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Abstract 
This paper presents a robust approach to estimating motion and 

structure from image sequences. The approach consists of two steps. 
The first step is estimating the motion parameters using a robust 
linear algorithm that gives a closed-form solution for motion param- 
eters and scene structure. The second step is improving the results 
from the linear algorithm using maximum likelihood estimation. In 
other words, the motion parameters and structure of the scene are 
such that the conditional probability for the observed data, given the 
motion parameters and structure, reaches the maximum. The max- 
imum likelihood estimates are computed through an iterative algo- 
rithm. Since preliminary estimates are available, the algorithm reach 
the global minimum quickly and reliably. 

An algorithm using point correspondences from monocular 
images is discussed in detail and experimented with. An algorithm 
using line correspondences is briefly discussed. The simulations 
show that maximum likelihood estimation achieves remarkable 
improvement over the preliminary estimates given by the linear algo- 
rithm. The algorithm is also tested on images of real scenes from 
automatically computed displacement field. 

The proposed approach is independent of the exact tokens used 
to establish correspondences, e.g. displacement flow, optical flow or 
discrete features. Two or more types of tokens may be used, for 
monocular or binocular images. 

1. INTRODUCTION 
From correspondences (displacement field, optical flow, feature 

correspondences. etc) a variety of algorithms have been proposed to 
solve for the motion and structure parameters of the scene. They can 
be classified as nonlinear algorithms and linear algorithms. 

A nonlinear algorithm solves a set of nonlinear equations 
directly using iterative procedures. A linear algorithm, on the other 
hand, gives closed form solutions. It mainly solves linear equations 
and some nonlinear equations in special forms. Typically intermedi- 
ate parameters are solved based on a set of linear equations. The 
motion parameters are then solved from those intermediate parame- 
ters based on some nonlinear equations. One of the advantages of 
linear algorithms over nonlinear ones is that the structure of the solu- 
tion of a set of linear equations is clear. Therefore a correct solution 
is guaranteed if the data are free of noise. Another important advan- 
tage is that the uniqueness of the solutions can be investigated. Also 
a linear algorithm is faster. However, in the presence of noise the 
solution from a linear algorithm may not be an optimal one. 

We present here a two-step approach that employs both types 
of algorithms to make use of their advantages. The next section 
introduces the two-step approach. Section 3 discusses the maximum 
likelihood estimation of the motion and structure parameters. Details 
of implementation are discussed in Section 4. Simulation results are 

presented in Section 5 .  Section 6 presents concluding remarks. 

2. A TWO-STEP APPROACH 
The two-step approach is as follows. First, a linear algorithm is 

applied. Then the solution of the linear algorithm is used in the 
second step as an initial guess for an iterative algorithm which 
improves on the initial guess based on an objective function. This 
two-step approach has the following advantages: 1) A solution is 
generally guaranteed by linear algorithm. 2) The approach allows 
flexible design of the objective function since a good initial guess is 
available. 3) The approach yields a reliable solution due to optimiza- 
tion. 4) Fast computation. A linear algorithm is fast, and generally a 
nonlinear algorithm is slow. Since the linear algorithm provides 
good initial guess, the time taken by the nonlinear algorithm to reach 
a solution is greatly reduced. 

For the following discussion, we will consider monocular 
images with point correspondences. The use of line correspondences 
will be discussed briefly. Other type of features could be treated in a 
similar way. For the first step, we will use the linear algorithms for 
point [Weng87a] and l i e  correspondences [WengSla] developed by 
Weng et. al.. 

We have a sequence of images taken at different camera posi- 
tions and orientations relative to the scene. The objective is to esti- 
mate the relative motion between the camera and the scene. To be. 
specific, we consider two images. The geometrical setup with image 
coordinate systems and world coordinate systems is shown in Fig. 1. 
Without loss of generality, assume the focal length of the camera is 
unity. Let a feature point be located at x=(x, y , z)‘ in world coordi- 
nate system. The image vector of x in the first image is defined by 

u = ( u , v ,  l)‘=(x/z,y/z, 1)‘ (2.1) 

in its image coordinate system. The image coordinates of the point 
are ( U ,  v )  which are the perspective projections of the point x onto 
the image plane. After the first image is taken, the camera undergoes 
a motion and takes the second image as shown in Fig. 1. The motion 
of the camera is first a translation represented by a vector T followed 
by a rotation represented by a rotation matrix R . Any point p on the 
camera is moved to p.  They are therefore related by 

P’ = R (PT) (2.2) 

The transformation from p to p’ corresponds to the motion of the 
camera. In the coordinate system of the second image the feature 
point has a new position vector x’=(x‘, y ’, z’)‘ whose image vector is 

u’=(u’, v’, l)‘=(x‘/z’,y’/z’, 1)‘ (2.3) 

X’=R‘X-T (2.4) 

(see Fig. 1). The relation between x and x’ is related by 

Let T+O, a=IIT 11-l. %=ax and %’=ax’. a is a positive global 
scale factor that cannot be determined from monocular images 
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[Weng87a]. Given the correspondences for the image vectors at the 
two time instants, U and U', the motion analysis algorithm [Weng87al 
solves- for the rotation matrix R , the unit translation vector (direc- 
tion) T=aT. For each point, the algorithm solves for 1 and 2'. a can 
be determined only if additional information is available. (For exam- 
ple, if the absolute distance between a pair of feature points is know, 
a can be determined). 

x,u image 2 {' 

line 2 
line 1 

Fig. 1 A moving camera takes two images 

Notice that x=z U and x'=z' U'. Letting f a ,  f'=az' denote 
relative depths, (2.4) yields 

After solving R and 'f, for each image point the linear algorithm 
[Weng87a] solves for i and i' using linear least squares based on 
(2.5). we get i = F  U and f'=f' U'. However, with noise such i in the 
first image coordinate system and 1' in the second image coordinate 
system generally do not correspond to the same point. For the linear 
algorithm, we use a simple solution to this problem. Each point in 
the final estimated structure is the midpoint of the corresponding i' 
and 3' as shown in Fig. 1. Therefore the image vectors are modified 
according to the estimated 3-D position of the feature points. 

The solution given by the linear algorithm is used as an initial 
guess for the nonlinear algorithm for the second step which improves 
this initial guess based on the desired optimality. The next section 
discusses the optimization based on maximum likelihood estimation. 

3. MAXIMUM LIKELIHOOD ESTIMATION 
A more robust way for estimating the parameters is using error 

(or noise) distribution. In reality, the feature locations are the results 
of feature detectors whose accuracy is influenced by a variety of fac- 
tors including lighting condition, scene structure, imaging device 
calibration and image resolution. So, the observed 2-D image vectors 
ui for image 1 and U; for image 2 are noise corrupted versions of the 
true image vectors. Therefore (ui, U;) is the observed value of a pair 
of random vector (Ui , ui) .  With n point correspondences over two 
time instants what we observed is the sequence of image vector pairs 

(3.1) 

F'u '=R' fu- ' f  (2.5) 

U P (U,. U;, u2, U;, ... , U,, U:) 

of a sequence of random vector pairs 

(3.2) 
We need to estimate the motion parameters M and the 3-D positions 
of the feature points (scene structure) 

(3.3) 

Let the conditional density of U given that M=m and X = x  be 
f U ~ M J  (U I m J) .  The maximum likelihood estimates of motion 

x 4(x1, x;, x2, xi, "' 7 X" 9 x:, 

parameters, m* , and scene structure x' are such that the the condi- 
tional densityfUIMJ(u I m x )  reaches maximum. That is, 

~ U I M X ( U  l m * .  x ' )  2fUIMJ(ulmI x )  (3.4) 
holds for all possible motion parameters m and scene structure x .  

tional densityfulMp(uIm, x ) ,  

Model 1: Gaussian Distribution 
The Gaussian distribution is a commonly used for modeling 

noise. Intuitively, if the errors come from many sources and are 
influenced by many factors, the distribution is roughly Gaussian by 
the central limit theorem. Let each image coordinate of the observed 
projection has an independent additive zero mean Gaussian noise. 
For simplicity we assume the conditional distributions, given motion 
parameters and scene structure, are independent between different 
points and the variances are the same. Such an assumption is reason- 
able when the image resolution is not very low. Intuitively, the error 
value of the image coordinates of a point does not closely related to 
the error value of other points if the sample grid is dense. In reality 
such a dependency is not influential and can be neglected. Then the 
conditional density of the observed projection given the motion 
parameters M and the structure of scene X may be written as 

To find the maximum likelihood estimate. we need the condi- 

where ui is the observed projection of the 3-D feature point i in the 
first image, U: is that of i in the second image, f i  is the Gaussian 
density with mean equal to the exact projected location of the given 
feature point, uoi in the first image. f; is analogous to f i .  for the 
second image. That is 

(3.6) 

(3.7) 

For each image, the line passing through the observed image point 
and the focal point is called the observed projection line (Fig. 1). Fig. 
2 shows the value of f i  (ui)f; (U;) in X-Z plane as intensity image. 
It shows the distribution of the 3-D points given its images. 

The maximum likelihood estimates of motion parameters and 
the structure of the scene are such that the conditional density is the 
maximum. Maximizing the left hand side of (3.5) is equivalent to 
maximizing the logarithm of it. 

~n f UlM (u I m )  = - ( I I  ui-uoi I I  2+ I I  u;-ubi I I  2 )/a2-n ln(2n02) 2 
(3.8) 

Maximizing the left-hand side of (3.8) is equivalent to minimizing 

(3.9) tg( I I  U; -uoi I l2+ I1 U; -U& I I  2 ) 

which is just the sum of disparities between the observed projection 
and the true projections. It is clear that the maximum likelihood esti- 
mation results from minimization of (3.9) by adjusting both motion 
parameters and point configuration at the same time. This is an intui- 
tive explanation of the estimates. Even without the assumption of 
the Gaussian noise distribution, the objective function of (3.9) is 
desirable. We define the (average) image error as the value of (3.9) 
divided by 2n. 

Model 2: Uncertainty Polyhedron 
Let us consider another case where the noise is confined in a 

small range. Digitization noise is one example of such cases. We 
assume that the true image of a point is confined in a rectangle cen- 
tered at the observed image position of the point, Such a rectangle is 
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(a) 
Fig. 2 The distribution of a 3-D points given its images. Darker areas have higher proba- 
bility (the half tone images in this paper have 9 printable graytones). Two diagonal lines 
across the figure are optical axes of two cameras. (a) two observed projection lines, with 
error distribution, intersect. (b) two observed projection lines, with error distribution, 

@) 

determine the distribution of the point in 3-D. 

called uncertainty rectangle. The true 3-D position of the point is 
confined in an infinite pyramid defined by the focal point as apex and 
the uncertainty rectangle as a cross-section as shown in Fig.3. The 
second view defines another pyramid for the point. The 3-D position 
of the point must be inside the volume of intersection of these two 
pyramids. Such an intersection is called uncertainty polyhedron. 

Assume the image positions of a point in two images are 
exactly correct, the corresponding uncertainty polyhedron has a 
volume V .  If those image positions are perturbed by noise, the 
volume of the uncertainty polyhedron will generally decrease to a 
value v . If the perturbation is so large that the two pyramids do not 
intersect, the volume of the uncertainty polyhedron v is zero. So we 
assume that the probability for a point to be confined in the uncer- 
tainty polyhedron with a volume v is equal to v / V .  

Without knowing the true 3-D position of a point, the volume 
V can be estimated as the corresponding volume of uncertainty 
polyhedron of the midpoint of the line segment L connecting two 
observed projection l i e s  (Fig. 1). This estimate is accurate enough 
since the value of V is not sensitive to a small perturbation to a 3-D 
point. 

We assume, as before, the conditional probability for the point 
to lie in the intersection is independent between different points. Let 
the observed point i have intersection v i  and the volume of the 
corresponding largest possible intersection be Vi.  The event con- 
sidered here is that the 3-D feature points are all confined in the 
corresponding intersections. Then the conditional density in (3.4) 
should become discrete conditional probability distribution. Thus 
the conditional probability that every point lies in the corresponding 
uncertainty polyhedron can be written as 

PUIM.X(U I m x )  = 

volume o intersection 
 pi^ volume of [argeipossible intersection =?I 

i = l  (3.10) Vi 

Now, let us assume that the cameras are perturbed by a small 
amount away from the position at which the image was taken. Any 
perturbation may increase the volume of the intersection for some 
individual point but generaly it decreases the volume of intersection 
for most points. If the perturbation is large enough, the intersection 
volume for a point becomes zero and so the conditional probability 
becomes zero. Thus perturbation of the camera position away from 
the correct position decreases the conditional density in (3.10) gen- 

Image 1 Image 2 

uncertainty 

Fig. 3 The intersection of two pyramids defines 
uncertainty polyhedron. 

erally. If the perturbation is large, the conditional density becomes 

Based on the maximum likelihood principle, the maximum 
likelihood estimates of the motion parameters are such that the con- 
ditional probability reaches the maximum. 

If the estimated parameters are such that the corresponding 
conditional probability in (3.10) is equal to zero, the results must not 
be a maximum likelihood estimate since the conditional probability 
in (3.10) for the true parameters is not zero (for implementation, we 
make sure that the volume for a mere touch is positive). Therefore 
the maximum likelihood must correspond to a conditional probabil- 
ity that is nonzero. 

The conditional density in (3.10) does not explicitly depend on 
the true 3D position of feature points. This is what we need since the 
optimization process would not have to iterate on all points which is 
otherwise computationally extremely expensive (iteration on n 
points needs 3n-dimensional parameter space!). After the motion 
parameters are estimated by the maximum likelihood estimates, the 
3-D position of each feature point is naturally estimated by the mean 
of the corresponding intersection. Since the uncertainty polyhedron 
for the maximum likehood estimate is always nonempty, we can 
always calculate the mean position of the intersection. 

If the conditional density corresponding to the final estimates is 
positive (which is the case for all the simulations performed), the 
results are at least a valid solution from the images given. In other 
words, we obtain a structure of the scene and the corresponding 
motion such that the projection of each point is within the noise 
range. The maximum likelihood estimates makes sure that for the 
answer obtained, the observed data has the maximum probability. 

It is easy to see that if the given motion parameter has large 
errors such that a point does not lead to any intersection, the condi- 
tional probability in (3.10) is zero. In such a case, the conventional 
iterative procedure for a maximum will be trapped at a point since 
the gradient vanishes. So the iterative procedure needs a good esti- 
mate of motion parameters to start with. The initial guess provided 
by the linear algorithm does not always guarantee nonzero intersec- 
tion. Therefore we need a model for the distribution of the noise so 
that the point is not restricted to a finite area. The corresponding 
objective function of Gaussian distribution can be used as intermedi- 
ate criterion for iteration before using the uncertainty polyhedron 
model. 

zero. 
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Line Correspondences 
When the images have few distinctive points but many lines, 

the lines (without known end points) can be used as features for 
motion analysis. With line correspondences, at least 13 line 
correspondences over three views are required for a linear algorithm 
to give a unique solution [Weng88a]. More lines are needed to pro- 
vide overdetermination in the presence of noise. 

The observables for lines are the normal of the plane passing 
through the focal point and the line in the image. Those observables 
play a role similar to points in the case of point correspondences. 

4. IMPLEMENTATION 
This section discusses some aspects of implementation of the 

algorithms discussed in the previous sections. 
First, for Gaussian distribution, equation (3.9) involves both 

motion parameters and 3D position of every feature point. The 
maximum is over all the possible motion parameters and scene struc- 
tures. The parameter space for iteration is huge and computation is 
every expensive. In implementation, we don’t have to iterate on the 
scene structure. An exact solution of the optimal point position 
requires solving a fourth order polynomial equation. By a reason- 
able approximation, we can get a closed form solution. The exact 
solution is far from the midpoint of the line segment L when the dis- 
tance to the object and the viewing angle are not drastically different 
from two images. In simulations, only small performance difference 
is observed between the midpoint and the analytical solution. For 
simplicity, we can just choose the mid point of the line L as an 
approximated optimal point. 

For the model of uncertainty polyhedron we need to calculate 
the volume of the intersection as well as the largest intersections in 
the neighborhood of the 3-D points. The shape of the intersection of 
two arbitrary pyramids at arbitrary orientations is very irregular. 
Exact computation through exhaustive procedure will be very 
inefficient for numerical calculations. We use a simple and efficient 
way to calculate the volume of the intersection. First the region of 
intersection is circumscribed by a regular diamond-like polyhedron 
(we call it diamond here). The circumscribing diamond is divided 
into eight octants along its three axes. The division is similar to 
octree except the axes here is not orthogonal. The 8 octants are 
recursively subdivided into 8 suboctants, until the desired resolution 
is reached. Then intersection can be checked recursively for each 
block using octree techniques introduced in [Weng87b]. Simulation 
suggested the performance does not improve much for the tree level 
beyond 3. 

For both Gaussian model and uncertainty model, we need to 
compute nonlinear least squares solution. For uncertainty polyhedron 
model, the maximization of a product of n factors corresponds to the 
maximization of the sum of their logarithms, which in tum 
corresponds to the minimization of a sum of squares as we did for 
the Gaussian distribution. Therefore the maximum likelihood prob- 
lem is reduced to a nonlinear least squares problem for both models. 
The derivative free. analogues of the Levenberg-Marquardt and 
Gauss algorithms by Brown [Brow721 is used for experiments. An 
implementation of the algorithm is available in IMSL with subrou- 
tine name ZXSSQ. 

5. EXPERIMENTAL RESULTS 
To show the performance of the approach, simulations are per- 

formed for the algorithm from point correspondences. For the results 
shown here the Z X S S Q  subroutine in IMSL library is used for itera- 
tion in the second step. 

In the simulations the focal point of the camera is located 11 
units away from the center of the object. The focal length is one 
unit. The image is a two by two square. The field of view is deter- 
mined by the size of the image and the focal length. The object 

feature points are generated randomly according to a uniform distri- 
bution in a cube of 10 by 10 by 10 the center of which is the center 
of the object. The simulated camera undergoes a motion such that 
the whole object is still in the field of view for both images, before 
and after motion. The image coordinates of the points are digitized 
according to the resolution of the camera. If the resolution is k by k , 
horizontal and vertical coordinates each has uniformly spaced k lev- 
els. The positions of these levels correspond to the locations of the 
pixels. The image coordinates are rounded-off to the nearest levels 
before they are used by the motion estimation algorithm. These 
round off errors result in the e m r s  in the motion parameters and the 
relative depths calculated by the algorithm. Though the noise is just 
simulated by digitization noise, it may represent other kinds of noise. 
For example, additive noise can be simulated by a reduced resolu- 
tion. All e m s  shown in this section are relative. Relative error of a 
matrix, or vector, is defined by the Euclidean norm of the error 
matrix, or vector, divided by the Euclidean norm of the estimated 
matrix, or vector, respectively. 

If the noise is moderate (resolution is 128 by 128 or higher), 
the initial guess provided by the linear algorithm [Weng87a] in the 
first step is generally good enough to ensure the convergence for the 
iterative procedure. When the noise is large, for example the resolu- 
tion is 64 by 64 or lower, the initial guess given by the linear algo- 
rithm is severely corrupted by noise. To get reasonable results under 
such resolutions when convergence can not be obtained, the initial 
guess can be modified so that the algorithm skips to another iteration 
region. To do so, the initial guess for rotation angle is equal to zero 
(since the rotation is usually small) and for the direction of transla- 
tion, the parameters I$ and yf in (4.1) are on a coarse grid of their 
space. When the corresponding motion parameters give all positive 
depths, the search on the grid terminates and the motion parameters 
are improved through iterations. 

First, to investigate whether the initial guess provided by the 
linear algorithm indeed helps the second step, a fixed guess is used 
as the initial guess for the second step. The initial guess is a zero 
rotation angle and a translation vector of (1.1, 1). The image resolu- 
tion is 256 by 256 and sign reversal for the translation and rotation 
angle is performed when convergence is not achieved. Different 
motion parameters are chosen randomly. Among 36 examples with 
12 point correspondences, 16 of them do not converge, or converge 
to a wrong answer. A wrong answer means that the error of transla- 
tion is larger than 100% or error of rotation matrix is larger than 
50%. Remaining cases give correct solutions with the translation 
error less than 10% and the rotation error less than 5%. This shows 
that a good initial guess is needed to ensure a correct solution. 

To demonstrate the improvement of the maximum likelihood 
estimation (second step ) over the results of linear algorithm (first 
step), the errors in the initial guess given by the linear algorithm are 
compared with the results of the maximum likelihood estimation. 
Since it is not true that the iteration will always improve the initial 
guess, the average behavior is what we are interested in. From Fig.5 
to Fig. 10, the errors shown are average errors over 50 random trials, 
with randomly generated points. Image resolution is 256 by 256, and 
12 point correspondences are used. 

Fig.5 to Fig. 8 show the comparison for Gaussian model. The 
rotation axis is aligned with (1,0.8,0.9). The rotation angle is 8’. 
The translation vector has a length of 3 units. The direction of trans- 
lation changes from (1, 0,O) to (0.0, 1) in X-Z plane at evenly 
spaced 21 steps, corresponding to the X-coordinates from 0 to 20, 
respectively. The corresponding errors of the solution of the linear 
algorithm are shown by the solid curve, and those of the final itera- 
tion results are shown by the dashed curve. Fig.5 shows the errors of 
R . Fig. 6 gives those of T. From these two figures it can be seen that 
the errors are large for the first step with small X index. When the 
index increases, the errors decrease. The relationships between the 
errors and the motion parameters and system parameters are dis- 
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cussed in [WengSb]. The average errors of recovered depth of 
points are shown in Fig. 7. Fig. 8 compares the image errors of the 
first and second steps. It is clear the image errors of the second step 
are very consistent. This is what is expected. The average image 
error should be close to the average errors in the image coordinates. 

Fig. 9 to Fig. 12 are the results for uncertainty polyhedron 
model using the same set of motion parameters. The uncertainty rec- 
tangle corresponds to a pixel for the simulation. Very similar perfor- 
mance is observed for Gaussian model and uncertainty polyhedron 
model. This means that the errors are not very sensitive to the 
moderate changes in the assumed noise distribution. It can be 
predicted that the assumption of Gaussian distribution generally 
yields good performance, though in reality the noise distribution is 
not exactly Gaussian. 

The algorithm has been tested on real images. Fig. 13 shows a 
pair of a scene of our laboratory. A CCD video camera with rougNy 
512 by 512 resolution is used as imaging sensor. The focal length of 
the camera is simply calibrated but no nonlineality correction is 
made for the camera. The camera takes two images at different posi- 
tions. A two-view matcher computes image displacement field and 
occlusion on pixel grid [WengSSc]. The displacement field is 
shown, on a 13 by 14 grid, overlaid on the image in Fig. 14. Those 
13x14=182 displacement vectors are used as point correspondences 
to compute motion parameters. The motion parameters computered 
are shown in the following table. 

Rotation axis 
Rotation angle 

Image error 
Pixel width 

I Data and Results for I 

0.916341 0.315033 -0.247132 
-0.958501O 
0.00063 1 
0.001 11 1 

Images of Laboratory Scene 
Translation I -0.006601 -0.980438 -0.196718 

Since no attempt is made to obtain the ground truth, we do not 
know the accuracy of those motion parameters. However, the image 
error is about half a pixel width, which is very satisfactory. 

6. CONCLUSIONS 
A robust approach is proposed for the problem of motion and 

structure estimation. The first step uses a robust linear algorithm to 
obtain preliminary estimates to the motion parameters and the scene 
stmcture. Then the second step modifies the motion parameters and 
structure using maximum likelihood criterion. Although the second 

Fig. 5. Relative errors of R of first step (solid 
curve) and those of the second step (dashed 
curve) versus different translation directions 
(Gaussian model) 

step does not always reduce the errors in motion parameters and 
structure for every individual case, the theoretical results on max- 
imum likelihood estimates and the simulations show that on average 
the errors in the estimated motion parameters and the structure of the 
scene after the second step are remarkably reduced. 
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Fig. 14. Sample of the displacement field com- 
puted 
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Fig. 6.  Relative errors of T of first step (solid 
curve) and those of the second step (dashed 
curve) versus different translation directions 
(Gaussian model) 

Fig. 7. Relative errors of recovered depth of first 
step (solid curve) and those of the second step 
(dashed curve) versus different translation direc- 
tions (Gaussian model) 

385 



Fig. 13. Two views of a laboratory scene 
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