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Abstract 
Cresceptron represents a new approach t o  neural networks. It uses a hierarchical f m m e w o r k  t o  grow neural 

networks automatically, adaptively and incrementally through learning. A t  every level of the hierarchy, new 
concepts are detected automatically and the network grows by creating new neurons and synapses  which 
memorize  the new concepts and their  context. The training samples are generalized t o  other perceptually 
equivalent i t ems  through hierarchical tolerance of deviation. The neural network recognizes the learned i tems  
and their  variations by hierarchically associating the learned knowledge with the input .  I t  segments  the 
recognized i tems  f r o m  the input through back tracking along the response paths. 

1 Introduction 
Backpropagation methods [5] can be used to iteratively modify the synaptic weights of a three-layer 

network so that the response of the network approaches the desired one. However, such a three-layer 
network trained by the backpropagation method has fundamental drawbacks. It is satisfactory only if the 
mapping from the feature space to the solution space is so simple that the local minima problem in the 
backpropagation iteration is negligible. Its high space complexity makes it intractable to deal with a large 
number of input variables. An addition of new items may require the network to be completely retrained. 

We discuss the disadvantages of the popular three-layer networks as opposed to a network that has 
many layers (henceforth called hierarchical network). A challenging issue with the hierarchical network 
is, however, the modification of its synaptic weights during learning. We have developed an unsupervised 
learning framework based on the analysis of hierarchical concepts. Unlike conventional learning, the new 
learning method is incremental and thus growth becomes possible. New concepts are detected automatically, 
and the growth and interconnection of the network automatically adapt to the input information and the 
learned knowledge. Hierarchical tolerance of deviation makes it possible to handle many variations from a 
relatively small set of training samples. Since the learning is based on analysis at every level, the problem of 
local minima with the backpropagation methods has been avoided. It seems that this framework is closer t o  
biological learning [2] (which appears free of local minima problem) than those that use backpropagation. 

Among existing frameworks of neural network, a type called “Neocognitron” [l] probably most resembles 
the Cresceptron. In the Neocognitron, the 
system designer specifies the breakdown of concepts, the concept each node represents, and the complete 
connections of the network. During the network development these designs must be modified by the designer 
in a trial-and-error fashion until an acceptable performance is achieved. In the Cresceptron, all these are 
done automatically to avoid intractable human intervention for complex tasks. Unlike the Neocognitron, if 
additional items are to be recognized, only incremental learning is needed. Moreover, in the Neocognitron, 
features are presented by the designer with slightly shifted positions to achieve the positional insensitivity. 
In the Cresceptron, a mechanism of hierarchical tolerance is built into the framework. 

However, there are fundamental differences between them. 

2 The Hierarchical Network 
In this section, we investigate several important issues related to the complexity, sharing and flexibility 

of the network, as well as the advantages of the hierarchical network over three-layer ones. 
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2.1 Complexity 
A typical proof for the logical completeness of a three-layer network indicates its complexity. Suppose 

{ai} are input variables of a three-layer network. Each output xi in the first layer corresponds to  one side 
of a hyper plane: xi is “high” if the corresponding weighted sum of {ai} exceeds a threshold. Each output 
yi in the second layer takes the logical AND of {xi} and defines a region as the intersection of all the spaces 
defined by the hyper planes. Each output z i  in the third layer takes the logical OR of {yi} and defines a 
union of all the regions. Therefore, Zi  can be expressed by a canonical logical expression of {xi} whose form 
is like: 

ai = 21x12 + 22x36238 + x3X4223x38... 
where AND is denoted by multiplication and OR is denoted by summation. Corresponding to a particular 
zi, the number of hidden nodes in the second hidden layer equals the number of terms in the expression, and 
that of the first hidden layer equals the number of xi’s. The total number of hidden nodes equals the union 
of all such terms of {zi} with the same instances counted as one. 

However, the formation of a complex concept is hierarchical. In the case of vision, an object is naturally 
described as a logical formation of its parts; each part is described in terms of primitives such as lines, curves, 
corners and regions; each primitive is described as a logical combination of lower level primitives such as 
edge segments. With this hierarchical description, the number of logical operations in the logical expression 
is much smaller than those in its canonical form. As an example, the expression 

(1) 

[(a1 + ~I)(.Z + h)...(an + bn)][cldl + C Z ~ Z  + ...cn&] (2) 
contains only 4n - 1 logical operations. However, its canonical form contains n2” terms, each having 3 
logical operations. (The same number of terms will result if the selected canonical form is of AND-of-OR 
instead.) Generally speaking, if an expression of n variables is converted into a canonical form, the number 
of terms is exponential in n. Although a three-layer network is logically complete, as is the canonical form 
in propositional calculus, its space complexity is very high compared to the hierarchical network. 

2.2 Concept Sharing 
Another advantage of hierarchical network is related to concept sharing. Each term in the canonical form 

represents a very low level grouping of concepts. Although different high level concepts may share the same 
hidden nodes in a three-layer network, such a sharing is very limited in scale and complexity. 

In a hierarchical network, nodes at different levels represent concepts of different complexities. In the 
real world, many shapes have similar features, and many objects have similar parts. Therefore, a node in 
a hierarchical network can be shared by many high level nodes. Such sharing not only significantly reduces 
the number of nodes compared to the three-layer network, but also makes learning efficient. 

2.3 Variation 

with some variations from the training samples. There are three possible ways to handle variations. 
In many applications, the neural network must be able to generalize. For example, it must be able to deal 

1. Invariant features. With this method, only features that are invariant with respect to the transforma 
tions are presented to the network. However, for complex real world problems, such invariant features, 
if they exist, are often too weak to discriminate between different classes. 

2. Training with variation. The network is trained with typical variations in each class. For example, in 
face recognition, face images taken with several orientations need to be learned in order t o  recognize the 
face from any direction. However, in order to reduce the cost of training and the size of the network, 
the number of such variational samples should be kept small. 

3. Structural tolerance. The network is designed to allow a certain amount of deviation from the training 
samples. The amount should be controlled to such a degree that it does not ruin the capability of 
discriminating different classes. 

Our framework uses methods 2 and 3 above to accommodate variations, using the former for large variations 
and the latter for small ones. Through a hierarchical network, the structural tolerance can be allowed at 
every level. Different amounts of tolerance may be used at different levels of the network. 
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Figure 1: The schematic illustration of each module 

3 Cresceptron 

The term “Cresceptron” was coined from Latin cresco (grow) and perceptio (perception). The primary 
objective of the Cresceptron framework is to automatically handle manually intractable tasks: such as 
constructing a network that can recognize many objects from real world images. The Cresceptron uses a 
hierarchical structure, and the network adaptively and incrementally grows through learning. For recognition, 
the network should be largely translationally invariant, which is realized by using the same neuron at all the 
positions of each neural plane. Scale invariance is achieved through a multi-resolution representation with 
the framework of visual attention. Limited orientational invariance is obtained by the variation tolerance. 
Complete orientational invariance is not required here since the recognition should report also the orientation. 
Some studies have demonstrated that the human vision system does not have perfect invariance in either 
translation [4], scale [3], or orientation [SI. Since many principles discussed here are common with human 
perception, the Cresceptron can be modified for the use of other types of sensory data. 

3.1 Visual Attention 
For efficient examination of a complex image, saccadic scan and visual attention are incorporated into 

the system. To simulate different scales of visual attention, each input image is represented at different 
resolutions. There are two attention modes, manual and automatic. In the manual attention mode, the user 
selects an area of attention for recognition. In the automatic attention mode, the system automatically scans 
the entire image from coarse to fine resolutions and reports the result of recognition. The objective of visual 
attention is to scale an appropriate area in the image down to the size of the “fovea” of the neural network. 

3.2 The Framework 
The neural plane is the basic unit of the network. Each neural plane records the response of a particular 

type of neuron in the entire space of the fovea. The response pattern of a neural plane indicates the presence 
or absence of a particular concept (grouping of features). 

The network consists of N modules, each corresponding to a concept level. The higher the level, the more 
complex the represented concepts are and the coarser the spatial resolution is. 

The structure of the module is described in Figure 1. Each module has five layers, among which the first 
one is the input layer of the module and the last one is the output layer. Each layer has many planes, and 
the actual number depends on the automatic growing during learning. If every input plane of a module has 
2’+l x 2k’+1 grid points, every output plane of this module has 2‘ x 2‘ grid points. The input layer of every 
module is also the output layer of its preceding module. In each module, the connections from the first layer 
L1 to the third layer L3 constitute a logical AND, and those from the third layer t o  the output layer perform 
a logical OR. Suppose a(%, y, k) is the response at position (I, y) of plane k in layer L1 and c(z, y) is the 
response at (I, y) of a neural plane in layer L3.  The logical AND can be performed at position (I, y) by 

where i and j run to cover the area centered at  (z,y) in the neural plane ( t  = 1 in our implementation), 
W i , j , k  is the synaptic weight, and g is a sigmoidal function whose saturation levels are determined by the 
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logical AND requirement. This expression requires many fan-in connections which can cause difficulties in 
hardware implementation. Thus, an intermediate layer L2 is added whose response is denoted by b ( z ,  y ,  k): 

where f is another sigmoidal function. Thus, ~ ( t ,  y )  is modified as c(z, y )  = g(Ck b(3:,y, k)). The connections 
from layer La to layer L4 performs a template mapping: 

8 8  

. .  
: = - 8 J = - #  

where Vi,j,k is the synaptic weight (element of the template) and h is a sigmoidal function (s = 2 in our 
implementation). From layer L4 to layer L5, the number of grid points in each neural plane is reduced by a 
factor of 4. This resolution reduction allows a slight deviation in the preceding response. Each grid point in 
layer L5 receives the outputs from 4 grid points in the corresponding neural plane in L4: 

where q is a sigmoidal function which performs a logical OR. As long as the template matches at one of the 
four positions, (22,2y),  (23: + 1,2y) (22,2y + l ) ,  and (22 + 1,2y + l) ,  e(t ,y)  is active in the output layer. 
The template matching in (5) ensures that only the patterns that are matched in the (2s + 1) x (2s + 1) 
window is allowed to pass to the OR operation that follows. Without this matching step, the OR operation 
can cause excessive tolerance, e.g., a diagonal line being recognized as a vertical line. As can be seen, the 
diameter of the receptive field of a node is increased by a factor of 2 at the output layer of each module. 

This enables the network to hierarchically tolerate deviations from the learned samples. At the lowest 
level where the receptive field is very small, only pixel-level deviations are allowed. At a high level, the 
coarse grid implies that a large deviation is tolerated, which is desirable since the receptive field is large. 

3.3 Detection of New Concepts 
In the input layer of each module, the concept at  a position is represented by the local active patterns 

at  the corresponding positions in the neural planes. The concept is new if it has not been observed at any 
position. When an active pattern appears in the neural planes of the input layer, there exist three cases. 
In the first case, no neuron responds to this pattern. Thus, the concept is new. In the second case, some 
neurons respond, but they only respond to a part of the active input. In other words, no responding neuron 
connects to all the active neural planes. This implies that this concept is more complex than the concepts 
represented by the responding neurons, and therefore, it is also a new concept. Otherwise, the concept is 
not new. 

3.4 Learning 
The network is initialized to be empty. Then, a series of images are presented sequentially. From each 

image, the human operator selects the object t o  be learned from the input image by drawing a polyhedron 
that follows the outline of the object. Then, the network learns the object hierarchically. When a new 
concept is detected in a module, a new neuron with the synaptic connections is created. The  input from the 
corresponding active neural planes is copied to the synaptic connections. The sigmoidal function determines 
an upper threshold such that if the same concept is presented, the output is saturated above. Since all the 
neurons at different positions of a neural plane are the same, only one neuron (with connections) needs to 
be created for each neural plane. Each training sample can cause many neurons to be created. Finally, if 
the sample is not recognized, a new node is created at the output layer of the highest level. A label that 
identifies the object is attached to this node so that later the node reports the label when it responds. 

Over the entire network, knowledge sharing occurs naturally among different samples, since the same 
feature may appear in different samples. Therefore, the size increase of the network will gradually slow 
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down, while sufficient low and intermediate level knowledge has been learned to cover most of the training 
samples and thus further new nodes will be mostly needed for only high levels. This implies that this network 
can learn a large number of objects. When the space reaches the equipment limit, the network “forgets” 
less frequently used or very “old” knowledge by deleting the corresponding nodes and thus keeps its size 
manageable. 

3.5 Decision Making 
Once the network has been trained, i t  can be presented with new inputs for recognition. The result can be 

one of the following: (1) No output neuron responds: the new input is not recognized. (2) Only one output 
neuron responds: the input is recognized uniquely. (3) Two or more output neurons respond. The last case 
occurs when the input is similar to several learned samples. For example, the input contains a face that is 
taken at an orientation between those of the two learned samples. All the recognitions should be reported 
together with the response values as the confidence for further interpretation. For example, if the recognized 
objects indicate two different orientations of a face, a confidence weighted orientation sum can be used to 
approximately predict the actual viewing angle of the current face. 

3.6 Segmentation 
Once an object is recognized, the network can identify the location of the recognized object from the 

image. This is done by back tracking the response paths of the network from top level down to  the lowest 
level. All the edges that have contributed to the recognition are marked in the input image. A closure can 
be easily computed from these marked edges to give the segmented region. 

4 Experiments 

The objective of this system is to locate and recognize general objects in real world scenes, including man- 
made objects such as buildings, furniture and machine parts, and natural objects such as trees, animals, and 
human faces. The final implementation of the system will consist of a front-end graphicssupported worksta- 
tion and a fast massively parallel neurocomputer which is connected with the front end. The neurocomputer 
should be able to  perform recognition tasks in real time. 

For the theoretical and algorithmic development, this system is currently being simulated on a S U N  
SPARC workstation, and an interactive user interface has been developed which allows effortless training 
and examination of the network. Figure 2 shows the interface console of the system. The program has been 
written in C and its source code has about 5100 lines. The system digitizes video signals into (512 x 512)-pixel 
images or directly accepts digital images of resolution up to  512 x 512. The first version of the system uses 
the directional edges in the image as the input to the network. From each input image, the neural network 
accepts 8 edge images, each of which records the zerecrossings of the directional derivative of the Gaussian 
smoothed image along one of the 8 possible directions. The network has 7 modules, the fovea resolution is 
64 x 64, and the maximum number of input connections of each node is 25. 

A few dozens of sample images digitized from live TV programs have been used for training. A few of 
them are shown in Figure 3. A neural network has been automatically created through learning of these 
images. It has a total of 1367 output nodes at  L5 levels of various modules, and a total of 8143 x 9 synaptic 
connections. The system successfully recognizes the trained human figures in the sample images and can 
distinguish different objects. A few figures have been scaled slightly differently and be positioned at different 
places in the fovea, and they can still be recognized correctly. Figure 4 shows the results of segmentation 
from some of the recognized objects. While more and more instances have been learned, the system is 
able to recognize objects more precisely by the aforementioned confidence-weighted interpretation. Work is 
underway to use a much larger set of sample images and collect statistical data about the performance and 
the size of the network. 

5 Conclusions 

The representation of knowledge by a network hierarchy with many levels can reduce the space complex- 
ity of the neural network, allow knowledge sharing among different concepts, and enable the network to 
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Figure 2: Interface console of the Cresceptron. 

Figure 3: Some of the sample images for the training. 

hierarchically tolerate deviations in the input. The Cresceptron is a framework for a self-organizing neural 
network by which new concepts are detected automatically and the network grows from empty by dynamicly 
generating new nodes that  connect to  the active neurons. Its topological interconnections fully adapt to  
the concepts being learned. Its built-in hierarchical tolerance enables the network to  generalize the learned 
samples to  other perceptually equivalent items. The connection of the network is local and thus facilitates 
hardware fabrication. Our experiments have shown that the network works properly and the results are 
promising. This work indicates a possible way of automatically creating an artificial intelligent machine by 
letting it grow, organize, and learn by itself. 
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