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ABSTRACT 
Inorder to apply a multi-dimensional linear trans- 

form over an arbitrarily shaped support, the usual 
practice is t o  fill out the support t o  a hypercube by zero 
padding. This does not however yield a satisfactory 
definition for  transforms in two o r  more dimensions. 
The problem that we tackle is: how do we redefine 
the transform over an arbitrary shaped region suited 
to a given application? W e  present a novel iterative 
approach to define any multi-dimensional linear trans- 
form over an arbitrary shape given that we know its 
definition over a hyper-cube. The proposed solution is 
(1) extensible to  all possible shapes of support (whether 
connected or  unconnected) (2) adaptable to the needs 
of a particular application. We  also present results for  
the Fourier Transform, f o r  a specific adaptation of the 
general definition of the transform which is suitable for  
compression o r  segmentation algorithms. 

1 INTRODUCTION 
Discrete linear transforms in two (or more) dimen- 

sions are in most cases defined over a rectangular (hy- 
percubic) support'. The usual practice when we want 
to apply the transform over an arbitrarily shaped s u p  
port is to fill out the rest of the support with zeros to 
make up the rectangle (hypercube) and then use the 
natural definition of the transform over a rectangle 
(hypercube). This is an extension of the one dimen- 
sional case where we fill out an arbitrary length data 
set with zeros to form a data set of length 2" either to 
increase the computational speed (through FFTs for 
Fourier Transforms) or to satisfy the definition of the 
transform (in the case of dyadic Wavelets). This how- 
ever does not lead to a satisfactory definition of the 

we will consideronly the usual uniform sampling on a square 
grid in this paper. 

linear transform in two or more dimensions for many 
applications. An example can be used to illustrate 
this point. The fourier transform of a function that is 
constant on a circular support in 2-D is a Jinc (see fig- 
ure 1). As can be seen from the figure the magnitude 
of the Fourier coefficients do not have any relation to 
the smoothness of the function, which is a constant 
within its support. Heuristically we can explain this 
by saying that the coefficients of the transform r e p  
resent in some sense the shape of the support apart 
from the variation within the support's interior. 

The above discussion leads us to the following ques- 
tion: what should be the values attributed to the 
sample points which lie within the rectangle but not 
within the support of the function? The answer is ev- 
idently not unique and depends upon the application. 
With each possible choice of the values for the pixels 
which lie outside the support but within the rectan- 
gular (hypercubic) region, we can associate a possi- 
ble function-transform pair. The aim of this paper is 
to algorithmically constrain the choice of the possible 
function-transform pairs in such a way as to lead to 
the optima1 choice of the function-transform pair for 
the particular application under consideration. We 
will consider through out this paper transforms which 
have a definition over rectangular supports; thus our 
work is aimed at  redefining these transforms over an 
arbitrarily shaped support in an application oriented 
fashion. 

The applications that we consider in this paper as- 
sume that we have a smooth 2-D function defined on 
an arbitrarily shaped, connected support; we would 
like to define the free pixels (the pixels within the 
rectangular region but outside the support) so as to 
minimize the high frequency content in the Fourier 
domain. This kind of objective is suitable for image 
coding with segmentation information [5, 61 or region 
merging algorithms [7] (which need to estimate the 
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frequency content within a particular region). Other 
criteria might also be formulated in the framework 
that we develop, but will not be dealt with in this 
paper. 

Previous work in this area [l, 31 has been limited 
to particular transforms and particular kinds of s u p  
ports. Barnard [l] implemented a method which per- 
forms heirarchical zero padding to define the dyadic 
wavelet transform in one dimension over a connected 
interval of arbitrary length. The optimality of such 
a method is questionable. Further more one needs to 
resort to adhoc fixes when the number of dimensions 
is more than one. Chen’s work [3] is more in the spirit 
of the present paper. He uses an iterative procedure 
to obtain optimal DCT coefficients (from a compres- 
sion point of view) over an arbitrary connected s u p  
port. However his work is limited to the DCT and 
connected supports. Also, he does not provide a gen- 
eral framework in which other solutions, suited to par- 
ticular applications, may be developed. 

Section I I  provides a general definition of the rede- 
fined linear transform over an arbitrarily shaped s u p  
port. In Section III  we will make specific the general 
definition of the transform, for the applications to be 
considered. Illustrative results are presented in the 
case of the Fourier transform in Sectzon ZV. 

2 REDEFINED LINEAR 
TRANSFORM 

Since most transforms of interest are unitary let 
us consider such a transform acting over a uniform 
hyperlattice 2” of sample points (L). Let the value 
of the function which is to be transformed be known 
on a support S defined by2: 

s = {x : (x is a lattice point)A 
(z is within the support of S)} 

Thus the function to be transformed3 is f : S -+ R. 
It may be noted that the lattice points which belong 
to L n S’ (S’ is the complement of S) are free and 
can be assigned any real value. For each such possible 
assignment we obtain a different function-transform 
pair (since we consider the transform to be unitary it 
is also injective) as described already. One approach to 
defining the general transform that can be obtained is 
as an element of the set of all possible transforms. But 
such a definition is not constructive in the sense that it 
does not tell us how to implement the transform. We 
will give a constraint based definition to avoid this 

2the mathematical symbols 3 and A stand for ‘such that’ 

3it might be noted that this function f is nothing but a 
and ‘and’ respectively. 

multi-dimensional sequence (in 2D an image). 

pitfall. Thus the transform over an arbitrarily shaped 
support may be viewed as searching for a function- 
transform pair that lies at the intersection of various 
constraint sets. 

Definition: A generalised multi-dimensional discrete 
linear transform of a multi-dimensional sequence f(S) 
defined over S is another multi-dimensional sequence 
defined over the support L. The transformed sequence 
lies in the space of the constrained multi-dimensional 
sequences C which is a subset of all possible multi- 
dimensional sequences over C (which we term 6). The 
function space C is given by: 

C = c1 n . .  .ne,, n E N  
where C1 = {g(x) : (g : L -+ R)A (z E S 

g(z) = f(x)} and Ca,  . . . , C, are subspaces of the func- 
tion space acting as constraints to  restrict possible 
g E C (they are to be defined according to the appli- 
cation; in Sectzon I I I  we will be defining C2 to make 
the definition of the transform specific to the case of 
smooth functions). Also the cardinality of C should 
be one to ensure that each function f (S) has a unique 
transform. In most cases the algorithmic implementa- 
tion implicitly defines a unique member of C, although 
the cardinality of C is not one (as in Section ZZZ). The 
transform is assumed to bear its usual definition over 
the hypercube(C) of samples. 

3 APPLICATION MOTIVATED 
DEFINITION 

In the parlance of the previous section, we need 
to define the sets C2, .  . . based on the application in 
question. C1, as defined in Sectzon I I ,  is a convex 
set. It would be advantageous from an implementa- 
tional point of view to define the rest of the constraints 
as convex sets too; this would enable us to  treat the 
transformation as a search for a solution that lies at 
the intersection of various convex sets (such a search 
has nice convergence properties [2]). 

From now on we will consider only two dimensional 
functions (images) and the Fourier Transform. As 
stated before the principal objective is the minimiza- 
tion of the high frequency content in the transform 
domain. This can be approached in different ways 
as the definition of the term “high frequency” is im- 
precise. For this purpose we define < as the side of 
a square containing the low frequency components in 
the transform domain (see figure l(b)) and define the 
constraint set C2 as: 

c2 = { g  : (9 : C -+ R ) A  
(g E CI) A (11s - f l l  is minimized, f E E ) }  

I = {f : (f : L + R ) A  
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(7f (z )  = 0,Vz E {Ifrequencyl > C } ,  
7f : L -+ R is the transform off  over L ) }  

In plain words Cz consists of those functions, f E CI , 
which are closest to the set E (in the least squares 
sense); E in turn consists of all those functions whose 
high frequency components greater than C are zero (C 
is a constant to be defined; see figure l(b)). Note care- 
fully that this is an indirect definition of the constraint 
set C2; E “attracts” those solutions in C1 of possible 
interest to us. The advantage of this definition is ev- 
ident; as C increases we ((allow” more and more vari- 
ation in the free pixels. Evidently = 0 allows no 
variation in the free pixels and we get the usual defi- 
nition of the transform which restricts all free pixels to 
be zero. However if C is put to too high a value we have 
too much variation in the free pixels which jeopardizes 
the smoothness requirement. Thus C is to be chosen 
as some intermediate value which would remove the 
unsmoothness caused by the shape of the support and 
yet not introduce too much adhoc unsmoothness in 
the free pixels (see Section IV for examples). 

The search is formulated in terms of the often used 
Projection on Convex Sets formalism [4] and we in- 
clude a few more constraints (for example bounded 
variation of the free pixels) to speed up the search. 
The search procedure involves projecting on to C1 , C2 
etc. (the convex constraint sets) alternately. The pro- 
jection operators in our case are very simple and com- 
putationally efficient. The projection operator on to 
C1 involves setting those values which lie within the 
support of the function to their actual values in the 
spatial domain. The projection operator on to C2 in- 
volves putting all the function values which lie outside 
the shaded regions (figure l (b))  to zero. The initial 
value for the pels outside the functions support have 
been chose to be zero. 

4 SIMULATION RESULTS 
Results for the Fourier transform as C is varied 

are presented in figure 2. The example function is 
a smooth region taken out of a natural image (Lena). 
As can be seen, an increase of C allows more variation 
in the free pixels in the spatial domain thus destroy- 
ing the adhoc shape information (the pixels within the 
support are unchanged in all images). Similar results 
maybe obtained if we replace the Fourier transform 
with either DCT or Wavelets. The formulation would 
be very similar except for trivial modifications of the 
consraint set C:!. 

5 REMARKS 
In this paper we have presented a general frame- 

work to modify the definition of a linear transform de- 

fined over a hyper-cube to an arbitrary support. More- 
over, the redefinition of the transform embeds within 
itself flexibility to adapt to a given application. The 
advent of such a technique would enable the merging 
of non-linear image processing methods like segmenta- 
tion and linear methods (eg., wavelets) in a seamless 
fashion. 

Image and video compression is a field where the 
proposed technique would find a large number of ap- 
plications. Segmentation has been used by many re- 
searchers [5, 61 for image compression. However, the 
results, although promising, were limited by inefficient 
moment based techniques which are normally used to 
represent the image intensity variation within a seg- 
mented region. By using the technique presented in 
this paper, one can potentially replace the moment 
based representation by any linear transform of choice. 
Interpolation of Fourier data, which is available only 
at select arbitrary points on a Cartesian grid, is a clas- 
sical problem. One solution to this problem may be 
formulated using the technique outlined here. These 
examples form only a subset of the problems which 
might benifit from the proposed approach. We en- 
visage using the redefined version of the transform in 
specific applications in forthcoming papers. 
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Figure 1: (a) Section I: Fourier Transform of a Circle in 2-D (sampled on a 256x256 grid). Absolute values of 
the Fourier coefficients are represented by height in the z-dimension. (b) Section 111: The non-zero values of the 
Fourier Transform of a function in E are shaded. The four shaded squares together represent the low frequency 
components in the DFT domain. C is the length of a side of any of the shaded squares. 

Figure 2: Redefined Fourier Transform in 2-D: The images are for a rectangular region in the spatial domain, in 
which only the pixels within the support of the function have definite values. The free pixels are varied so that we 
achieve smoothness in the Fourier domain. (a) Actual function (256x256, all free pixels set to zero) in the spatial 
domain. (b) C = 2 (2x2 box of fourier components are allowed to be non-zero for functions in E as in figure l (b))  
(c) C = 16. 
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