IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 5, MAY 2008 657
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Motion Estimation and Shape-Independent
Object Segmentation
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Abstract—A video containing multiple objects undergoing inde-
pendent translational and rotational motions is analyzed through
a combination of spatial- and frequency-domain representations.
The Fourier transform of the sequence is used to estimate the
multiple translations and rotations in a computationally efficient
manner, which is also robust to local inaccuracies and global
illumination changes. A novel algorithm is presented for the
simultaneous extraction of all objects undergoing translation and
the background via a least squares technique that takes place
entirely in the Fourier domain. Spatial information is combined
with the frequency domain object extraction results, to further
refine them. For the case of rotational or combined, rotational and
translational motions, the moving objects are segmented using
purely spatial information. We show that the combined analysis
takes advantage of the strengths of both representations, by
providing reliable and computationally efficient motion estimates
and object segmentation. The proposed algorithm is shown to be
robust to local noise and occlusion, because of its global nature.
Experiments are performed on synthetic and real video sequences
to demonstrate the capabilities of our approach.

Index Terms—Fourier transform (FT), motion segmentation,
phase-based motion estimation, video analysis.

I. INTRODUCTION

PPLICATIONS of digital multimedia technology are

becoming more widespread, as more devices are able to
store, process and transmit images and videos over various
networks. The advent of the semantic web [1], [2] and the
latest MPEG video standards [3], [4] necessitate the efficient
and reliable estimation of motions and the extraction of the
corresponding moving objects. In this paper, we examine the
case of a video containing multiple independently moving
objects, which undergo 2-D planar translations, rotations, or a
combination of both, over a static background. Such motions
appear in many videos of practical interest, such as security
applications, traffic surveillance, and sports videos.

A. Previous Work, Motivation

Many methods have been developed for the accurate extrac-
tion of motion information, using spatial domain data [5], [6],
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frequency transformed data [7]-[9], or a combination of both
[10]. Traditionally, motion estimation takes place in the spatial
domain, and is based on the changes in luminance between suc-
cessive frames [5], [11]. The changes in the brightness pattern
of an image sequence are known as the “optical-flow,” to which
an appropriate parametric motion model can be fitted [12]. Af-
terwards, pixels that undergo a similar motion are clustered to-
gether, thus defining objects, or groups of objects, in a scene
[13], [14] (motion segmentation). This, of course, is based on
the assumption that pixels with similar motion belong to the
same object.

However, spatial methods for motion estimation are prone
to errors, as they require very small inter-frame displacements
and constant scene illumination. They are very sensitive to local
inaccuracies, or small motion discontinuities, which make the
motion estimates on the boundaries of moving objects, and the
corresponding segmentation, unreliable [15]. Various methods
have been developed to improve the results of spatial domain
motion estimation, that involve regularization [16] and smooth-
ness constraints on the extracted motion field [5], [17]. Nev-
ertheless, these approaches remain local, and consequently still
encounter difficulties when faced with local inaccuracies. Addi-
tionally, their computational cost is high, as they require pixel-
wise or block-wise processing of each frame.

Frequency, or spatiotemporal-frequency domain methods
have been developed to complement or overcome some diffi-
culties of spatial-only methods [15], [18]. These approaches
are based on the phase shift introduced to the frequency do-
main representation by spatial translations [19], [20]. They
process the entire frames simultaneously, so they are inherently
robust to local inaccuracies, like local occlusion, illumination
changes and motion discontinuities. The global frame pro-
cessing makes them less sensitive to smoothly textured areas
than pixel-based approaches (such as optical flow), which are
based on pixel-wise illumination differences. The numerous
methods available for the fast computation of frequency trans-
forms [21]-[23], and their noniterative nature [15], make them
computationally efficient.

One of the main advantages of Fourier-domain methods,
which is their global nature, is also a disadvantage, as it in-
troduces the “localization problem:” there is no immediate
connection between the motion estimates and their spatial
location [15]. Spatiotemporal-frequency domain approaches,
like [18], overcome this problem by simultaneously estimating
the time-varying frequencies corresponding to each pixel. How-
ever, methods that are based on the use of the Wigner—Ville
distribution (WVD) [18], [24] are unsuitable for the estimation
of multiple motions, as the WVD contains many cross-corre-
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lation terms even in the case of one object motion, and would
consequently be unable to extract different velocities. Also,
time-frequency distribution based methods deal with trans-
lations, but not with more complex, rotational-translational
motions. Wavelet domain methods [10] are able to localize
motions extracted from phase information, but they suffer from
inaccuracies at motion discontinuities. Finally, spatiotemporal
filtering approaches [7] are able to successfully estimate and
localize translations, but they have a high computational cost,
as they require the application of many different velocity-tuned
filters to the video, in order to give accurate estimates.

B. Contributions

In order to address these limitations, we propose a novel ap-
proach that combines the results of frequency and spatial do-
main processing in a novel manner. We present a Fourier do-
main method for motion estimation, that is based on phase cor-
relation techniques, which have proven to give robust results
for image registration [9], [25], [26]. However, phase correla-
tion for registration deals with only one moving “object” (the
image to be registered), whereas our method is designed for the
estimation of multiple translational and rotational-translational
motions. Also, in contrast to existing Fourier domain methods
for multiple motion estimation [15], [18], [27] that are limited
to the case of translational displacements, we propose a system
that estimates both translations and rotational-translational mo-
tions [28], [29].

For the special case of multiple, temporally constant transla-
tions, our problem formulation also allows the estimation of the
number of moving objects, as in harmonic retrieval problems
[30], [31]. For the case of multiple translations (that may be
temporally varying) we provide a novel, elegant method for the
simultaneous segmentation of the background and the moving
objects, achieved by solving a linear system in the least squares
(LS) sense. This solution is both spatially and temporally global,
as it uses the FT of all video frames simultaneously. This makes
it robust to temporally local occlusions that may occur, for ex-
ample, when an object hides another over a subsequence of
the video. The frequency based segmentation results are fur-
ther refined by appropriate fusion with spatial domain data fol-
lowing non-ad-hoc, principled approaches, for the accurate ob-
ject extraction. When the motions are rotational-translational,
the segmentation is achieved using only spatial information: the
motions that have been estimated in the frequency domain are
compensated for, and the result is compared against the original
video frame pixel values.

The paper is organized as follows. In Section II, we present
the basic problem formulation for multiple translating objects
in a video sequence. Section III presents a new method for the
extraction of multiple translating objects using frequency do-
main information. The motion segmentation is formulated as
a LS problem in the Fourier domain, and the results are re-
fined by using spatial information, as described in Section IV.
In Section V, we examine the problem of multiple complex
motions, involving both rotations and translations. Experiments
with numerous sequences, synthetic and real, display the effec-
tiveness of the proposed motion estimation and segmentation
methods in Section VI. Finally, conclusions and future direc-
tions of research are presented in Section VII.

II. FOURIER DOMAIN TRANSLATION ESTIMATION

In this section, we present the problem formulation for a video
that contains multiple objects that are translating against a static
background, with a translation that can vary with time. Each
frame contains M objects, with luminance s;(7), 1 < i < M
at pixel 7 = (z,y), and displacement d;(k) from frame 1 to
k. The Fourier transform (FT) of each object ¢ is S;(@) =
1S;(@)|e79(®), where @ = [2mm /Ny, 27n/No]T, m,n € Z,
is the 2-D spatial frequency, N1 x N, the image size, |S;(@)]
the FT magnitude, and ©;(@) the FT phase. Each video frame
is represented in the spatial domain as the sum of a static back-
ground, denoted by s;(7), and the M objects, s;(7),1 <1 < M,
so frame 1 is

M

a(fv 1) = Sb(f) + Z Si(f) + emod(fv 1) + 'Unoisc(Fa 1) (l)
=1

where a(7, 1) denotes the luminance value of frame 1, at pixel
location 7. In reality, an additive model for the video frames
is not entirely accurate: the background pixel values are not
added to the object pixels in the object areas, but they mask
their values. Thus, the additive model of (1) includes a mod-
eling error ep,,q, which comprises of the background pixels that
are masked by the objects in one frame, and uncovered in other
frames. Since epoq consists of pixel luminance values, it is not
random. However, it is unknown, since the object segmentation
is unknown, and changes from frame to frame, as different re-
gions of the background are masked or revealed.

The term vyeise represents the measurement noise, intro-
duced during the image (or video) acquisition process [32].
The measurement noise, which is a random quantity, has been
modeled statistically in the literature [33], [34], and numerous
methods have been developed for its removal [35]. We consider
that the data being processed either contains negligible amounts
of random measurement noise, or that this noise has been re-
moved, as is the case in related work [15], [25], [26], SO Vpoise
does not appear in the methods for motion estimation. The rest
of the terms in (1) are not random, so in the sequel we will
be referring to deterministic quantities for motion estimation.
Frame k£, 1 < k < N then is

a(F, k) = sp(7) + Z 3i(F — d;(k)) + emoa (T, k). (2)

i=1

It should be noted that the number of objects M is initially un-
known, so the only information used in the system are the video
frames themselves. For the special case of temporally constant
inter-frame translations, the number of moving objects can be
estimated a priori (Section I1I-A). For translations that vary with
time, as in (2), the number of objects is estimated at a later stage,
by simply counting the number of translations that are extracted.
The method we propose for translation estimation is based on
the phase-shift property of the FT, similarly to phase correla-
tion techniques [9], [15], [26], that have been used for image
registration. In our case the problem is more complex, due to
the presence of multiple moving objects. The 2-D spatial FT of
(2) is
M -
A(@,k) = Sy(@) + Y Si(@)e = 40 4 Boa(@,k). (3)

i=1
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We then examine the ratio of the FTs of frames 1 and &

) = 4
=Ty(@) + i Di(@)e™3@ 40 L 1@, k) (4)
where -
@) =y L0 =
Lo (@, k) E’j&‘}fj”l’)’“) )

In (4), the displacements appear in a sum of weighted exponen-
tials, so the inverse FT of @ (@) is

+Z%

Since y,(7) is a sum of weighted delta functions, it has M peaks
at ¥ = d;(k), from which we can estimate the M translations.
In practice, digital images (frames) are being processed, so the
FT is actually a discrete FT (DFT), which is implemented via
the fast FT (FFT). Also, in practice the delta functions are im-
pulse functions, and the image is considered to be periodically
replicated in space. Despite this, the peaks around d; (k) are pro-
nounced and provide reliable localization of the actual displace-
ments, as also reported in [9] and [26]. In order to further en-
hance the peaks’ resolution, we examine the squared magnitude
of (6), given by

Z |y (7

di(k)) + Ymoa(7, k). (6)

)262(r — di(k))

|<Pk

M
T on [(W) T moa (7)) S (P — (k)
=1
+ 176(F) + Ymoa (T, k)| 7

From (7) we see that the peaks of |p(7)|?> now orig-
inate from terms containing delta functions around

Ji(k), and also from terms of squared delta functions

(S (P63 = di(k))).  The
17(F) + Ymoa(T, k)|* in (7) do not significantly degrade the
accuracy of the peaks in ¢y (7), as they affect all coordinates
7, but do not have an impulsive nature around any specific 7.
This fact, combined with the presence of delta functions and
squared delta functions around each d;(k) after the nonlinear
processing, leads us to expect an enhancement of the peaks
around the true displacements. Additionally, the robustness
of FT phase-based methods for registration and displacement
estimation has been documented in the relevant literature
[9], [15], [26], [36], and is also verified by our experimental
results, where the displacements are extracted with accuracy
in experiments involving real video sequences. Fig. 1 shows
the 3-D surface ¢o0(7) for a real video of a car translating in
a parking lot (Section VI-C), from frames 1 — 20. Despite
the presence of the background, which creates a dominant
peak (d, = (0,0) in Fig. 1) the peak corresponding to
the car’s translation can be clearly extracted. It is equal to

remaining  terms
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Fig. 1. Surface ¢20(7) for Parking Lot sequence, frames 1 and 20. Two peaks
are dominant, one for the static background one for the car.

d1(20) = (0,36.1) (Fig. 1), corresponding to a horizontal
inter-frame displacement of d; = 1.9, which is close to the true
displacement, of 1.95 (Section VI-C). It should be noted that
the center of the coordinate system is considered to be in the
center of the surface ¢ (7), and the translations are estimated
with respect to it.

When the proposed method examines the FT of frames 1 and
k, it finds the total displacement d; (k) between those two frames
(for each object ¢), and estimates the corresponding inter-frame
displacements as d;(k)/(k — 1). If the actual inter-frame dis-
placement between frames (1,2),(2,3),...,(k — 1,k) is not
constant, i.e., not equal to d;(k)/(k — 1), further processing is
necessary to extract its correct, time varying values. In practice,
we can estimate time-varying object translations either (a) by
extracting the translations between frames that are close to each
other, so the inter-frame translations are approximately con-
stant, or (b) by finding the translations between two frames, e.g.,
1 and k, and then estimating the translations between frames 1,
|k/2] and | k/2] + 1, k, until the translation estimates in these
smaller intervals become equal to each other.! This method was
used, for example, to determine the inter-frame displacements
corresponding to Fig. 1 and to the video of Section VI-C, which
in this case are constant.

The proposed translation estimation algorithm is computa-
tionally efficient because of the numerous algorithms available
for the fast estimation of the FT, namely the FFT, or its vari-
ants [21], [22]. For the estimation of the translation between
N frames of size L = N; X N, we need to estimate the
FFT of all frames. This has computational complexity of the
order O(N - Llog, L), and takes 0.05 seconds per frame, for
size 190 x 420 frames in Matlab, on a 3.4 GHz Pentium IV,
while a C implementation would be even faster. For (7), we
calculate the squared magnitude of the FFT ratios, which adds
L multiplications and additions, and its inverse (IFFT) also
adds O(Llog, L) computations, so the resulting complexity is
o (L2 log, L). The motion estimation requires localizing the
peaks of ¢ (7), which entails searching over all L values of this

IThe notation | k/2] represents the nearest lower integer to k/2.
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surface (which have already been estimated), and can become
computationally costly for large frames. The computational
cost of peak-picking [37] can be lowered, and its robustness
increased, by searching over smaller windows (bins) in the
surface ¢ (7) [38], by using methods of discrete stochastic
optimization, as in [39], or by using joint time-frequency infor-
mation [40]. Detailed investigation of these methods is beyond
the scope of the current paper, however their use consists of an
area of future work. Using peak-picking, for video frames of
size 190 x 420, the translation estimation takes only 0.2 s in
Matlab and would take even less time if implemented in C.

III. LS SEGMENTATION FOR TRANSLATION
IN FREQUENCY SPACE

In this section, we present a novel method that achieves the si-
multaneous extraction of a frame’s background and of multiple,
independently translating objects, using the frequency data. We
represent the sequence as in Section II, where each frame’s FT
is given by (3), for each frequency @ (there are in total N; - N
frequencies) at frame &k (1 < k < N). By stacking the FTs of all
N video frames, for any one frequency w, we obtain the linear
system

A =GS + Emod )]

where A = [A(w,1),A(®,2),...,A(w,N)]T are the
N x 1 frame FTs, and the (M + 1) x 1 vector S =
[Sp(@), S1(@),...,Sx(@)]T contains the background and
the object FTs, at frequency w. E,,,q is the corresponding
N x 1 vector of the modeling error, and G is an N x (M + 1)
matrix with the motion information, given by

1 1 e 1

1 emi®'d®@ | mietdu(2)
G=1|. . . ©)]

1 i@ di(N) e—ioTdu (N)
for each frequency @. The first line of matrix G contains ones
because there is zero displacement from frame 1 to 1. The linear
system of (8) is almost always over-determined, because the
number of frames [V that are available is usually higher than
the number of moving objects M. Once the object translations
d;(k) are estimated, the only unknowns in (8) are S and Epmoq,
at frequency @. The term E,,,,q depends on the video being
examined and cannot be estimated a priori (in order to be re-
moved), as it depends on the background areas that are hidden
or revealed by the moving objects.

Once the object translations have been estimated, we extract
the background and moving objects by solving the linear system
of (8) for each one of the N1 x N, frequencies w separately.
We estimate the N x (M + 1) matrix G of (9) for each @
and for the extracted displacements d; (k). We plug it into (8),
along with the NV x 1 vector A, containing the N values of each
frame’s FT at that @, and solve the resulting linear system in
a LS) sense [41]. This leads to the vector S, which contains
the estimates of the background and moving objects’ FTs, for
that frequency @. By repeating this process for all N; x Nj
frequencies, we obtain the 2-D FT of the background, S, and of
the M objects S;. The spatial representation of the background
and the objects can be immediately obtained from the inverse
FT of S, and each S;. It should be noted that this process is

not computationally costly, as the LS system is solved using its
singular value decomposition (SVD) (Section III-A), for which
many computationally efficient methods exist [42]-[44].

1) Estimating the Number of Moving Objects: The video se-
quence is represented in the spatial domain as a sum of the back-
ground, the M moving objects, and a term representing the mod-
eling error. Our method does not require prior knowledge of the
number of moving objects, as their number can be extracted si-
multaneously with the displacements, by simply counting the
number of peaks of (7). Since there are multiple objects in the
scene, and the background is present, the peaks at 7 = d;(k)
are surrounded by side lobes. In practice this does not introduce
inaccuracies, because the motion induced peaks correspond to
delta functions, which are significantly more pronounced than
the noise around each location 7 = d; (k).

For temporally constant inter-frame translations, the number
of moving objects can be extracted & priori, before their transla-
tions are estimated. In that case, the displacement from frame 1
to k is d;(k) = (k —1)d;, where d; is the (constant) inter-frame
displacement for object 7. Then, G of (9) becomes Vander-
monde [42] for each frequency w, i.e., the elements in each of
its rows form a geometric progression, as follows:

1 1 1
1 e—j@le e_ijdﬂf

G= (10)

1 e di(N-DaTd; e~ I(N-1)aTdy

The autocorrelation matrix for the video frames’ FT’s (at a fixed
frequency @) A = GS can be expressed by R = GRgGH,
where Rg is the correlation matrix of S, i.e., the background
and objects’ FT. It can be shown [31] that the rank of R 4 is
equal to the rank of G. For constant inter-frame translations, G
has M + 1 independent columns, so its rank gives the number of
independently moving objects [30]. The singular values of the
noiseless data (i.e., R4 = GRgGH) correlation matrix R 5 are
M+1:{0},0%,...,0%,}. When random noise is present, in the
literature it is assumed to be Additive, White and Gaussian, for
simplicity and without loss of generality. The cases of nonwhite
Additive Gaussian noise and even general, nonGaussian noise,
have also been studied [35] and can be dealt with. In our case,
the noise is not random, as it is introduced by the modeling error
E\h04, which is a deterministic, data-dependent quantity (see
analysis below (1)). Epoq introduces an error €2 to each of the
singular values 07 (0 < i < M), arising when areas of the
background are hidden or revealed by the moving objects, so
it takes up a smaller part of each video frame than the moving
objects, which are of interest. Consequently, its effect on the
singular values in (11) does not become detrimental, i.e., the
first M + 1 singular values remain significantly higher than the
other N — M — 1 ones. The SVD of R4 is

Ra =Ua
08 + 5%
0% + 6%

2 2
oM tEN
2
M1

(11
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where U and V5 are the eigenvector matrices corresponding
to A. The previous analysis focuses on the structure of the au-
tocorrelation matrix for a fixed frequency w. This is because
the rank of R p is determined only by the object displacements,
i.e., it remains the same for any @ (except the trivial cases of
w = 0 and wTd;(k) = 27K, Kk € Z). In practice, we estimate
the number of moving objects from Rz for all frequencies w,
and keep the estimate of M that is returned by the majority of
R ’s. In order to find the number of moving objects (for each
R, i.e., for each @), we count the number of singular values in
the 75y, percentile (i.e., the highest 25% of the singular values).
In our experiments, this proved to be a reliable estimate of the
number of moving objects. Prior knowledge of the number of
moving objects helps verify the number of peaks found in (7),
but can also be a parameter of interest in itself if, for example,
we are only interested in how many moving objects are present
in a scene, and not in the full characterization of their motions.

A. Regularization for Least Squares Motion Segmentation

The LS solution for (8) is the solution that minimizes the
mean squared error |GS — A||> between the noiseless data
GS, and the real data A, so it essentially minimizes the energy
of |[Emodl|”. The LS solution is given by the Singular Value
Decomposition (SVD) of G, i.e., G = ULVH

S=(GHG)'GH4 =vE 'uHaA (12)
where £ is a diagonal (M 4 1) x (M + 1) matrix with values
1/0; for o; # 0, and O for o; = 0. This is an inverse problem,
which is inherently ill-posed, i.e., its solutions are very sensitive

to noise and can easily become unstable. This can be seen if we
replace A in (12)

S =(GHG) 'GH(GS + Emod)

=S+ (GHG)'GHE 04. (13)

Since we have (GHG)"1GH = VX 1UH, (13) becomes

S=S+VElUHE, 4.

(14)

For the noiseless case this would correspond to the correct so-
lution. However, v lis diagonal with values 1/0;. From (14)
we see that the smaller singular values o;, corresponding to the
high-frequency components of the video, greatly enhance the
term E, ;4. This appears in the solution for the object vector S
in the form of large oscillations, rendering it useless [31], [45].
A well known technique that deals with this instability is the
Tikhonov regularization algorithm [46]. Essentially, Tikhonov
regularization imposes a constraint on the magnitude of the so-
lution S, to eliminate solutions with magmtudes that go to in-
finity. Thus, instead of minimizing [|GS — A||?, we minimize
|GS—AJ2+\||S||?, where A is a positive constant that controls
the size of the solution vector2. The LS solution then becomes

M+1
H 1~H __H
S = (GG + \)'GHA = E:U +)\vulA (15)

Vai 44 a3 forthe N x 1 vector x.

2We use the L norm ||z =

so the effect of o; ~ 0 is dampened by the regularization pa-
rameter \. Note that for A\ = 0, (15) reduces to the solution for
the ideal (noise-free) case

+
S=(GHG)'GHA Z viulTA (16)
i=1

_I'-l

From (15) it is evident that the regularized solution is more
stable: when a singular value o; — 0, the solution does not go
to infinity, because of the regularization parameter \. However,
large values of A also reduce the accuracy of the LS solutions,
since then, the regularized singular values o; /o7 + X will de-
viate more from their true values 1/0;. The LS estimates be-
come smaller because of A, so in our problem, namely that of
object extraction for motion segmentation, the resulting object
and background estimates are darker than in reality. Thus, there
is a tradeoff in the choice of this regularization parameter. Fur-
thermore, its ideal value cannot be determined a priori, since
it requires knowledge of the actual solution. For this reason, we
empirically tested numerous values of A on over 10 different se-
quences (including the ones in the Section VI), and found that a
value around 1 gave consistently good object estimates. We also
observed that the LS estimates were robust to small deviations
of A\ around 1.

B. Effect of Modeling Error

As noted in Section II, the model used to describe each video
frame cannot capture the background masking effect caused by
the moving objects. This is because the modeling error is di-
rectly related to the unknowns in our problem, namely the ob-
ject segmentation. However, in our experiments (Section VI)
we observed that the LS solutions for object segmentation in
the frequency domain contain artifacts with a clearly repeti-
tive, periodic pattern. In this section, we show that this peri-
odic component in the LS solution is introduced by the mod-
eling error Ey,,q. For simplicity of analysis, we consider the
example of only two objects in frame 1, that have translated by
di, i = {1,2}, from frame 1 to 2

81(@) + Sy(@)e
+95(@)e ™ 4 Epoa(@,2).
The N; x N LS solutions Sy(@), 51(@), S2(@) include the

effects of Fyn0a(@,2), and are “exact solutions” when there is
no modeling error, i.e., they correspond to
A(@,2) = 84(@) + S1(@)e ™% D+ Gy(w)e™?

If we set Epmod (@, 2) = up(@)+u1(w) +uz (@), where u;(w) =
lui(@)|e=77() i = {b,1,2}, (17) becomes

A(@,2) =
a7

—ietda - (18)

A(@'/Z):S( )+Sl( )e i&Tdy +52(G))6 i@ ds
+ [up (@) + u1 (@) + ug(w)]

= (Sb(w) + up(@)
+ (Sl(w) + ul(w)ej“le)ej“ =
(sg( ) + ua (@) f@”z)eﬁ”z.

N———"

19)



662 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 5, MAY 2008

Thus, each LS estimate is related to the desired solution by
Si(@) = Si(®@) + wi(@)e® %, i=1{b1,2}.  (20)

The error introduced by FEumoa is ui(w) =
lu;(@)|e=39i(®ei®"di ;= {p1,2}. The quantity
¥;(®) changes at every frequency @, depending on the
unknown modeling error term wu;(@), whereas the term w”d;
defines a fixed repeated pattern, namely a plane in w-space,
specified by the normal vector d;. Since this term appears in
the FT phase as ej‘:’Tdf, it corresponds to a harmonic, i.e., a
sinusoidal component, with constant frequency (DTJZ'. Indeed,
after some algebra, we find that the magnitude of S;(®) is

1S:(@)I2 = 1S:(@)[2 + Jus (@) ? + 20 [ 5} (@)us (@)™ ]
1)
i = {b,1,2}, where the term 2% S,?(@)ui(@)ej‘:’mi} intro-
duces sinusoidal artifacts in the LS solutions, with frequencies
determined by the object translations. This agrees with our ex-
perimental observations in Section VI, where the LS solutions

also contain sinusoidal artifacts that are parallel to the object
translations.

IV. INTEGRATION WITH SPATIAL ESTIMATES

The LS object estimates presented above differ from their
true values due to the effect of the background (Section II)
and the approximation error introduced by the regularization
(Section III-A). To reduce these errors, we fuse the results from
the frequency domain with complementary spatial information.
It should be noted that the methods that follow are based on
statistical properties of the low (random) measurement noise in
the video frames. This noise had not been taken into account
during the motion estimation stage, as it is very low. However,
its statistical properties are useful for the design of the motion
segmentation algorithm in a principled, non-ad-hoc manner,
that can be applied to any video sequence.

A. Correlation of LS Solution and Original

We propose to fuse the frequency domain solutions to
(8) with the spatial data by correlating each LS solution
si(z,y) (1 < i < M), in the spatial domain, with the original
frame a(z,y,1). The normalized cross-correlation ¢;(z,y) of
si(z,y) with a(z,y, 1), computed over a square neighborhood
Ny(z,y) around pixel (z,y), obtains high values at pixels that
belong to object ¢, and low values elsewhere. As explained in
Section II [below (1)], the presence of random measurement
noise has been ignored in the other stages of the method, as it
is very low. However, this source of randomness can be used
to understand the distribution of the correlation coefficients
ep(x,y). Specifically, the low values of random measurement
noise are used to interpret each coefficient ¢;(z, y) as a sum of
random variables, whose individual variances are small (due to
the low noise levels). Since each individual variance is small
compared to the sum of the variances, the Lindeberg conditions3
are satisfied [47]. Then, the Central Limit Theorem holds [47],
[48], and the distribution of these normalized sums converges

3The Lindeberg conditions are the conditions on the variances of a sum of
mutually independent random variables that need to be satisfied so the Central
limit theorem can be applied. They state that the individual variances o2 are

small compared to 7, o7. Analytical discussion is provided in [47].

Normal Probability Plot

Percentage po
o o o
B

1

°
&
T

-
\

- -
Q
5
\

001 i v‘,

0.003]

0.001

-08 -06 -04 04 08 08

2 02
Ordered data values

Fig. 2. Normal probability plot of correlation coefficients from the correlation
of the LS solution of the moving object in the helicopter sequence with the
original frame over 10 x 10 blocks. The horizontal axis represents the 79800
data values, from which their mean has been subtracted, and the vertical axis
the percentage points.

to the Normal distribution, as long as we have a large number
of correlation values (a condition which is satisfied in practice,
since the correlation values are of the same order as the number
of frame pixels). Thus, the coefficients c;(z, ), estimated over
all (z,y), lead to a “correlation map” C(z,y), whose values
are considered to approximate a Normal distribution. We make
the assumption that the coefficients are ergodic (in the mean
and variance), so the distribution’s mean is approximated by
the sample mean 1, = (1/N) 3", co(w,y), and its variance
by the sample variance o3 = (1/N) Y-, . [cs(w,y) — pu]*.

We verified this experimentally by estimating ¢;(z,y) be-
tween the 190 x 420 pixels of the first frame and the LS solution
for the Helicopter sequence in Section VI-B [Fig. 4(a) and (d)].
The normality of the resulting 79800 coefficients is examined
via their Normal Probability Plot (NPP) [49]. The NPP plots the
ordered sample values j (1 < j < N), after subtracting their
mean value from them, against the corresponding “percentage
points” p; = ®1((j — 3/8)/(N + 1/4)) of the normal distri-
bution (P is the cumulative distribution function of the normal
distribution), which are linearly related for data that is normally
distributed [50]. The NPP shown in Fig. 2 indicates that the cor-
relation coefficients for the LS solution and the original frame
of the Helicopter sequence indeed approximate a Normal dis-
tribution. Similar NPPs resulted for the correlation maps of the
LS results with the video frames for the other experiments as
well, verifying our assumptions about the normality of their
distribution.

For normally distributed correlation coefficients, which have
been standardized, c¢s(z,y) = (¢o(x,y) — up)/op, we consider
that the frame pixels with a high correlation value belong to the
object extracted from the LS solution

Prob((z,y) € object) = P(cs(x,y) >n) = Q(n)

where Q(z) = 1/v2r [° e="/2dt gives the tail probability of
a Normal distribution. The threshold for the correlation values
that are in the highest a% is then given by n = Q~!(a). We
make the assumption that the coefficients in the 90th percentile
(e = 0.9) belong to the moving object, or equivalently, that

(22)
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Recovered Bek with regularization Recovered Obj. 1 with regularization

Recovered Obj. 2 with regularization Final Recovered Object 1 Final Recovered Object 2

(e) 6] (€9)

Fig. 3. Synthetic Sequence. (a) Frame 1. (b) Frame 10. LS solutions: (c) Back-
ground. (d) Object 1. (e) Object 2. (f) Finally recovered object 1. (g) Finally
recovered object 2.

Frame 24

Frame 1

(a) (b)

Recovered Bck with regularization R helicopter with

() (d)

Final recovered helicopter

Fig. 4. Helicopter sequence. (a) Frame 1. (b) Frame 24. (c) LS solution for the
background. (d) LS solution for the helicopter. (e) Finally recovered helicopter
after fusion of frequency and spatial information.

P(es(x,y) > n) = a, for @ = 0.1. Thus, we have a general,
spatial domain method, that combines the frequency domain
motion segmentation results with illumination information, in
order to refine the extracted object areas.

B. Activity Areas

The correlation process described above combines the fre-
quency-based LS solutions for the moving objects with the spa-
tial data, in order to improve the object estimates. However, the
correlation process may not be precise enough, as it may mistake
some background pixels for object pixels, and is likely to suffer
from block artifacts [Fig. 6(c)]. For this reason, we develop an-
other spatial method that complements the previously derived
segmentation results. Frame £ is warped by applying the oppo-
site of each motion estimate d; (k) to the pixel positions (z,y),
and estimating the luminance values on the warped pixel posi-
tions via cubic interpolation. As in Section IV-A, at this stage
we take into account the (low) random measurement noise that

Frame 1 Frame 50

(d) (e)

Fig. 5. Parking lot sequence. (a) Frame 1. (b) Frame 50. LS solutions: (c) Back-
ground. (d) Car. (e) Finally recovered car after fusion of frequency and spatial
information.

is present in the video. Then, after warping, frame k becomes
aw (7, k) and the areas in ay (7, k) and a(7, 1) that correspond
to object ¢ will differ only by measurement noise, whereas the
parts of the frame that have been incorrectly warped will differ
by a higher value, that depends on the sequence. A pixel that
has been correctly displaced in the warped frame & will have
luminance

aw (777 k) = (1(77, 1) + Unoise(Fa k) (23)

where vpoise(T, k) represents the random measurement noise,
whereas an incorrectly displaced pixel is

aw (7, k) = a(7, 1) + w(7, k) + Vnoise(T, k) (24)
where w(7, k) is an unknown value, introduced by the incorrect
warping. The problem of determining if a pixel belongs to object
1 or not can now be formulated as a binary hypothesis test

Hy : d(T, k) = Vnoise (T, k)
Hl : d(f7 k) = w(fa k) + ’Unoise(Fa k) (25)

where d(7, k) = aw (7, k) — a(7,1). Under Hy, d(7, k) follows
the measurement noise distribution, which is commonly mod-
eled as Gaussian [32], but under H1, its distribution changes sig-
nificantly, since an unknown, pixel-dependent quantity w(7, k)
is added to d(7, k). Thus, to determine whether d(7, k) belongs
to Hy or Hi, it suffices to test the nongaussianity of the data.
The classical measure of nongaussianity of a random variable y
is the kurtosis, defined as

kurt(y) = E{y*} — 3(E{y*})*.

The fourth moment of a Gaussian random variable is E{y*} =
3(E{y*})?, so its kurtosis is equal to zero. Non-zero values of
the kurtosis kurt(d(7, k)) show that the pixel has been incor-
rectly displaced, and zero (or near-zero) values show that the
pixel was correctly displaced, so it belongs to object ¢.

In order to estimate the kurtosis at each pixel 7, we need to
estimate the means of the d(7, k) over all video frames 1 < k <
N. We make the assumption that the differences d(7, k) form an
ergodic process, so their ensemble means can be approximated

(26)
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(d)

Fig. 6. Bottle sequence. (a) Frame 1. (b) Frame 5. LS solution: (c) background,
(d) bottle. (e) Recovered bottle after correlation with spatial data. (f) Finally
recovered bottle after fusion of spatial correlation results and activity areas.

by their time averages. Thus, in practice, we estimate the kur-
tosis of each pixel 7 by

kurt(d(7)) = % S d(r k)i -3 {% S, k)} @
k=1 k=1

As our experiments showed, this leads to a reliable and accurate
localization of the activity areas, which can be combined with
the results of Section IV-A for the final motion segmentation.

V. ROTATIONAL AND TRANSLATIONAL MOTIONS

Frequency domain representations of images are used to
recover more complex transformations, namely rotations com-
bined with translations. Such methods have been developed
mainly for image registration [25], [51], [52], so they are
designed for the recovery of only one such transformation.
We show how they can also be employed for the recovery of
multiple inter-frame rotational and translational motions in
video sequences. As in Section II, we shall design the motion
estimation algorithm under the assumption that measurement
noise is negligible, so it is not included in the sequel. In order
to make the rotation and translation estimates more accurate,
we remove the background from the video frames.

There exist numerous methods for background removal [53],
[54], which can be used to obtain a more precise model of
each frame. Methods that model the background as mixtures
of Gaussians [55], [56] give very good results, but require a
training stage and have a high computational cost. Simpler
methods, such as median filtering, provide acceptable accu-
racy, at a very low computational cost and limited memory
requirements. Specifically, the background pixels are estimated
by the median of each pixel’s luminance values over the N
frames. When a moving object covers a background pixel 7
over some frames, the luminance of 7 is an outlier, compared to
its value in the frames where it was not hidden by the moving
object (i.e., its actual background value). The median of a
pixel’s luminance values over the N frames rejects the outliers
and keeps only the background values. This requires that each
background pixel is revealed during the video sequence. In
the experiments presented in this paper, median filtering based
background elimination gives very good results, since all parts

of the background are uncovered in different frames during
the video. In poor quality sequences, where the video is very
jittery and the illumination changes significantly, “local” frame
information can also be used, to obtain a more accurate model
of the background and remove it more effectively.

A. One Object

Consider a video frame with one object, which undergoes a
rotation # around the center of the frame, and a subsequent trans-
lation of d = [d,, d,] between frames 1 and 2, with no back-
ground present. Its luminance a(z,y, 1) in the first frame be-
comes a(z,y,2) = a(xcosf+ysinf—d,, —z sin +y cos §—
d, ) after its rotation and translation. This object’s displacement
can also have been caused by a translation of [zq, yo], followed
by the object’s rotation around its center, as follows:

a(z,y,2) =a((z — z¢) cosf + (y — yo)sin b
—(x —x0)sinf + (y — yo) cosb)
=a(xcosf + ysin b — (zgcosf + yosinb)
—zsinf + ycosf — (—xpsinf + yg cosb)).

This is equivalent to the first formulation, with [d,,d,] =
[z cosf + ypsinf, —xg sin O + yo cos F], so in the sequel we
shall consider, without loss of generality, that the object is first
rotated (around the center of the frame) and then translated. Its
FT for frame 1 is A(w,,w,, 1) and for frame 2

A(wg,wy,2) = Alwy cos 8 + wy sind, —w, sin 0 + w,, cos #)
xe I wedetwydy) (28)

From (28), it is evident that the translation only appears in the
phase of the FT. Thus, by taking the magnitude of the FT, the
effect of the translational motion is eliminated, and only the
rotation information is retained. If the FT magnitude of the first
frame in the polar domain is expressed as |A(p, 1, 1)|, then the
magnitude of the second frame is

|A(p/’l/)/2)| = |A(p71/) - 07 1)|

for polar coordinates w, = pcos), w, = psin. Thus, in the
magnitude of the FT in polar coordinates ((29)), the rotation 6
becomes a simple translation of the ¥ coordinate. Consequently,
6 can be recovered from (29) by estimating the translation of v,
in |A(p,,1)],t0 ¢ — 0 in |A(p, ), 2)|. The translation is esti-
mated using the method described in Section II. Note that this
requires the transformation of the frame from: 1) the spatial do-
main to the Fourier domain; 2) the extraction of its FT magni-
tude; 3) the expression of the FT magnitude in polar coordinates;
and 4) the FTation of the polar FT magnitude, to extract the ro-
tation angle.

(29)

B. Multiple Objects

We consider a video containing multiple objects, that undergo
a combination of rotational and translational motions. As ex-
plained in Section V-A, we consider without loss of generality,
that the objects first undergo rotations around the center of the
image frames, and then translations. Also, the background is re-
moved in order to obtain reliable rotation and translation esti-
mates. Then, the additive model agr(z,y,1) = Zf\il si(z,y)
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for frame 1 is accurate, and, unlike Section II, there is no mod-
eling error in frames k, for 2 < k < N, which can then be

written as M

= si(wcos(bi(k)) + ysin(0;(k)) — d (k),

i=1

aRT('T7 Y, k)

—wsin(0;(k)) +ycos(0:(k)) — df (k))

where 0;(k) gives each object’s rotation from frame 1 to & and
d;(k) = [d¥(k),d? (k)] gives its translation. The FT of (30) is
given by

Z Si(wy cos(

— wy sin(8;(k)) + w, cos(8;(k)))

o o= (adE () by d (1))

(F)) + wy sin(8; (k))

ART ww wy

In polar coordinates wy, =
=25

where we let Q(p, ¥ — 6;(k)) = a.cos(y - 0;(k)) + Bsin(y —
0;(k)), for a = pld¥ (k)cos(6 (k)) + d! (k) sin(6;(k))] and
B = pld?(k)cos(b;(k)) — d¥(k)sin(6;(k))] (see Appendix A).
Setting P;(p, ) = Si(p, 1/)6 iQ(P¥)  we obtain

p cos g[} wy = psint, we have

Agr(p ))eﬂQ(pﬂ/ 8; (k))7

Agr(p, . k) = ZPpw—e k). (30)

After these transformations, the multiple rotations in frame k& are
represented by M “translations” 6; (k) of the polar coordinate v,
which can be easily estimated from its FT phase as in Section II.

Once the rotation angles ;(k) have been extracted, we also
need to estimate the corresponding translations d; (k). For each
objecti (1 < i < M), frame k is “derotated” by the angle ¢; (k)
under examination. In the resulting, derotated frame, object ¢
has undergone pure translation, whereas the other objects have
undergone a new rotation 0, (k) — 6;(k) (for i # j), in addition
to translation. After being “derotated” by 6;(k) (equivalently,
rotated by —0;(k)), frame k becomes

agr(w,y, k) = si (fﬂ—T (k),y — T7(k))

+ Z sj (¢ = t5(k),y' — t4(k)) (3D

j=1j#i

where, after some algebra, we get

(k)z d; (k) cos(0;(k)) — d (k) sin(0; (k))
f( )sin(0;(k)) + df (k) cos(6;(k))
=z cos(0;(k) — 0:(k)) + ysin(0;(k) — 0:(k))
wsin(b;(k) — 0:(k)) + y cos(8;(k) — 0;(k))
)cos0;(k) — d¥ (k) sin 6;(k
)

t5(k ) ( i )
sin 0; (k) + d% (k) cos 0; (k).

tj(k) = dj (k

In (31) we see that all objects’ translations are affected by the
derotation. However, only object 7 undergoes a pure transla-
tion [T (k), T (k)]. The other objects undergo a translation
after rotation by 6;(k) — 6;(k), i.e., their translations occur on

(32)

the rotated coordinates (z’,%’) and their motion is still rota-
tional-translational. Consequently, the method of Section I only
applies to the pure translation of object ¢ and will give prominent
peaks around [T% (k), T} (k)]. The initial d; (k) can be easily es-
timated from [T (k), T? (k)], since 6;(k) is known. The rota-
tional-translational motions of the other objects may introduce
some noise in this translation estimate, but are not expected to
lead to significant peaks, as they do not correspond to pure trans-
lations. This is also verified in the experiments, where the trans-
lations of object ¢ are estimated with accuracy after derotation.

Finally, to correctly correspond the estimated translations to
the rotation angles 6;(k), we warp and interpolate (with cubic
interpolation) frame & by all possible combinations of the ex-
tracted rotational and translational motions. We then compare it
with frame 1 by the process described in Section IV-B. The cor-
rectly warped areas correspond to object ¢ and to the motions
0;(k) and d;(k). Note that, in this manner, we simultaneously
extract the moving objects as well, i.e., we perform motion seg-
mentation in the spatial domain.

VI. EXPERIMENTS

We perform experiments with synthetic and real sequences, to
demonstrate the translation and rotation estimation capabilities
of our method. We also show the Fourier based motion segmen-
tation, and the segmentation results after fusion of the spatial
and frequency information. In the real sequences, the ground
truth for the translations and rotations is generated via manual
feature point matching.

A. Synthetic Sequence

We initially conduct experiments with a synthetic sequence,
consisting of two textured squares translating in the x and y
directions against a textured background [Fig. 3(a) and (b)]
over ten frames. Since their translation is constant, we apply
the method of Section III-A, and find three singular values that
are over 13, whereas the rest are below 0.5, so we expect to
extract two objects. This is verified in the motion estimation
process, where there are two peaks corresponding to nonzero
translations. The inter-frame translation for the larger square
is (8,8) and for the smaller one (6.5,6.5). The FT method
estimates their motions as (8.1,8.1) and (6.3,6.3) respectively.
We then apply the LS object segmentation. Fig. 3(c) shows
that the background is successfully separated from the objects,
which are also successfully extracted [Fig. 3(d) and (e)]. Note
that all the details in the objects’ texture are retained, and their
shape is extracted, with no boundary effects. The diagonal
“lines” in the area around each extracted object are due to the
modeling error, analyzed in Section III-B. The luminance of
the recovered objects is also slightly darker than the original
objects, due to the regularization process (Section III-A). The
LS results are correlated with the first frame [Fig. 3(a)], and
the correlation values are compared against a threshold of
0.842 (Section IV-A) in order to localize the moving objects.
Finally, the method of Section IV-B is used to further refine the
results of the spatial correlation, leading to the final results of

Fig. 3(f) and (g).
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B. Helicopter

In this experiment, a helicopter [Fig. 4(a) and (b)] translates
with a constant velocity 8.8 to the right, over 24 frames. The
SVD of its FT’s correlation matrix shows there is only one trans-
lating object, as its first two singular values are equal to 3.18
and 0.61 (from the background and the helicopter), whereas the
others are less than 0.01. The FT estimation method of Section IT
estimates the translation to be horizontal, to the right, and equal
to 8.6, which is close to the ground truth. Fig. 4(c) and (d) show
the Fourier domain LS segmentation, where the background and
moving object are successfully separated. The shape and texture
of the helicopter are retrieved accurately, demonstrating that the
LS Fourier-based segmentation can recover objects regardless
of their shape, size and texture. In this case, it extracts the irreg-
ularly shaped helicopter, and the texture on it, with great preci-
sion. There are few horizontal artifacts in the recovered object,
because of the modeling error (Section II), and the recovered
background and object are darker than the originals due to the
regularization. Spatial information is then used to extract the
moving object more accurately (Section IV). The LS recovered
objects are correlated with the original frame, and the helicopter
is localized by keeping the correlation values that are higher
than the threshold of Section IV-A, which in this case is equal
to 0.757. Activity masks are also used to refine the areas in the
frame where the objects are located. This leads to an accurate
representation of the moving object, in Fig. 4(e).

C. Parking Lot

A real sequence from a parking lot, with 50 frames of a car
translating to the right, is examined [Fig. 5(a) and (b)]. The 75th
percentile of the singular values of its correlation matrix con-
tains two values, 4.24 and 1.71, so we expect to have one ob-
ject. The FT method leads to an inter-frame translation estimate
of 1.9 pixels, which is very close to the ground truth estimate
of 1.95 pixels. The LS segmentation in Fig. 5(c) and (d) is also
very accurate. The car shape and details such as its tires, win-
dows and windshield have been extracted, even though spatial
information has not been used yet. These results are correlated
with the original frame, with a threshold of 0.73 for the correla-
tion values. They are finally combined with the “activity area”
derived from the spatial data, to give the final segmentation of
the car, in Fig. 5(e).

D. Bottle With Occlusion

In this experiment, we examine a real sequence with 100
frames of a translating bottle, which is occluded in a third of
the frames (over 30 frames) by a box of tea [Fig. 6(a) and (b)].
The highest singular values of the autocorrelation of its FT are
75 and 72, while the others are zero (or almost zero), so we ex-
pect only one moving object. The FT method of Section II then
estimates its horizontal inter-frame translation to be 8 pixels to
the right, with ground truth 9 pixels. The motion estimation is
robust to the occlusion, because the bottle is not entirely hidden
by the box, so in those frames, its visible part gave enough infor-
mation for the inter-frame translation to be extracted. Naturally,
when a moving object is entirely hidden in a frame, its transla-
tion cannot be extracted. Nevertheless, even in such cases, the
missing motion information can be inferred from the motion

estimates of the rest of the sequence, by applying continuity
constraints. The motion estimate is then used to obtain the LS
estimates shown in Fig. 6(c) and (d), where, despite the occlu-
sion, the background and the bottle are successfully extracted
and separated. This is because we are solving an over-deter-
mined linear system [(8)], so data that is lost in some frames be-
cause of object occlusion, is compensated for by the redundant
information, from other video frames. This demonstrates our
method’s robustness to common difficulties encountered in real
applications. Also, details of the bottle, like its irregular shape
and its label, are visible even in its initial, LS estimate. The hor-
izontal lines are caused by the modeling error, as explained in
Section III-B. This solution is then combined with the spatial
representation of the first frame, as detailed in Section IV-A, by
estimating the cross-correlation between Fig. 6(a) and (d). In
Fig. 6(e), we show the intermediate result of cross correlation
for 24 x 24 blocks (with a threshold of 0.82). There are blocking
artifacts, as expected (Section IV-B), but this result still success-
fully localizes the moving bottle, and gives a good approxima-
tion of its shape. After fusion with the activity areas, an accurate
final object estimate is obtained, as shown in Fig. 6(f). There are
some small errors in the final segmentation, after fusion with the
results of Section IV-B, which are due to the varying illumina-
tion in the video sequence (the bottle is translating towards a
lamp, so its luminance changes in the later frames).

E. Cars

We examine a sequence with two cars undergoing
time-varying translations [Fig. 7(a) and (b)] over 58 frames.
The translations are estimated accurately from the FT phase,
with deviations that remain below 10% of the ground truth
values (Fig. 7(c)). These estimates are used for the LS seg-
mentation of the background and the moving objects, shown
in Fig. 7(d)—(f). In Fig. 7(d), the extracted background appears
blurry in some areas where the cars were, because it had been
occluded by them. In fact, the car on the right did not move
during the first frames [Fig. 7(c)], so that part of the background
appears most blurred in the LS solution of Fig. 7(d). We then
correlate each LS object estimate with the first frame, and the
areas with the highest correlation correspond to each object
area. The threshold for the correlation values is 0.79 for the
first car and 0.68 for the second. Finally, the frames are also
warped by the translation estimates and compared with the first
frame, as described in Section IV-B. These spatial results are
combined, giving the final, accurate object segmentation of
Fig. 7(g) and (h). It should be noted that, in this experiment,
some blocking artifacts that were not removed by the activity
area method are still present at the boundaries of the cars.

F. Traffic

Experiments are conducted with a real traffic sequence, con-
sisting of two cars that are turning [Fig. 8(a)]. The angles of ro-
tation for each car are estimated between successive frames and
compared against the ground truth, which is obtained through
manual feature point tracking. As Fig. 9(a) and (b) show, the
rotations are estimated quite accurately using the method of
Section V. The frames are derotated by the estimated rotation
angles to extract the corresponding translations of each object,
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Real and estimated translations for the two cars

Estimates for
2000 caron the left
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Fig. 7. Cars Sequence: (a) Frame 1. (b) Frame 58. (c) Time varying translation
estimates as functions of time. LS Segmentation: (d) Background. (e) Object 1.
(f) Object 2. Final Segmentation: (g) Object 1. (h) Object 2.

YIIIl/hl, I <y
I'E 3 K
y "///////I/lll‘- ‘ P
.7 y ¢
(b) ©

Fig. 8. Real traffic sequence. (a) Frame 10. (b) Reconstructed bottom right car.
(c) Reconstructed top right car.

as described in Section V-B. As shown in Fig. 9(c)—(f), the es-
timated translations in the horizontal and vertical directions are
also close to their true values. This sequence has rotational-
translational motions, so only spatial data can be used for the
segmentation. We apply the method of Section IV-B to warp
frame 10 by the motions between frames 1 and 10, and com-
pare the warped frame with the first one. As Fig. 8(b)—(c) show,
this leads to the accurate recovery of the bottom right and top
right cars.

G. Taxi

We examine a sequence, where a taxi is undergoing a rota-
tion and a car is translating [Fig. 10(a) and (b)] over 20 frames.
The log-polar Fourier method of Section V gives an angle of
rotation of 9.8° between frames 20 and 1 for the taxi, which
is close to our hand-generated ground truth of 9.5°. We then
derotate frame 20 (after removing the background), and esti-
mate the taxi’s translation to be (2,3), which also is very close
to our ground truth of (2.5,2.5). By applying the FT translation
estimation method of Section II, we extract the displacement of
the car on the left (from frame 1-20) to be (53,12) with ground
truth (54,10). Consequently, we see that the proposed method
indeed leads to accurate translation and rotation estimates, for a
real sequence, that can arise in many practical applications.

© )

Fig. 9. Real and estimated rotation angles as functions of time for (a) bottom
right car and (b) top right car. Real and estimated translations as functions of
time for bottom right car (c) horizontal translation and (d) vertical translation.
For top right car (e) horizontal translation and (f) vertical translation.

(d)

Fig. 10. Taxi sequence. (a) Frame 1. (b) Frame 20. (c) Segmented taxi.
(d) Segmented car on the left. Only spatial data has been used for the segmen-
tation because the sequence contains rotation and translations.

Since there is rotational motion in the sequence, we use only
spatial data for the object segmentation. We warp frame 20 by
each of the motions under examination, and then compare the
warped frame with the first one, as described in Section I'V-B.
This gives the final segmentation results of Fig. 10(c) and (d).
Some of the background around the cars has also been recov-
ered, because the color of these cars is very similar to that of the
road, making it difficult to discern the two. Nevertheless, the
object rotations and translations have been estimated correctly,
and as a consequence, the objects are successfully localized.

VII. CONCLUSION

A novel hybrid method for motion analysis has been pre-
sented. The motion estimation is achieved in the frequency do-
main, and the segmentation of the sequence is based on both
frequency and spatial data. The proposed method avoids prob-
lems of spatial methods, such as sensitivity to global illumina-
tion changes, inaccuracies at object boundaries and motion dis-
continuities. The use of the FT can be implemented via the FFT,
so it is computationally efficient. For the case of purely transla-
tional motions, a novel formulation is presented for the object
extraction, via the LS solution of a linear system in the Fourier
domain. A significant advantage of this approach is that the re-
sults are independent of the objects’ shapes, texture, motion dis-
continuities, and are robust to local inaccuracies, such as occlu-
sion, because of the redundancy in the linear system. Due to
modeling error and the regularization process used, the LS seg-
mentation results contain some noise, so they are further refined
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by using spatial information in a non-ad-hoc manner. The FT
motion estimation method has been generalized to more com-
plex motions, involving combinations of rotations and transla-
tions. Experiments with both synthetic and real sequences show
that the proposed approach can indeed estimate both the transla-
tions and rotations reliably. In this case purely spatial methods
are used for the object segmentation, which lead to accurate ob-
ject extraction, as seen in the experimental results. Future direc-
tions of research involve the joint use of spatial and frequency
data for the analysis of even more complex motions, including
random variations, as well as the examination and analysis of
the motion of nonrigid bodies.

APPENDIX
DERIVATION OF Q(p, 6)

For the case of multiple rotations and translations, we cannot
immediately extract the rotation angles from the FT phase in
polar coordinates (as in Section V-A). This is because we have a
summation of the moving object FTs, so the translation induced
phase changes ¢ ™7 (wed? (B)+w4 4! (1) g6 pot disappear when we
take the magnitude of the frame’s FT. The FT of frame k, after
each object 7 undergoes a rotation of 6;(k) and a translation of
d;(k), is given by

M
Arr(Wa, wy, k) = D Si(wa cos(8(k)) + wy sin(6;(k)),
i=1

—wg sin(b;(k)) + wy cos(Hi(k)))e_j(‘””d?(k)""”»‘fd?(k)). (33)
The exponential terms need to be expressed as a function of
¥ — 0;(k), so we let

wad (k) + wydy (k)
p [cospd; (k) + sinpd! (k)]

acos(tp — 0;(k)) + Bsin(y — 0;(k)) (34)
where w, = pcos and w, = psint. We then have

acos(yp — 0;(k)) + Bsin(y — 0;(k))
= acospcosb;(k) + asinsin b;(k)
+ Bsintp cosb;(k) — Bsinb;(k) cos
= [acosb;(k) — Bsinb;(k)] cosvp
+ [asin§;(k) + Bsinypcosb;(k)]sinep.  (35)
From (34) and (35), we have pd?(k) = «acosb;(k) —

Bsinb;(k), pd? (k) = asinb;(k) + Bcosb;(k), from which
we obtain

a =pldf(k)cosb;(k) + dY (k) sin 6;(k)]
B =pld!(k)cosb;(k) — di (k)sinb;(k)] . (36)
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