one of the two windows should yield a match.
We distinguish the following cases and draw inferences
as indicated:

1. If both sides’ match qualities are high, then

a) if the two ratios are the same, we consider the surface
curve as a straight line and its orientation can be esti-
mated from either side’s ratio (or both);

b) if the two ratios are different, we consider this point



as a 3D edge point, hence there is no single orientatiotation, we simply check the consistency of the ordering
to be computed rather the two sides have different orienand the continuity of depth and orientation of current
tations. point with its neighboring points. If a point is inconsis-

2. If one side’s match quality is high and the other’s is tent with the majority of its neighboring points, we assign

low, we know that there is a 3D edge point within the it a depth corresponding to a local maximum value of the
window with lower correlation value. The result is still correlation within the acceptable range so that the con-
acceptable and the orientation can be estimated using theraints are satisfied. This step is carried out iteratively

ratio on the higher correlation side. until all the points are consistent with the constraints.
3. If both match qualities are low, we regard it as a failed
match (e.g., there is an edge point nearby on each side). Experimental Results

Thus, our two-view matching method involves search . . .
In this section, we present experimental results and eval-

along the epipolar lines, for a match between two pairsuate them. In these experiments, the horizontal and ver-
of parallelogram shaped windows with their long edgestical camera pairs are aboti0mm apart, and the object

parallel to the epipolar lines. For each of the two pairs of . ; .
windows, we vary the ratio of their widths and calculate distance is abou0mm. We calibrate the three cameras
ysing Zhang'sasycalibration software [8].

the correlation values. From the best correlation value . ; - . . .
The object considered in our experiment is a piece of

and the associated ratios we estimate the depth and sIo;POelded paper with text on it. Fig. 5 shows three input im-
of the point, and infer whether the pointis along a smooth gesl,, I, and s from left to right. The marked points

iﬂ::{/aéce curve orthere is a 3D edge point nearby along th% I, are the selected points to be matched. We use the

three-view stereo matching algorithm to find the corre-
Threeviews sponding points in the other two images and at the same
time estimate the surface normal at these points. The
matched points are marked by round dot&iand/s. In

order to check the correctness of the matched points, we
\ manually enter the corresponding points, marked with
»}7" "X"in Iy andI3, and compare them with the points ob-
T tained by our algorithm. The average and standard de-
a viation of the distances between the matches found by

the algorithm and those marked manually are observed
to be 2.0760 pixels and 1.3156 pixels, respectively (in
(b) 640 x 480 images). Please note that this 2-pixel error is
not with respect to the ground truth, which is unavailable.
Instead, it is the difference between the matches found by
our algorithm and the manually clicked matches. Man-
ually clicking itself can easily have a 2-pixel error in a

Since the above two-view matching algorithm gives_640 x 480 image. Itis clear_ that our mat_chmg algorithm
the surface orientation only within the epipolar plane, weiS consistent with human visual perception.
use three calibrated cameras, C5 andCj (Fig. 4) and
each camera captures one image of the object, yielding
three imagesl, I, and/s.

For each point of interest selectedlin a depth range
is set based on the assumption that the corresponding
point in 3D space is within the fields of view of the other
two cameras. For each depth value within this range,
we calculate the two corresponding pixels en and
es1, respectively, and compute the best correlation value
while changing the ratios of window widths using the

two-view matching algorithm. The correlation values : _ .
from the two stereo pairf, I, and I, I; are summed up matgs. Red Ilrjes show the estimated _surfgce normal di-
dgection. Blue lines show the normal directions of least-

and the depth associated with the matches with largest i . . )
summation is selected to be the point's depth estimate>duare fitted planes on neighborisig 3 points.
From the stereo paif, I, we can estimate the orienta-  The surface normal is estimated as a by-product of our
tion of the surface curve within planeO,0,, denoted algorithm. Fig. 6 shows two views of a surface along
by I1 = (l11,l2,113)T, and similarly, we can estimate with the estimated normal directions, shown as red lines.
the orientation of the surface curve within plaR@,Os, To evaluate these estimates, we obtain a least-square pla-
denoted byly = (l21,122,123)T. Thus we can estimate nar fit to depths derived from the manually matches in
the surface normal as, ~ I; x . each3 x 3 neighborhood away from 3D edges, and use
The depth and surface normal estimates are used tive normal direction of the plane as the ground truth
refine the matchings by considering the ordering con-at the neighborhood center. These ground truth normal
straints and the continuity constraints. In our implemen-directions are shown as blue lines. The average and

Figure 4. (a) Three cameras fixating on the object from
different viewpoints. (b) Corresponding two pairs of
epipolar lines.

Figure 6: Two different views of surface normal esti-
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Figure 5: Original images and corresponding points. Thepmdts in/; are initial vertices to be matched. Estimated
corresponding vertices are shown as red point§;iand I5. The points marked with "x” are manually supplied
matches for evaluation purposes.

standard deviation of the surface normal directions beface normal estimation approaches either first obtain the
tween our estimates and the ground truth B5d137° depth and then estimate the normal (thus they are af-
and5.4698°, respectively. It is reasonably small becausefected significantly by the initial depth estimate), or they
when we search for the ratio of one directional defor-involve an exhaustive search for 2D surface orientation in
mation, only10 discrete different ratios are used in each addition to the depth search. Our method estimates depth
of the two epipolar directions. (If we assume the realand surface normal simultaneously. Moreover, it decom-
surface normal directions are uniformly distributed andposes the 2D orientation search into two 1D searches
there is no error in ratio estimation, the average error ofalong two pairs of epipolar lines, and hence is more effi-
surface normal estimate in each epipolar plane will becient. The redundancy provided by a second stereo pair
5°. Moreover, the smallest error in ratio estimation will adds robustness to the matching. In addition, our match-
leads to an average error 2° in that plane.) ing algorithm also takes into account the presence of a
3D edge in the vicinity of the point to be matched.
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Summary

Our three-view matching algorithm takes into account
the differential foreshortening and achieves robust stere
matching. At the same time, the algorithm estimates
surface normal direction as a by-product. Existing sur-



