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Dot Pattern Processing Using Voronoi Neighborhoods

NARENDRA AHUJA

Abstract-A sound notion of the neighborhood of a point is essential
for analyzing dot patterns. The past work in this direction has con-
centrated on identifying pairs of points that are neighbors. Examples
of such methods include those based on a fixed radius, k-nearest neigh-
bors, minimal spanning tree, relative neighborhood graph, and the
Gabriel graph. This correspondence considers the use of the region
enclosed by a point's Voronoi polygon as its neighborhood. It is
argued that the Voronoi polygons possess intuitively appealing charac-
teristics, as would be expected from the neighborhood of a point.
Geometrical characteristics of the Voronoi neighborhood are used as
features in dot pattern processing. Procedures for segmentation, match-
ing, and perceptual border extraction using the Voronoi neighborhood
are outlined. Extensions of the Voronoi definition to other domains
are discussed.

Index Terms-Clustering, computational complexity, dot patterns,
Gabriel graph, k-nearest neighbors, matching, minimal spanning tree,
neighborhood, neighbors, perceptual boundary extraction, relative
neighborhood graph, Voronoi tessellation.

I. INTRODUCTION
In processing visual information one often encounters dot

patterns instead of gray level or color images. For example,
objects in an image are often represented by the locations of
some of their spatial features, such as spots, corners, etc. This
is done to reduce the sensitivity of the analysis to changes in
lighting conditions, scale, orientation of the camera, sensor
characteristics, geometrical distortions, etc. The locations of
spatial features also serve as a natural choice as landmarks in
relating multiple views of real world scenes. Differences in
images of the same scene may be induced by the relative mo-
tion of the camera and the scene, by the relative displacements
of the cameras, or by the motion of objects in the scene. The
spatial relationships between corresponding points in different
dot patterns are used in deducing depth, velocity, and shape
information about the scene. In pattern recognition dot pat-
terns are ubiquitous. Representation of images by the values
of certain features measured on the image parts provides dot
patterns in the feature space. Pattern recognition procedures
such as classification and clustering operate on such dot pat-
terns. The features used may not be spatial, but may be, for
example, values of certain transform coefficients. In cartog-
raphy points denote locations of landmarks detected by air-
borne sensors. The nighttime sky is a natural dot pattern.
Operations commonly performed include identifying certain
star clusters and matching stored star patterns against repeated
observations. An air traffic situation may be represented by
specifying the point locations of aircrafts. This representation
may then be used to detect potential collisions. Research on
visual perception has made extensive use of dot patterns to in-
vestigate human image understanding. Dot patterns with con-
trolled characteristics have been used in experiments evaluat-
ing models of certain visual processes such as texture, motion
perception, and stereopsis.
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While regions in a gray level image can be described in terms
of their geometrical properties, this clearly does not extend to
points, which are the structural units of dot patterns. Any
characterization or comparison of dot patterns must be in
terms of the relative spatial arrangements of points. Inferences
about the structure of the pattern can be made, if it is pro-
duced by a point process of a known type. However, in gen-
eral, such a priori knowledge or model of the point process is
unavailable. Any inferences about the structure must be data-
driven.
Global features of point patterns (such as the gestalt law of

good continuation) are important in the perception of their
structure. However, taking global features into account neces-
sitates a top-down approach, and hence the availability of a
model. Without a model, a bottom-up approach is required.
Structural descriptions must be built using the relative posi-
tions of neighboring points. Therefore, a sound notion of
neighborhood is necessary.
Past work on defining the neighborhood of a point has con-

centrated on identifying its neighbors. The analysis of dot
patterns incorporates joint properties of neighbors. In this
correspondence we examine the use of neighborhood of a
point, which associates with a point not only other points as
its neighbors, but also a part of the Euclidean plane around it.
The analysis makes use of the shape features of the neighbor-
hood, in addition to the neighbors themselves. In particular,
we examine the use of (the region enclosed by) the Voronoi
polygon as a point's neighborhood. It should be pointed out
that the general idea of making use of geometric properties of
the Voronoi polygons has been mentioned before (see Section
III), although it has not been explored for any specific
application.
In Section II we review briefly the definitions of the neigh-

bors of a point used in the past. Section III discusses the
Voronoi neighborhood approach and its salient features that
we believe make it more promising than the other methods.
Section IV discusses applications of the Voronoi neighborhood
to dot pattern segmentation, pattern matching, and perceptual
border extraction. Section V presents concluding remarks.

II. APPROACHES TO DEFINING THE NEIGHBORHOOD
OF A POINT-A REVIEW

The past work on defining the neighborhood of a point has
been concerned with the following question: given an arbi-
trary point in a dot pattern, which other points should be
treated as its neighbors? For identifying clusters of dots,
Koontz and Fukunaga [ 171 do not allow two points to be as-
signed to two different clusters if they are closer than a dis-
tance R apart. The value of R is globally specified; it defines
the extent of the neighborhood of a point anywhere in the
pattern. Patrick and Shen [22] start a cluster with a single
point and then iteratively consider for inclusion every non-
cluster point within a given distance of any cluster point.
Sneath [31] uses the same neighborhood criterion to detect
points along a curve. Koontz and Fukunaga [17] also men-
tion the possibility of assigning a point and its k-nearest neigh-
bors to the same cluster. However, they argue that such a
criterion may be inappropriate if the neighbors are unsym-
metric (two points P1 and P2 are unsymmetric neighbors if
P1 is a neighbor of P2, but P2 is not a neighbor of Pl). In a
relaxation formulation [26] of the clustering problem, Zucker
and Hummel [431 use the k-nearest neighbors criterion with
success. They consider three different types of dots: cluster
interior points, cluster edge points, and noise points. Koontz
and Fukunaga's objection to the k-nearest neighbors criterion
may not be serious for this formulation since neighbors are
not required to be of the same type. Jarvis and Patrick [121
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also use a k-nearest neighbors approach. Two points are called
neighbor if each belongs to the other's set of k-nearest neigh-
bors and the two sets share at least kt points. This group
similarity concept of neighborhood favors clusters with a
globular structure when kt is large. In their experiments they
only use point pair similarity (kt = 1). Velasco [37], [38]
also uses a k-nearest neighbors approach for cluster analysis.
O'Callaghan [19] presents examples showing when the k-

nearest neighbors method fails. He points out that problems
arise when a dot pattern contains clusters consisting of fewer
than k points or when a sparse cluster or an isolated point is
close to a dense cluster. He suggests [ 19], [20] the following
alternative method to determine the neighborhood of a point.
Let Pi, be the nearest neighbor of a given point Pi. Any point
Pk is a neighbor of Pi if: 1) d(Pi, Pk)Id(PI, Pi,) is no greater
than a specified threshold Tr, and 2) Pk is not "behind" any
neighbor Pj of Pi, i.e., the angle PiPjPk differs from 180 by
more than a threshold To. O'Callaghan [211 uses this defini-
tion of neighbors to compute the perceptual boundaries of dot
patterns.

All the definitions of neighborhood described so far define
a point's neighbors in terms of certain parameters. Also, the
performance of these methods depends upon the values of
the parameters, and hence there may always be a need to tune
the parameters for best performance on a given pattern. The
following approaches make use of only the locations of the
points.
Zahn [40] uses the minimal spanning tree (MST) of a point

set to define neighborhoods. An MST spans all the points such
that the sum of the Euclidean edge lengths is less than that for
any other spanning tree. Interaction is considered between
only those points connected by the edges of the tree. Thus,
although the choice of the neighbors of a point is from its
nearest neighbors, the exact number of neighbors that a point
has depends upon the global optimum connectivity of the
points. Johnson [131 and Gower and Ross [9] discuss the use
of an MST-like approach for hierarchical clustering. For a
good review of graph theoretic concepts in clustering, see
Hubert [11].
Toussaint [34] defines the relative neighborhood graph of a

set of planar points. Let d(Pl, P2) denote the Euclidean dis-
tance between any two points P1 and P2. Points Pi and P1 are
connected in the relative neighborhood graph if d(Pi, Pj) <
max [d(Pi, Pk), d(Pj, Pk)] for all points Pk = Pi, Pi. Thus, Pi
and P1 are connected whenever there is no point within their
lune. A related criterion is used to define Gabriel graph [35 ].
Points Pi and Pj are connected in the Gabriel graph if there is
no point within the circle whose diameter is the line P1-P.
That is, Pi and P1 are connected if d2 (Pi, Pj) > d2 (Pi, P1) +
d2(Pk, Pj), for all points Pk # Pi, Pj. Both these criteria for
connectivity between points are not global as for MST, and
therefore allow more edges.
Neighbors of a point have also been defined by constructing

the Voronoi tessellation of the point pattern. This definition
will be explained in the next section, after we describe the
Voronoi tessellation of the plane.

III. VORONOI NEIGHBORHOODS

Our motivation for this correspondence came from the ob-
servation that humans find it easy to identify the neighbor-
hood and neighbors of a point in a wide variety of dot pat-
terns, including those having varying density. This would
suggest the existence of a general parameter-free concept of
neighborhood.
In this section we present a definition of the neighborhood

of a point based upon the Voronoi tessellation defined by the

A. Voronoi Tessellation
Suppose that we are given a set S of three or more points in

the Euclidean plane. Assume that these points are not all col-
linear and that no four points are cocircular. Consider an arbi-
trary pair of points P and Q. The bisector of the line joining
P and Q is the locus of points equidistant from both P and Q
and divides the plane into two halves. The half plane HQ(HQ)
is the locus of points closer to P(Q) than to Q(P). For any
given point P, a set of such half planes is obtained for various
choices of Q. The intersection nQES,Q+P HQ defines a polyg-
onal region consisting of points closer to P than to any other
point. Such a region is called the Voronoi [39] (Dirichlat,
Wigner-Seitz, Theissen [32] or "S" [23]) polygon associated
with the point.
Voronoi polygons may be viewed as the result of a growth

process. Assume that all the points (nuclei) simultaneously
start a uniform outward growth along a circular frontier. At
some later time they reach a tightly packed state in which the
number of points of contact between the circle centered at a

given point P and other circles is determined by the configura-
tion of points in the vicinity of P. The growth stops at the
points of contact. As remaining points on the circles continue
to expand, the points of contact become midpoints of growing
straight line segments along which growth frontiers meet and
freeze. Since all circles expand at the same rate, the first point
of contact between two circles must occur at the midpoint be-
tween their nuclei. Likewise, the growing line segments must
be equidistant from the two nuclei. These points are on the
common edge of two developing Voronoi polygons. An edge
continues elongating until it encounters the border of a third
expanding circle. The point of contact of this edge and the
border of the third circle must be equidistant from the growth
centers of all three circles. It is therefore, the circumcenter of
the triangle defined by the three nuclei. Eventually, only the
circles whose nuclei are on the convex hull of S are still ex-
panding. Each of the remaining nuclei is contained in exactly
one convex polygon. The set of complete polygons is called
the Voronoi diagram of S [25], [28]. The Voronoi diagram,
together with the incomplete polygons on the convex hull de-
fine a Voronoi tessellation of the entire plane. The collection
of edges obtained by joining each point with its neighbors is
the dual of the Voronoi tessellation and is called the Delaunay
tessellation.
An example of Voronoi tessellation is shown in Fig. 1.

O(MogN) algorithms to construct the Voronoi tessellation of
N points are given by Shamos and Hoey [ 28 ] and Lee [ 18 ].
Voronoi tessellation has also been used to define neighbors

in a point pattern [3], [4], [291, [33], [36]. As discussed
previously, the points whose polygons share edges with the
polygon containing a given point P are called P's Voronoi
neighbors. Besag [3], [4] mentions the possibility of using
the Voronoi neighbors in the formulation of conditional
probability models of interaction among random variables as-

sociated with irregularly distributed coplanar sites. For classi-
fying point data, Toussaint and Poulsen [36] use the Voronoi
neighbors to extract a reduced set of data points, which when
used with a nearest neighbor decision rule for classification,
implements the original decision boundary. Tobler [33] also
suggests the use of the Voronoi neighbors in processing geo-

graphical data available at irregular locations. In the next sec-

tion we will discuss application of geometrical characteristics
of the Voronoi neighborhood to processing dot patterns.

B. Neighborhood of a Point

We will consider as the neighborhood of a point P (the
region enclosed by) the Voronoi polygon containing P. Con-

points. First, we review the definition of the Voronoi
tessellation.
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Fig. 2. Fixed radius neighborhoods of a given set of points. The
hatched region does not belong to any of the neighborhoods.

Fig. 1. Voronoi tessellation defined by a given set of poinfs. Dotted
lines show the corresponding Delaunay tessellation.

Voronoi polygons, in addition to the Voronoi neighbor rela-
tion between points, will be used to analyze dot patterns.
First, we will compare the Voronoi neighborhood and the
Voronoi neighbors with the other definitions.
A crucial difference between the Voronoi and most tradi-

tional definitions of neighbors is that the former makes use of
the Euclidean plane. The Voronoi construction actually goes
through the intermediate stage of assigning a unique Euclidean
neighborhood to each point. The assignment of neighbors
follows quite naturally, being based upon the adjacency char-
acteristics of Euclidean neighborhoods. Among the ap-
proaches mentioned in the last section, only the fixed radius
method involves a Euclidean neighborhood (although the ob-
jective is only to identify the neighbors). The rest determine
the neighbors of a point directly in terms of interpoint dis-
tances. The fixed radius approach is not satisfactory for the
following reasons.

1) It is insensitive to variations in the local densities of
points. In dense dot areas a point may have a large number of
neighbors, whereas it may not have even a single neighbor in
sparse regions. The number of neighbors is thus determined
by scale, and not by the structure of the pattern alone. Voro-
noi polygons, on the other hand, reflect local structure.

2) The fixed radius neighborhood is by definition station-
ary. It does not respond to trends in point density gradients
or any other direction sensitive structure. Voronoi polygons
assume shapes that reflect the properties of local spatial point
distributions.
3) The set of circles of radius R centered at a given set of

points will, in general, have regions of overlap. There will also
be regions surrounded by various neighborhoods, but not in-
cluded in any (Fig. 2). Intuitively, such ring-like neighbor-
hoods surrounding "no-man's" land are less than satisfactory.
(In Fig. 2 we would expect the central region to be divided
among the neighborhoods of the surrounding points.) The
Voronoi tessellation assigns each region of the plane to the
neighborhood of one and only one point.
A comparison between the Voronoi approach and the k-

nearest neighbors approach follows next.
1) The number of Voronoi neighbors of a point varies from

point to point. This is not true for the k-nearest neighbor
approach.

Fig. 3. Voronoi neighbors of a point may be farther from it than non-
neighbors. Here Q is a neighbor of P, R is not, and d(P, Q) > d(P, R).

2) Voronoi neighbors are symmetric by definition. The k-
nearest neighbors of a point may or may not be symmetric,
depending upon the approach used.
3) The Voronoi neighbors of a point are not necessarily its

nearest neighbors. In fact, some of a point's neighbors may be
farther from it than some other points which are not its Voro-
noi neighbors (Fig. 3). The Voronoi neighbors of a point must
"surround" it. Hence, distant points may be accepted as
neighbors on the sparsely populated side of a point whereas
relatively close points may not be accepted as neighbors on the
dense side if they occur "behind" other closer points (Fig. 3).
O'Callaghan's [ 19] approach is an attempt to impart part of

this last attribute to the neighborhood of a point. The param-
eter To determines which points should be excluded from a
given point's neighbors, regardless of how close they are to it.
An appropriate value of To would depend upon the point con-
figuration under consideration; using a fixed value as suggested
in [ 19] may not be optimal for all the points in an arbitrary
pattern. O'Callaghan [191 suggests that To be regarded as a
constant for many kinds of dot patterns. Fig. 4(a) shows the
shape of a typical neighborhood of a point (from [19]). In-
tuitively, one would expect the neighborhood to be spatially
compact. The star shaped region is a result of the fixed, con-
figuration-independent parameter values. The Voronoi neigh-
borhood and be viewed as resulting from a context sensitive
choice of both Tr and To for each neighbor of a point.
The points linked in Zahn's mst [40] may be called "neigh-

bors." The Delaunay triangulation provides an analogous link-
ing for Voronoi nuclei. The concept of neighbor in Zahn's
case relies on global considerations, since the mst of N points
contains only (N-1) edges. The Delaunay triangulation, on the
other hand, has many more edges, the total number being the
same as the total number of pairs of neighbors. The total
number of edges in the Delaunay triangulation is at most 3N-6.
The set of edges in the relative neighborhood graph is a super-
set of the set of edges in the MST and a subset of the edges in
the Delaunay triangulation [341.
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Fig. 4. (a) A typical neighborhood of a point Pi, as defined by O'Cal-
laghan [19] . (b) P1 and P2 are not connected in the relative neigh-
borhood graph. However, they are Voronoi neighbors.

For the Voronoi approach, two points which have a "clear"
zone between them may be labeled as neighbors, irrespective
of their separation and cluster-memberships. On the other
hand, the fixed radius and k-nearest neighbor approaches label
a pair of points as neighbors if they are "sufficiently close."
Neighbors are generally required to belong to the same cluster.
The relative neighborhood graph may not recognize intuitively
obvious neighbors of a point. For example, in Fig. 4(b) point
P1 has points P2 to P6 as its neighbors. Similarly, the intuitive
neighbor set of P2 contains points P1,,P3, P4, P8, P9, and P10.
Thus, P1 and P2 appear to be neighbors. However, the relative
neighborhood graph of points P1 to Plo does not connect P1
and P2, since the lune formed by P1 and P2 is not empty. But
P1 and P2 are still Voronoi neighbors, as illustrated by the
partial Voronoi tessellation (dotted lines) shown in Fig. 4(b).
The local environment of a point in a given pattern is re-

flected in the geometrical characteristics of its Voronoi poly-
gon. This presents a convenient way to compare the local en-
vironments of different points. Since the perceived structure
in a dot pattern results from the relative spatial arrangement of
points, the geometric properties of Voronoi polygons may be
useful for describing and detecting structure in dot patterns.
In addition, such an approach lends a fully two-dimensional
character to the problem in that the dot pattern is converted
into a planar image or a mosaic. As a result, many common
low-level computer vision techniques become relevant.

IV. APPLICATIONS

Since a Euclidean neighborhood makes possible a continuous
image-like treatment of a dot pattern, it permits the use of
general image processing techniques. In addition, the perfor-

mance of the available methods of dot pattern processing that
use alternate definitions of neighbors may be examined using
the Voronoi neighbors. If the Voronoi definition is more ap-
propriate than the others, these techniques should exhibit im-
proved performance.
In the rest of this section we discuss three different applica-

tion areas. In order to evaluate the expected relative perfor-
mance of the methods, approaches to the problems using al-
ternative neighborhood definitions are also outlined. We will
show that solutions using the Voronoi approach appear to
have advantages in computational complexity, quality, and
conceptual simplicity.

A. Segmentation by Dot Cluster Analysis
Finding clusters in a dot pattern usually means finding a

partition of the given set of points into subsets whose in-class
members are "similar" in some sense and whose cross-class
members are "dissimilar" in a corresponding sense [121. A
formalization of the notion of "similarity" is instrumental in
determining the power of any such partitioning algorithm.
Traditionally, externally specified similarity measures between
pairs of objects in an n-dimensional space have been used to
make decisions about grouping the objects. Various criteria
using pairwise similarity measures have been developed to
measure the goodness ofagrouping [1], [71, [8], [13], [17].
However, for planar dot clusters, the desired similarity mea-
sure must compare neighborhoods of points. Several such
methods using the traditional notions of neighborhood have
been reported [9], [11], [12], [40], [43].
The Voronoi neighborhoods of the points which reside

within the interior of a homogeneous cluster will have similar
shapes and sizes. For different clusters, these interior poly-
gons may differ in their geometrical properties (Fig. 5). The
border cells of a cluster will be open if there is no other cluster
to bound them. The cells of the border points of a cluster that
have neighbors in a nearby cluster will differ from interior
cells. For example, they may be elongated if the distance be-
tween cross cluster neighbors is larger than within cluster
neighbors, or the nucleus of the cell may be located well off
its center (Fig. 5). For a cluster having orientation sensitive
density, the shapes of the resulting Voronoi polygons will ex-
hibit a corresponding direction sensitivity [Fig. 6(a)]. The
Voronoi cells of a cluster whose spatial point density varies
will have decreasing area along the direction of increasing den-
sity [Fig. 6(b)]. Clearly, a globular cluster will have a larger
number of interior cells than will a more elongated cluster
(Fig. 7). Detection of a curved cluster and of a cluster with a
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Fig. 6. (a) A simple example of a cluster having direction sensitive

point density. Points are more closely packed in the vertical direc-

tion. The shape of the cells reflect this property. (b) A cluster with

the point density increasing towards the right. The cells get smaller.

neck (Fig. 8) may require the use of the joint characteristics

of neighboring cells, e.g.', distance between the neighbors, etc.

Characteristics of the Voronoi polygons for some additional

types of clusters [12], [19], [40], (43] may also be easily

inferred in terms of the cluster structure.

A solution to the clustering problem then lies partly in the

use of a meaningful set of geometrical features of tite individ-

ual Voronoi cells, and also of features relating to the joint

characteristics of neighbors. Several examples of neighbor-

hood features that may be used to label a point are as follows:

1) area and perimeter,

2) completeness,

3) elongatedness or compactness,

4) direction, of principal axis,

5) variance of side lengths,

6) eccentricity.

Examples of some joint properties that may be useful are:

distance between neighbors (e.g., for clusters with necks),

gradients of cell features (e.g., area gradient for clusters with

varying density), and status of neighbors with respect to com-

pleteness of cells (e.g., for identifying necks in clusters). We

would like to point out- that Sibson [29] has suggested the use

of areas and nucleus-vertex -distances of the Voronoi poly-

gons and the distances between neighboring points as statistics

of a point pattern.

If we use n different properties, then the points acquire n-

dimensional vector attributes that may be of visual signifi-

cance. A.similarity measure based on the Euclidean distances

in n-dimensions may be used. Alternatively, the attributes can

be ordered according to their significance and the decision

about merging any two points made by a sequential considera-

tion of the individual attribute differences. Only neighbors

,need be tested for similarity.

A cluster may be grown by starting from a point and itera-

Fig. 8. (a) Curve-like cluster and (b) cluster with neck [40]. A greater

use of joint cell characteristics may be desirable in such cases.

tively merging similar neighbors into the cluster. Given the

regional attributes assigned to each point, this approach is

similar to region growing [27], [421 in the Voronoi tessella-

tion. Alternatively, decisions about the cluster memberships

of points may be taken in parallel. Zucker and Hummel [43 ]

describe a relaxation formulation of such an approach. How-

ever, they use the k-nearest neighbors of a point to define the

relaxation process. Using the more natural Voronoi approach

should improve the performance of their methods.

The Delaunay triangulation of a dot pattern resembles

Zahn's MST. Actually, the edges of the MST form a subset of

the edges of the Delaunay triangulation. Thus, a treatment

analogous to Zahn's may be developed for Delaunay triangula-

tion, which on the average has more links than MST. Other

graph theoretic clustering methods may also be considered

[91, [11], [ 13]1. The actual complexity of a clustering opera-

tion depends upon the specific algorithm used. However, since

a point's computations involve only its neighbors, any such

algorithm should be linear in N for common patterns (given

the triangulation). Traditional clustering criteria and al-

gorithms (10] suitable for planar processing may be re-

examined using the Voronoi approach.

B. Pattern Matching

When matching pictures of the same scene, the conventional

methods based upon correlation between gray levels are im-

practical when the pictures are taken by different sensors, by

the same sensor at different times, or when there are geometri-

cal distortions present [ 151. The dot patterns corresponding

to the local feature positions of objects (e.g., points of locally

maximum radar reflectivity) may prove to be relatively insensi-

tive to such variations. In addition to the differences pointed

out above, the objects in the scene may be at different orienta-

tion or scale, and may be noisy. Some examples of the noise

include missing dots (e.g., due to radar shadowing) and dots

with perturbed positions.

The matching problem can be stated as follows: given two

dot patterns, we want to know if one is a rotated, translated,

and scaled version of the other. We also want to allow for

deletions of points and some random perturbations in their

relative locations. We desire solutions that are computation-

ally efficient.

(a)

I I I I
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Kahl [ 14 ], Kahl et al. [ l S 1, and Ranade and Rosenfeld [ 24 ]
consider matching with respect to translation, allowing pertur-
bation of a point by at most a given threshold t. They attempt
all possible translations that map a pair of points in one pat-
tern onto a pair in the other, within the given tolerance t. The
translation resulting in the best overall match is sought. Simon
et al. [30] and Lavine et al. [16] list the interpoint distances
for all pairs of points in each pattern and compare the sorted
lists of distances to detect potential matches between pairs
across patterns. Zahn [411 compares the minimal spanning
trees of the patterns in order to determine their degree of
match. He attempts a match between points in the two pat-
terns with respect to the degree of the minimal spanning tree
at the points, angles formed by the lines joining the points to
their neighbors, etc. Good matches are used to establish corre-
spondences between points in the two patterns. Bernard and
Thompson [2] discuss a relaxation-based approach to match-
ing for disparity analysis of images.
Using the Voronoi neighborhoods, points may be sorted ac-

cording to the geometrical feature values of their cells. Scale
invariance may be attained by normalizing, say, the total area
of the cells in each of the lists to a common value. The sorted
lists of cell features may be compared to detect potentially
matching pairs of points. Rotation invariance may be attained
by retaining only the neighbor pointers between the indices of
the points and ignoring their absolute coordinates. The major
effort here is in sorting (0(logN) for N points). Comparison
of the sorted lists takes only O(N) time. When dot locations
are perturbed, the resulting cell characteristics may change.
This may be taken into account by allowing a match between
a pair of cells from the two patterns such that their feature
values do not differ by more than a certain threshold. This
process may suggest multiple mappings of points in one pat-
tern onto those in the other. The best map is that which best
preserves the within-pattern spatial adjacency characteristics
of the matching pairs of cells, and the distances between their
corresponding points. The derivation of the best match may
be carried out by a relaxation labeling process [261. If a point
in one pattern has its corresponding point in the other pattern
missing, it will either not have a match or it will have a poor
match when the relaxation labeling process converges.
A more efficient matching procedure may be obtained by

comparing ordered lists of boundary cells [5]. This should
have the effect of aligning the borders of the two patterns,
thereby suggesting the potentially matching point pairs in the
interiors of the patterns. Sorting B boundary points will re-
quire O(BlogB) time and the comparison can be carried out
in O(B) time.

C. Perceptual Boundary Extraction

A "perceptual boundary" of a dot pattern is a boundary
seen because of the given relative locations of dots, without
any semantic or cognitive interpretation [2 11. Some examples
of such boundaries are reproduced from [211 in Fig. 9. As in
the case of cluster identification, the global view of the cluster
may influence local decisions regarding boundary characteris-
tics. O'Callaghan [211 uses his neighborhood criteria to deter-
mine which points lie along the perceptual boundary of a dot
pattern. He gives special consideration to necks in boundaries
since necks may cause certain points or links to divide a bound-
ary curved into two shorter curves (Fig. 9).
The cells of a Voronoi tessellation which correspond to bor-

der points are identifiable as explained in Section 1Il-A. One
must trace the border points from neighbor to neighbor to
obtain a boundary. Sometimes the Voronoi neighborhood of
a point of concavity may not differ much from an interior
cell. O'Callaghan makes the decision about including or skip-
ping such concavities by comparing neighbor-angles against
certain thresholds. With the Voronoi approach, the following
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Fig. 9. (a) Clusters and their perceptual boundaries [21]. (b) Succes-

sive removal of extraneous boundary links using thresholds on local
angles, etc. [21 ]. The links denote the incorrectly marked neighbor-
pairs.

A A
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(a) (b)
Fig. 10. Following cluster boundary from A to B: (a) Pi is included on
the boundary if the line PiPk intersects Pi's neighborhood. (b) P1 is
skipped if the line PiPk does not intersect Pi's neighborhood.

rule may be used to determine when to add a point P1 to the
boundary line joining Pi to Pk: if the line joining the point Pi
to Pk intersects the edges of P1's cell [Fig. 10(a)], follow the
boundary from Pi to Pk through PF; otherwise skip the con-
cavity point Pi [Fig. 10(b)]. Equivalently, all pairs of adjacent
border points which are Gabriel neighbors are included in the
perceptual border. The resulting border is the same as the
Gabriel hull proposed by Toussaint [35] as the shape hull of
the point pattern. The use of several other thresholds in
O'Callaghan's [21 ] method may also be avoided as a result of
the Voronoi treatment. Given the Voronoi polygons, which
are labeled "border" or "interior" (Section IV-A), the al-
gorithm to trace the boundary is linear in the number of bor-
der points.
The Gabriel criterion for a point's inclusion in the border is

intuitively appealing. It would be interesting to see if data ob-
tained from experiments with human subjects support the
Gabriel criterion or suggest a generalized Gabriel criterion that
uses noncircular regions.

Fairfield [6] treats a related but different problem, that of
contoured shape generation in point patterns. He suggests a
method using the Voronoi tessellation to identify a hierarchy
of nested contours as will be seen by a human observer around
her center of attention. Fairfield's algorithm obtains the vari-
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ous contours by following Voronoi edges outward from a ver-

tex which is closest to the center of attention.

D. Extensions

The above applications of the Voronoi tessellation concern
planar dot patterns. However, the concept of the Voronoi
neighborhood can be generalized to higher dimensional spaces.
For example, the neighborhood of a point in a three-dimen-
sional dot pattern is a polyhedron. Patterns that represent
images by feature vectors often are in high dimensional space.
Moreover, clustering procedures are commonly used to process
such patterns. The availability of the Voronoi tessellation
should greatly influence such processing. Although no ef-
ficient algorithms for generating the Voronoi tessellation in
three or higher dimensional space are known, it is not clear
that the complexity involved is necessarily higher than that of
other n-dimensional clustering algorithms.
The notion of the Voronoi neighborhood may also be ex-

tended to define neighborhoods of nonpoint objects. This
may be done in several ways. For example, objects may be
represented by single points; the Voronoi tessellation may be
constructed for the specific object shapes involved, etc. This
presents a quantitative method of assigning spatial relations to
objects. Among other applications, such spatial relations can

be used in texture classification based upon second and higher
order statistics of the primitives.

V. CONCLUDING REMARKS

A sound notion of the neighborhood of a point is crucial for
analyzing dot patterns. Past work in this direction has concen-
trated on identifying pairs of points that are neighbors. Many
definitions, including the Voronoi definition, of a point's
neighbors have been used. In this correspondence we have
considered the use of the region enclosed by a point's Voronoi
polygon as its neighborhood. We have compared the Voronoi
approach with the others and argued that the Voronoi neigh-
borhood possesses intuitively appealing characteristics ex-

pected from a point's neighborhood. We have explored the
use of the geometrical properties of the neighborhood to char-
acterize a point's "local environment," instead of using it just
for defining the point's neighbors. Although we have con-
sidered only planar dot patterns, the ideas extend to higher di-
mensions. Thus, for example, the neighborhood of a point in
a three-dimensional point pattern will be a polyhedron. Un-
fortunately, no efficient Voronoi tessellation algorithms in
higher than two dimensions are known.
We have outlined procedures for segmentation, matching,

and border extraction that use the neighborhood characteris-
tics as features. Although a general idea of the complexity of
the algorithms can be obtained from our discussion, an accur-

ate judgment of the complexity and performance of the
methods can only be made by working with real data. Experi-
ments involving several aspects of point pattern processing, in-
cluding the applications discussed in this correspondence, are

in progress and the results will be reported in the near future.
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Repeated Hypothesis Testing on a
Growing Data Set

G. V. TRUNK AND J. 0. COLEMAN

Abstract-In many problems, especially when data are collected over
a long period of time, hypothesis testing is done repeatedly as new data
arrive. It is shown both for one particular problem and for a more
general class of problems that if testing is performed each time on the
total amount of data accumulated, the true simple null hypothesis will
be rejected at least once as the number of tests approaches infinity.
Furthermore, it is conjectured that the conclusion holds for most
problems of interest in which the null hypothesis is simple.

Index Terms-Decision theory, detection theory, growing data set,
hypothesis testing.

INTRODUCTION

In many problems, especially when data are collected over a
long period of time, hypothesis testing is done repeatedly as
new data arrive. If each test is performed only on data that
have arrived since the previous test, all of the tests are inde-
pendent. Consequently, if binary hypothesis tests with a con-
stant false alarm rate were always performed, the probability
of getting at least one false alarm would approach unity as the
number of tests approached infinity. People who perform such
testing are aware of this behavior and take it into account
when setting the false alarm rate and interpreting the results.
There is, however, a related type of testing in which the

certainty of an eventual false alarm is not obvious at all. In
some systems in which data are accumulated slowly and a need
for obtaining maximum performance is perceived, testing is
performed each time on the total amount of data accumulated,
with the total amount increasing with each test. Rather than
successive tests being independent as in the first type of testing
described, the latter tests grow more and more dependent as
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data are acquired (i.e., the probability of making the same
decision when using n and n + 1 samples approaches one as n
approaches infinity). The purposes of this correspondence are
1) to prove both for one particular problem of this type and
for a more general class of problems of this type that the
probability of an eventual false alarm is still unity and 2) to
suggest that a similar proof could probably be applied to
almost any problem of this type as long as the null hypothesis
is simple.

PROBLEM
Given a sequence of independent samples {xi} where the xi

are Gaussian distributed with mean , and unit variance, con-
sider the following binary hypothesis test:

Ho: /= 0

H1: p 0.

While the general proof is applicable to this simple problem,
a different proof, which provides insight on why the prob-
ability of an eventual false alarm is unity, will be used. Since
hypothesis H1 is two-sided, no uniformly most powerful test
exists. However, the accepted procedure is to perform the
following test:

acceptHo if ISI.T
accept H1 if SI> T

where the test statistic S is

n
S Xi

i=l1

and the threshold T is set by

0°° e-Z2/2n

I dZ = o/2.

Solving for the threshold T, it is of the form

T = KVn
where K is a constant determined by the false alarm rate &e.

It will be assumed in the discussion which follows that Ho
is the true hypothesis. Let the probability of rejecting Ho on
or before the mth test be Pm. Then

Pm =Pm_1 +(1 Pm-1)Cm (1)
where Cm is the conditional probability that the null hypoth-
esis is rejected on the mth test given that it has not been re-
jected by the preceding m - 1 tests. We will now show that
Pm - 1 as m - co. Since Pm is monotonic increasing and
bounded by 1, Pm converges. However, if one performs a test
every time one accumulates No new samples, and if Cm o0l as
m -> 00, then the rate of convergence of Cm determines whether
Pm - 1. Unfortunately, it is difficult to calculate Cm to deter-
mine its convergence rate. Consequently, a different approach
will be taken. Rather than perform a test every time No new
samples are accumulated, an increasing number of samples will
be accumulated between tests.

Specifically, let m be related to the sample size n by
2mn =No (2)

where No is any integer greater than 1. That is, if n samples
are used for test m, n2 samples are used for test m + 1. By this

lIfCm e>0asm* thenPm -+ 1.
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