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Approaches to polygonal decomposition for hierarchical image representation are described. 
For planar decomposition, quad trees using square and triangular neighborhoods are found to 
be the only feasible methods, having the same computational complexity. For grid images the 
choice of the appropriate tree type is determined by the grid topology. Triangular and square 
quad trees are appropriate for the triangular and square grids, whereas trees of order 7 are 
necessary for the hexagonal grid. 

1. INTRODUCTION 

The major approaches to image representation [l] may be divided into two broad 
categories: (1) those which specify the borders of the regions, and (2) those which 
describe their interiors. Most of the approaches, and the more interesting ones, 
belong to the latter category. This may be attributed to the increased dimensionality 
of information (regions, rather than curves) to be represented. An important 
subclass of these methods, called medial axis transforms (MAT) [l], involves 
representation of the regions by a set of maximal blocks, say, squares. Each maximal 
square lies completely within a single region, and is not contained in any other such 
square. The squares may have any size and may be placed anywhere in the image as 
determined by the locations of the regions. An alternative method, called quad-tree 
representation, was proposed by Klinger and Dyer [2] and Tanimoto and Pavlidis 
[3]. Their approach also involves square blocks of various sizes, but the locations of 
the squares are fixed in advance and are the same for any image. A recursive 
decomposition of squares into quadrants is used to obtain blocks of smaller sizes 
(Fig. 1). 

As in case of MAT, blocks other than squares may also be considered for use in 
decomposition of the plane. This paper attempts to enumerate possible planar 
decomposition schemes that use polygonal blocks. Section 2 discusses planar parti- 
tioning schemes. Section 3 describes quad trees that use triangular tessellation of the 
plane. It is argued that the triangular quad trees are the only feasible alternative to 
quad trees using the square tessellation. The performances of the two methods are 
compared. In Section 4 we examine decomposition methods for grids. Section 5 
presents concluding remarks. 

2. PARTITIONING THE PLANE 

Any planar decomposition scheme for image representation must possess the 
following properties. 

(1) The partition should be an infinitely repetitive pattern in the plane. This 
would allow the representation to be useful for images of any size. 
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FIG. 1. (a) A binary image. (b) Quad tree for (a). Black leaves denote black regions 

(2) The partition should be infinitely (recursively) decomposable into increas- 
ingly fine patterns. This would allow the representation to be useful for images with 
arbitrarily fine spatial features. 

We will now examine the different schemes that could be used for recursive 
decomposition of the plane using partitions consisting of polygonal cells. We will not 
consider nonpolygonal partitions such as exponential tessellations that are based on 
logarithmic spirals [8] rather than Cartesian coordinates. 

2. I Partitioning Schemes 

Let k denote the number of sides of a face (cell) in a given partition. Let u denote 
the number of cells meeting at a vertex. Consider the partitions in which the value of 
k(u) is the same for all cells (vertices), i.e., all cells are regular polygons. We call 
such tessellations ku regular tessellations. Now, the interior angle formed by each 
adjacent pair of edges in a regular k-gon is s(k - 2)/k. By considering the u k-gons 
meeting at a point, it is apparent [9] that u and k must satisfy the equation 
vu(k - 2)/k = 2n. Accordingly, there exist only three ku regular tessellations [4, 5, 
9, lo]--the possible (k, u) values being (3, 6), (4, 4), and (6, 3). They correspond to 
the division of the plane into regular triangular, square (rectangular), and hexagonal 
cells, respectively (Fig. 2). The triangular and the hexagonal tessellations form a pair 
of dual graphs. 

If the value of k is allowed to vary from cell to cell, keeping u fixed, the resulting 
tessellations are called semiregular tessellations [5]. By definition, these partitions do 
not consist of congruent cells, but a mixture of as many different regular k-gons as 
there are different values of k. Using an approach similar to that for regular 
tessellations outlined in the previous paragraph, it can be shown that only eight 
semiregular tessellations are possible. A semiregular tessellation may be char- 
acterized by an ordered sequence of u integers, where the i th integer denotes the 
number of sides of the i th cell surrounding a vertex, starting at any of the 
surrounding cells arbitrarily and moving, say, clockwise. In this notation, the eight 

(a) (b) Cc) 
FIG. 2. Regular tessellations: (a) triangular, (b) square, (c) hexagonal. 
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(a> (3, 1% 12) 

Cd) (3, 6, 3, 6) 

(@I (3, 4, 6, 4) 

(9) (3, 3. 3, 4, 4) 

h Y 

01) (3, 3, 4, 3, 4) 

FIG. 3. Semiregular tessellations (from IS]). 
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(al (b) 

FIG, 4. Cells (dotted lines) in (a) triangular and (b) square tessellations merge into larger cells (thick 
lines). 

semiregular tessellations are given by (3,12,12), (4,6,12), (4,8, S), (3,6,3,6), 
(3,4,6,4), (3,3,3,3,6), (3,3,3,4,4), ad (3,3,4,3,4) (Fig. 3). 

Both regular and semiregular tessellations possess the first property demanded 
from a planar partition for image representation given earlier. We now examine 
them with respect to the second requirement, namely, the recursive decomposability. 
Cells in a regular tessellation are all congruent. If we can partition each cell further 
into smaller cells such that the new tessellation still is a ku regular tessellation having 
the same ku values, then the infinite decomposability requirement is met. Altema- 
tively, it should be possible to merge cells locally to obtain a ku regular tessellation 
having larger cells and the same values of k and u. 

Clearly, the triangular and square tessellations possess this property (Fig. 4). On 
the other hand, cells in a hexagonal tessellation cannot be further divided into 
regular congruent hexagons. To prove this, imagine merging neighboring hexagons 
(of side d) in a regular tessellation to form a larger hexagon. By the requirement of 
recursive decomposability, the edges of the larger hexagon must be contained in the 
given tessellation. However, all the straight line segments in the tessellation are of 
length d. They cannot possibly define hexagons of side longer than d. A similar 
argument rules out all semiregular tessellations except for (3,6,3,6) and (3,3,3,3,6) 
(Figs. 3d, f). In the latter two, the placement of star-shaped cells leaves holes (Figs. 
5a, b). Thus adjacent cells cannot merge to form a larger cell of the same shape, 
making the tessellation recursively nondecomposable. Here, we allow a single type of 
cell and decomposition scheme. Thus, for example, we do not allow triangles and 
hexagons as two different types of cells for (3,6,3,6) employing different decomposi- 
tion schemes (Fig. 5~). The regular square and triangular tessellations, therefore, are 
the only partitioning schemes that place no restriction on the resolution at which an 
image can be represented. 

If an upper limit on the coarsest allowable image resolution is acceptable, then 
some of the semiregular tessellations can also be used by starting with a tessellation 
having the desired cell dimensions and recursively dividing each cell independently. 
Thus, for example, with two different types of cells and decomposition schemes, the 
semiregular tessellation (3,6,3,6) can be used as illustrated in Fig. 5c. In addition, 
we may also consider the partitions generated by completely regular polygonal 
graphs, which are graphs contained within a polygon such that the k(u) value is the 
same for all cells (vertices). Completely regular polygonal graphs differ from the 
regular and semiregular tessellations partly in their inability to cover the entire plane 
by repetition. It can be shown that there exist only five different completely regular 
polygonal graphs [4]. The corresponding (k, u) values are (3,3), (4,3), (5,3), (3,4), 
and (3,5). All cells are not regular polygons (Fig. 6). However, the parent graph can 
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FIG. 5. The placement of the star-shaped tile in the semiregular tessellations (a) (3,6,3,6) and (b) 
(3,3,3,3,6) leaves holes (hatched) between adjacent tiles. (c) An example of a pair of cells and their 
decompositions for (3,6,3,6). Such multicell recursive decomposition schemes are not acceptable. 

(a) (333) 

@ 
Cc) (5,3) 

Cd) (334) (e) (395) 

FIG. 6. Completely regular polygonal graphs (from [4]). 
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be redrawn within each cell to define a recursive partition (Fig. 7). This increases the 
value of u at all vertices at every step of decomposition, in contrast with the regular 
or semiregular tessellations, where only new vertices are generated, keeping the 
degree of the vertices fixed. As a result, cells in completely regular graphs become 
increasingly oblong as finer partitions are generated. Cells in graphs consisting of 
only quadrangles and triangles (Figs. 6a, b, d, e) may be partitioned in a way similar 
to the decomposition of regular square and triangular tessellations, thus keeping the 
degrees of the new vertices fixed. 

2.2 Feasibility and Appropriateness 

Since cells in a semiregular tessellation cannot be merged (Sect. 2.1), the semiregu- 
lar tessellations cannot be used to partition the cells. However, those semiregular 
tessellations consisting of square, regular triangular, and/or hexagonal cells (Fig. 3) 
can be recursively partitioned by performing square decomposition of square cells 
and regular triangular decomposition of triangular and hexagonal cells. Such a 
scheme differs from the regular tessellations only in the initial selection of image 
windows where the two decomposition methods are applied. However, the use of 
different window shapes in different parts of the image increases the sensitivity of the 
size of the representation to translation and rotation. 

The cells in completely regular graphs are irregular and variable in shape. 
Decomposition of the cells using the parent graph yields increasingly irregular cells 
(Fig. 7). As decomposition progresses, the cells become increasingly oblong. Thus, 
the representation becomes more sensitive to, say, linelike features. This effect is less 
pronounced whenever a decomposition similar to regular tessellations is possible for 
the cells in completely regular graphs, e.g., for those in Figs. 6a, b, d, e. 

The complexity of computer data structures to represent recursive partitions 
defines another criterion for comparing different approaches. Clearly, the semiregu- 
lar tessellations and completely regular polygonal graphs require more complex data 
structures than the regular tessellations, resulting in slower image computations. This 
is because the former must store information about more than one partitioning 
scheme, and/or about the regions where different schemes apply. 

Thus, we see that the square and triangular regular tessellations are the most well 
behaved among all the planar, polygonal partitioning schemes in the sense we have 

(a) (b) 

FIG. 7. Examples of decomposition of cells in completely regular polygonal graphs using completely 
regular polygonal graphs: (a) (3,3) and (b) (4,3). Cells consisting of old (thick) edges become more 
oblong. 
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discussed. Since in a regular square decomposition each square is partitioned into 
four smaller squares, the nodes in a tree representation of the partition have four 
children each. Such (square quad) trees have received extensive attention recently [6]. 
In the next section we examine the relative performance of the triangular tessella- 
tion. 

3. TRIANGULAR QUAD TREES 

To decompose a triangular tessellation recursively, each triangle is divided into 
four others (Fig. 8). Each node corresponding to a triangle thus has four children, 
making it a quad tree. Each node also has three neighboring triangles. A triangle has 
one of two orientations that differ by 60”. Among the four children, the central 
triangle differs in orientation from its parent (Fig. 8). Let us label it as child node 1. 
The remaining three children all assume the orientation of the parent. Let us label 
these 2, 3, and 4, clockwise, starting from the top (Fig. 8a) or top left (8b). All three 
neighbors of any node labeled 1 are its siblings. A node labeled 2, 3, or 4, on the 
other hand, has exactly one sibling among its neighbors. 

By comparison, a square quad tree has all squares at the same orientation. Each 
square has four neighbors; exactly two of these are its siblings. In this sense the 
triangular quad tree exhibits less homogeneity from node to node. 

The basic structure of the algorithms using triangular or square tessellations may 
be the same since both involve quad trees. Thus, the various algorithms proposed for 
computing image properties using square quad trees (see [6] and “Representation” 
-Chap. 11 of [l] and references therein) may easily be modified to work in case of 
triangular quad trees. Operations involving a single node, e.g., computation of its 
area, centroid, etc., have the same order of complexity, since the only difference is in 
the geometry of the nodes. The other kind of operations involve access to a node’s 
neighbors. Complexity of such computations depends upon the complexity of the 
neighbor-accessing mechanism. The relative performances of the two quad trees 
may, therefore, be determined in terms of the complexities of finding neighbors of a 
node, in their respective tree structures. 

Suppose we want to access a randomly chosen neighbor N of a leaf node L in a 
complete quad tree. Let p be the probability that N is a sibling of L. Then, with 
probability p, N is accessed by traversing two links in the tree: uplink to the parent 
and downlink to sibling (two operations). With probability (1 - p), N will be 
reached via the closest common ancestor of L and N at a higher level. This may take 
K operations, K = 4,6,. . . , depending upon the number of links between L or N, 
and their closest common ancestor. Let flk denote the probability that K = 2k, given 
that k > 1. If Pzk denotes the probability that 2k operations are required to reach N 

FIG. 8. Decomposition of a triangle into four triangles. 
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from L, we have 
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k=l 
k = 2,3,... . 

Given a pair of nodes L and N, the function f depends only upon the tree 
structure and the locations of L and N in the tree. Thus, f is the same for both 
triangular and square quad trees. The only other parameter that affects P2k is p. 

Every node in a square quad tree has exactly two siblings as its neighbors. 
Therefore, p = i. In the case of triangular quad trees, the probability that a 
randomly chosen neighbor of a node is its sibling is 1 for nodes labeled 1 and l/3 
for each of the remaining three types of nodes. Since L is equally likely to have any 
of the four labels, we have 

p = l/4 . 1 + 3/4(1/3) 
= l/2 

which is the same as for square quad trees. Thus, the probability Pzk that 2k 
operations are required to access N from L is the same for both square and 
triangular quad trees and is given by 

4 k=l 
‘2k = 

ff2k k ’ 1 

= tskl + t(’ - 6k,)f2k 

where dij is the Kronecker delta function. If N is allowed to occur on a level different 
from that of L, then P, is the same as f,, which, as already pointed out, is the same 
for both representations. 

Therefore, the complexity of image operations in the square and triangular quad 
tree representations appears to be the same. 

4. GRID IMAGES 

In the previous sections, we have described approaches to recursive decomposition 
of the Euclidean plane. Quad trees using squares or triangles are found to have the 
same computational complexity and either one may be used for a given pattern. 
However, for patterns on grid, the grid topology dictates the choice of the tree type. 
For example, on a triangular grid triangular blocks are easy to define, but there is no 
natural definition of square blocks. Conversely, square quad trees are appropriate 
for square grid. This may suggest that the method of image decomposition should be 
chosen in accordance with the choice of sampling neighborhood used to obtain the 
grid version of the Euclidean image to begin with. In this section, we will consider 
various possible tessellations of the three basic grids and identify the most desirable 
decompositions in each case. We will examine different decomposition patterns and 
the grid tessellations generated by each. The appropriateness of a given pattem- 
tessellation pair will be judged in terms of the following properties [7]: 

(1) the pattern should tessellate the grid; 
(2) the centroids of the patterns in the tessellation should themselves form the 

parent grid; 
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(3) the pattern should be compact. 

Different tessellations of the grid may be obtained by considering (a) patterns of 
different shapes and sizes, and (b) different arrangements of patterns of a fixed size 
and shape. The number and complexity of possible shapes of decomposition 
patterns grow with size. Each pattern may be arranged in more than one way to give 
rise to different tessellations. To enumerate all possible tessellations for an arbitrary 
n appears to be a difficult problem. However, the fraction of noncompact decom- 
position patterns increases with the pattern size. These noncompact patterns may 
not be acceptable. Compact large patterns are often similar in shape to compact 
smaller patterns. The use of larger patterns only results in a shallower tree for a 
given image. In the following discussion, we will consider patterns of sizes 1 
through 7. 

4.1 Triangular Grid 

Figure 9 shows topologically distinct patterns on a triangular grid for 2 I n I 6 
and the corresponding Euclidean plane regions (tiles). Figure 10 shows examples of 
tessellations for some of the patterns in Fig. 9. For n = 2 and n = 3, the only 
possible tessellating tiles of Figs. 9a, b are convex and have four sides. Therefore, a 

(b) n=3 

Cd) n=5 

(e) n=6 

FIG. 9. Topologically distinct triangular grid decomposition patterns of sizes 2 to 6 (thick lines). Heavy 
dashed lines mark the borders of the corresponding tiles in the Euclidean plane. 
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(b) 

(d) 

FIG. 10. Examples of triangular grid tessellations using patterns of (a) Fig. 9a(ii), (b) Fig. 9b. (c) Fig. 
9c(ii) and c(iii). 

tile must share edges with at least four others in any conceivable tessellation. The 
centroids of the tiles, therefore, cannot possibly define a triangular grid. The same 
comments hold for patterns (i) in Figs. 9c, d, and e. The remaining patterns in Figs. 
9c, d, and e, except for c (iii) and d (xii), do not meet the compactness requirement 
mentioned earlier. In addition, the nonconvexity, the large number of sides, and the 
large variance of side lengths limit the number of tessellations possible using these 
tiles. Among any tessellations that are possible, the large ratio of the numbers of 
convex and concave comers, and the large number (> 3) of sides per tile results in 
more than three neighbors for each tile. This in turn makes the grid formed by the 
centroids of the tiles of order greater than three, i.e., nontriangular. The hexagonal 
tile of Fig. 9e (xii), although compact, provides a hexagonal grid. The patterns for 
n = 7 are obtained by adding one more point to the patterns in Fig. 9e. By 
inspection, it is clear that none yields an acceptable tessellating pattern. 

As the value of n increases, the simple compact shapes (quadrangle, triangle, and 
hexagon) recur with increased sixes. For example, triangular patterns of side 
3,5,7,... points are possible. We will consider only the smallest tile of a given 
shape. In addition to the recurrent shapes, an increasingly large variety of more 
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(b) n=3 

FIG. 11. Topologically distinct square grid decomposition patterns of size 2 to 5 (thick lines). Heavy 
dashed lines mark the borders of the corresponding tiles in the Euclidean plane. 

complex shapes also emerges that violates the compactness and/or grid criterion. 
For 2 I n I 7, only the tessellating pattern in Fig. 9c (iii) corresponding to a 
triangular tile satisfies all the requirements described earlier, resulting in a quad tree 
representation (n = 4) of the grid image (Figs. 13a, 14a). 

4.2 Square Grid 

Figure 11 shows topologicahy distinct patterns for 2 I n I 5 and the correspond- 
ing Euclidean plane tiles. All but the patterns in Figs. lla, b(ii), c(i, v) have irregular 
shapes and may be ruled out for reasons similar to those discussed in Section 4.1.~ 
The patterns in Fig. lla, b(ii), and c(i, v) are all quadrangles and satisfy our first two 
criteria. The square pattern of Fig. llc(i) is the most compact. The patterns for 
n = 6,7 are large in number. It is easily seen by appending one (n = 6) or two 
(n = 7) additional points to the patterns in Fig. lld that all of the resulting patterns 
either continue to remain irregular in shape or are rectangles, both of which are not 
acceptable for the reasons discussed in Section 4.1. The snalsest square pattern 
(2 x 2), thus, is the o&y acceptable tesseIIating pattern (n = 4). This suggests the 
use of a quad tree (Figs. 13b, 14b) representation, which has aheady been pursued 
for some time [2, 3,6]. 

4.3 Hexagonal Grid 

While the regular hexagonal tessellation of the Euchdean pIane canuot be recur- 
sively decomposed, this does not rule out the existence of recursive decornpostion 
methods for the hexagonal grid. Figure 12 shows distinct patterns for 2 s n I 5. 
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Cd) n=5 

FIG. 12. Topologically distinct hexagonal grid decomposition patterns of sizes 2 to 5 (thin lines). Thick 
lines mark the borders of the corresponding tiles in the Euclidean plane. 



212 NARENDRA AHUJA 

FIG. 13. Acceptable decomposition patterns and their corresponding Euclidean plane tiles for the (a) 
triangular grid, (b) square grid, and (c) hexagonal grid. 

Most of these are irregular and can be eliminated from consideration. The relatively 
symmetric or compact patterns of Figs. 12b(i), c&vi), d(i,v) cannot tessellate the 
grid to give a coarser hexagonal grid. Patterns for n = 6 can be obtained by adding a 
point each to those in Fig. 12d. All but one such pattern (Fig. 12e), obtained from 
Fig. 12d(x), are noncompact. This compact pattern, however, fails to provide a 
hexagonal grid after tessellation. For n = 7 also, all but one pattern (Fig. 12f), 
obtained by adding two points each to the patterns in Fig. 12d (i,v,vi,xii), are 
unsatisfactory. Thus, for the hexagonal grid, the simplest decomposition results in a 
sept tree representation of the image (Figs. 13c, 14~). Such sept trees have already 
been proposed [7] for multiresolution pyramid representation of images, although 
the acceptability criteria there do not permit tessellations with multiple orientations 
of a grid pattern. However, as it turns out, the more general case treated here that 
allows multiple orientations of a pattern does not result in any new decomposition 
methods in addition to Burt’s [7] sept trees. 

FIG. 14. Grid tessellations at different resolutions (levels) generated by the decomposition patterns 
shown in Fig. 13. 
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5. CONCLUDING REMARKS 

We have considered various possible approaches to recursive decomposition of 
images to obtain hierarchical (tree) representations. We have discussed only those 
approaches involving polygonal tiles. We have not considered decomposition of an 
image using nonpolygonal partitions such as exponential tessellations that are based 
on logarithmic spirals [S], rather than Cartesian coordinates. For the case of the 
Euclidean plane images, we concluded that the square and triangular tessellations 
define the only viable approaches. Squares in the former have a fixed orientation, 
whereas the latter involves triangles having two orientations differing by 60”. Both 
methods appear to have the same computational complexity. However, such a choice 
between square and triangular quad trees is not available for images on a grid. The 
nature of the grid dictates the type of tree to be used. For example, on a triangular 
grid there is no natural definition of square blocks; triangular quad trees are natural. 
Conversely, square quad trees are appropriate for the square grid. This may be 
interpreted as saying that the choice of the method for image decomposition should 
not be in conflict with the choice of sampling neighborhoods used to obtain the 
square or triangular grid version of the Euclidean image to begin with. Nontriangu- 
lar (nonsquare) tessellating patterns of the triangular (square) grid are less compact 
and their centroids form a different grid, thus making the resulting decomposition 
schemes unacceptable. Decomposition of the hexagonal grid gives a sept tree 
representation. Although adjacent tiles do not merge into a precisely scaled up 
version of the individual tiles, the approximate (if border segments of the tiles are 
smoothed) shapes remain hexagonal. Thus, the above statement about the relation- 
ship between the decomposition method and the choice of sampling neighborhoods 
is generally true. 

Given a grid and the corresponding tree representation, the most compact 
representation will be achieved for a certain given image shape. Triangular (square) 
images will be most compactly described by triangular (square) quad trees. Sept trees 
will be most compact for images with generally hexagonal shape having jagged 
borders. Images having other shapes will result in larger trees as additional nodes 
(depth) will be necessary to represent the fragmented, near-border regions. Thus, the 
overall efficiency (size) of a tree representation is determined by the grid topology as 
well as the image shape. Since square (or quadrangular) images on square grids are 
most common, the square quad trees would be used most often. For other combina- 
tions of grid type, image size, and image shape, the most efficient decomposition 
scheme would be different in each case. 
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