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Abstract—This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and
photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level
hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large
number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain a
Markov random field based model of the segmentation graph which subsumes the observed statistics. To demonstrate the value of the
model and the statistics, we show how its use as a prior impacts three applications: image classification, semantic image segmentation

and object detection.

Index Terms—Natural image statistics, low-level hierarchical segmentation, Markov random field.

1 INTRODUCTION AND RELATED WORK

A natural image is far from being a random config-
uration of pixels. Rather, it exhibits a high degree of
organization, e.g., reflected in its spatial and spectral
properties, such as geometric, photometric and layout
properties. The work on natural image statistics attempts
to derive probabilistic models of image properties. The
most widely accepted definition of a natural image is
that it has a commonly encountered statistical structure
to which the human visual system has adapted [19].

Natural image statistics have received significant at-
tention in recent years. Models developed for it have
been used in numerous applications such as denois-
ing [28], [40], inpainting [28], scene categorization [36],
contextual priming for object detection [35], sensory
processing in biology [29], saliency detection [42] and
texture synthesis [17] among many others [33].

Previous work on natural image statistics can be
broadly grouped in two categories. The work in the first
category analyzes natural images and seeks to obtain
properties, laws, invariances, etc. characteristic of natural
images. Some findings of this work are the following: (1)
the image spectra obey a power law (see [29], [36], [33]
for a list of references), (2) scale invariance of statistics
[29], [43], [33], (3) responses of image patches to certain
filters follow non-Gaussian, highly kurtotic, heavy-tailed
distributions [18], [28], [33], (4) edges are dominantly
oriented either horizontally or vertically [10].

The work in the second category is aimed at develop-
ing models of natural image statistics for use in various
image processing and computer vision applications. A
prominent and widely adopted model in this category
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is the Field of Experts (FoE) model [27], [28] proposed
by Roth and Black. FoE learns a set of linear filters
whose responses are modeled by heavy-tailed, kurtotic
distributions within a high-order Markov random field
model. They successfully demonstrate the use of FoE
in denoising and inpainting applications. Weiss and
Freeman proposed a more efficient learning algorithm
for the FoE model in [40]. FoE has been further improved
by Heess et al. to allow for bimodal potentials and they
used their model for texture synthesis. In [9], Cho et
al. questioned the heavy-tailed distribution assumption
and proposed a new image prior that adapts itself to
the content, i.e. the type of underlying texture. Torralba
exploited statistics of natural images for scene catego-
rization [36] and for contextual priming for object detec-
tion, i.e. learning priors on possible locations and sizes
of objects. We refer the reader to [33] for a more complete
list of other applications of natural image statistics.
Both of the aforementioned categories have one thing
in common: all perform analysis that are pixel, patch
or subband-based. Limited work has been done on the
statistics of image features such as contours and regions.
Alvarez et al. [5] analyzes the size distribution of image
regions obtained using an intensity-based segmentation
into connected components. Ren and Malik [26] model
the statistics of boundary contours and derive a prior
model for contour shape. The “dead leaves” model
[33] uses a low-level occlusion process to estimate the
statistics of image partitions. Ghosh et al. [15], [14] uses
nonparametric Bayesian processes to model image par-
titions. Carreira and Sminchisescu [7] have investigated
figure-ground segmentation based on mid-level proper-
ties of combinations of image regions. A wide range
of statistics of high-level and human segmentations of
images have also been reported [22], [30]. However, to
the best of our knowledge, statistics of properties that
capture geometric and topological structure of images,
e.g., as defined by regions obtained by low-level image
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segmentation do not appear to have been investigated.
This paper is aimed at computing such statistics of
natural images.

It has been shown that low level segmentation serves
as a useful seed for simultaneous discovery, modeling,
recognition and segmentation of objects in images [34].
Therefore, the performance of the segmentation based al-
gorithms for recognition, etc., may be improved by using
segmentation related statistics of natural images, e.g., as
priors in a Bayesian framework. For a variety of reasons,
including the dependence of the available segmentation
algorithms on user provided parameters, segmentation
statistics do not appear to have been obtained for natural
images.

1.1 Overview of our approach

In this paper, we compile as well as use the segmen-
tation statistics from a large number of natural images.
First, we present the statistics we choose to estimate and
discuss the reasons for choosing them. Next, we present
a probabilistic model to define and learn these statistics.
Since our low level segmentation is represented by a
graph, our estimation procedure involves estimating
statistics of selected properties of this graph. We use
Markov random field (MRF) based modeling for this
purpose. The statistics we have estimated confirm some
of the previous findings, included in the past work (e.g.
dominant orientations are horizontal and vertical). They
also yield new findings, in terms of the properties of
segmentation, and therefore outside the scope of the pre-
vious work (e.g. number of regions versus photometric
scale follows an exponential distribution)

Next, to demonstrate the value of the statistics, we use
them as priors in three applications: image classification,
semantic image segmentation and object detection. It is
expected that, as usual, the use of priors would improve
the performance of the algorithms. This expectation is
borne out by our experimental results.

We use the low-level multi-scale segmentation algo-
rithm of [3] in our experiments. The reason we specifi-
cally chose this algorithm is that it (i) does not require
any major user supplied parameters while it provides
all, previously unknown, naturally occurring segmenta-
tions, which are perceptually valid and organized in a
hierarchy [1], and (ii) it has been shown to outperform
other available algorithms on a low-level segmentation
benchmark [3].

There are three main contributions of this work: (1)
we present some potentially useful statistics of low-level
segmentation of natural images for the first time, and (2)
we present a probabilistic model of segmentation which
we use to learn these statistics, and (3) we demonstrate
the use of this model in three applications.

2 MODELS AND STATISTICS

In this section, we first briefly describe the segmen-
tation graph, the representation we use for the multi-
scale image segmentation, and its properties we use to
capture the underlying image. Next, we provide some

Fig. 1. A sample segmentation tree. For a given region (or,
to be interchangeably referred by its associated node) u, the
segmentation tree relates it to its parent node p and its children
nodes wy and wz. The connected segmentation tree of [2] adds
edges between u and its sibling s. Our segmentation graph, in
addition, includes edges between « and its adjacent regions,
i.e., regions sharing border with u. In the figure, a is one such
region. The edges to the sibling and adjacent regions/nodes are
shown dashed. By adding the dashed edges to the segmenta-
tion tree, we obtain the segmentation graph.

statistics of these properties over a large number of
natural images. Finally, we present the proposed Markov
random field (MRF) based model, and describe how to
learn it from a set of given images.

2.1 Segmentation graph and region properties

The segmentation algorithm in [3] partitions a given
image into homogeneous regions of a priori unknown
shape, size and degree of photometric homogeneity. The
algorithm organizes all detected regions into a hierar-
chical structure called the segmentation tree [1] which
captures the low-level, spatial, and photometric image
structure in a hierarchical manner. Nodes at upper lev-
els correspond to larger segments, while their children
nodes capture smaller embedded details. Fig. 1 shows
that a segmentation tree includes edges between nodes
corresponding to a region and those corresponding to
smaller regions contained within the region, and a con-
nected segmentation tree of [2] includes additional edges
to sibling nodes, i.e., corresponding to those regions that
“surround” the region. The “surround” is defined in [2]
by introducing neighboring Voronoi regions, analogous
to the conventional point Voronoi neighbors in a point
pattern. Our new structure, segmentation graph, in ad-
dition includes edges to the extreme case of adjacent
regions, i.e., regions at zero distance, sharing border.

We describe each node, i.e. region in the segmentation
graph by a set of its intrinsic (geometric and photomet-
ric) properties, as well as relative properties (capturing
region topology and layout). A property is intrinsic if
it represents only the region itself. A relative property,
on the other hand, describes how the region is related
to its parent and regions that are its siblings or other
(Voronoi or adjacent) lateral neighbors, linked to it in
the segmentation graph.

Choosing the specific properties: Conventional image
properties are typically measured on pixels or windows
of pixels. Therefore, they do not capture interesting
geometric or topological aspects of image structures;
they are limited to estimating properties of sets of pixel
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colors or simple geometric properties such as of edges.
The variety of geometric, photometric and topological
structure captured by the segmentation graph, and there-
fore the ability to measure related specific properties
provides image properties not available through the
usual approaches. The power of region based repre-
sentation of images, and particularly, of properties of
the types described below, has been demonstrated by
prior empirical results, wherein different combinations
of properties have been shown to be effective in solving
a range of problems [13], [4], [34].

Below we list the properties we have used. It may
be a redundant set. Analysis and experimentation in
future work may help refine these properties into a
more compact set, which may more effectively represent
semantic and low level contents of images.

Intrinsic properties: The intrinsic geometric proper-
ties we use are concerned with the following aspects
of a region: (1) Area (normalized by the image area).
(2) Squared perimeter over area, which indicates how
compact the region is, the most compact shape being
the disk. (3) Eccentricity, i.e. scalar that specifies the
eccentricity of the ellipse that has the same second-
moments as the region. (4) The first four Hu moment
invariants. (5) Orientation. (6) Perimeter. (7) Solidity, i.e.
the proportion of the pixels in the convex hull that are
also in the region. (8) Extent, i.e. the ratio of pixels in
the region to pixels in the bounding box of the region.
(9) Major and minor axes lengths normalized by image
perimeter. (10) Location of the center of mass w.r.t. the
image coordinates. (11) A pyramid histogram of oriented
gradients (PHOG) where we evenly divide the bounding
box of the region into 1, 4, and 16 cells, thereby obtaining
3 levels.

With respect to the intrinsic photometric properties,
the grayscale distribution within a region is represented
by mean and standard deviation of the region’s inten-
sities. For color images, we use mean and standard
deviation of each of the RGB channels.

Relative properties: These include the following ge-
ometric, photometric as well as topological properties
characterizing a region’s relationships with other re-
gions. The geometric properties include: (1) Outerring
area, i.e. area of the region minus the total contained area
of its children, divided by the total region area (ring +
children areas). (2) Normalized area, i.e. area divided by
the parent’s area. (3) Location of the center of mass w.r.t.
the parent’s coordinate system.

The photometric properties we use are as follows.
(1) Each region is associated with a photometric scale
which is the contrast level at which it is detected during
segmentation. (2) Mean and standard deviation of the
contrast along its boundary,

Following are the topological properties of a region
that we use. (1) Number of children. (2) Area variance
of the children. (3) Sibling-context vector, i.e. a vector
which records the general direction in which the region
sees its siblings located. We refer the reader to [34] for
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Fig. 2. (Left) 2D histogram of zy-coordinates of center-of-mass
of regions. For a given bin, color encodes the (relative) number
of regions whose center of mass fall in that bin. (Right) 1D
histograms of x and y coordinates.
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Fig. 3. (Left) Histogram of boundary contrasts. For a given bin,
color encodes the average contrast of region boundaries falling
in that bin. (Right) Histogram of Canny edges. For a given bin,
color encodes the (relative) number of edges falling in that bin.

the details on above properties.

A different set of relative properties, which emphasize
appearance modeling based on texton and brightness
histograms, were proposed in [7]. While these properties
might be useful for figure-ground segmentation, we have
not included these properties in our analysis for two
reasons: (i) they do not make use of the topological
structure of regions and (ii) [3] produces mostly homoge-
neous regions, describing their appearance using texton
and brightness histograms would bring little additional
benefit.

2.2 Statistics of selected properties

We randomly collected a set of 2000 images!. We
segmented each image and obtained its segmentation
graph along with the property vectors described in the
previous section. Below we provide sample statistics (in
the form of histograms) of the following properties: (1)
location of center of mass, (2) orientation, (3) number of
regions versus the photometric scale, (4) area, and (5)
depth and average branching factor of the segmentation
tree. Among the large set of properties presented in
the previous section, we found these properties to be
the most interesting ones in that their statistics reveal
potentially useful interpretations about natural images.

2.2.1 Location of center of mass
Fig. 2 gives the histograms of normalized row (y) and
column (x) coordinates of the center of mass of regions.
Top left corner of the image is assumed to be (0,0)
and bottom-right is (1,1). The histograms suggest that
there are more regions around the center of the image
1. 600 images from the “Flickr random image generator” website

(http:/ /beesbuzz.biz/crap/flrig.cgi) and 1400 images from PASCAL
VOC 2010 dataset.
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Fig. 4. (Left,top) Histogram of region orientations. (Left,bottom)
Histogram of mean grayscale intensity of regions. (Right) His-
togram of photometric scales of regions.

than the surround. The number of regions decrease in
any direction from the center to image borders. This
could be explained with the photographer bias [37], a
natural tendency of photographers to place the object of
interest near the center of their field of view. Because
the focus is more likely around the center, the edges
there are sharper, i.e. their ramp widths are narrower,
than the edges at the periphery of the center. Out of
focus blur causes region boundaries, hence regions, in
the periphery die earlier as the photometric scale is
increased during segmentation. To quantify this effect,
we computed a spatial histogram of boundary contrasts
(Fig. 3 (left)) where for each bin we computed the aver-
age contrast of the region boundaries spatially falling in
that bin. One can see that the average boundary contrast
is highest around the center of the image and decreases
towards the image borders.

In Fig. 2 (right), we see that the distribution of x
seems to have no bias for either the left or the right
half of the image. However, y coordinates seems to
be biased towards the [0.5,1] interval, which means
more regions have centers of mass in the lower halves
of the images than in the upper halves. Specifically,
there are about 11% more? regions in the lower halves,
while the difference between left and right halves is
slightly less than 1%. The bias in the distribution of y
coordinates might be attributed to the natural existence
of an omnipresent ground, with many more objects
located on it than at distances “above the ground.” This
effect seems to more than compensate for the reduction
in the number of regions in the lower half that may
be expected due to reduction in the average boundary
contrast in the lower part (Fig. 3 (left)), which, in turn, is
presumably a manifestation of light coming from above.
Our observation of a larger number of regions lower
in the image is in accord with previous work [39], [6]
reporting that there is more texture/detail in the lower
part of natural images.

2.2.2 Orientation

Fig. 4(Lefttop) gives the histogram of region orien-
tations. We represent region orientation by the angle
between the z-axis of the image and the major axis of
the ellipse that has the same second-moments as the

2. Percent difference between two values a and b is calculated as
100|a — b]/(0.5(a + b)).
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Fig. 5. (Left) Log-log plot of number of regions as a function of
their area. (Right) Depth and average branching factor (ABF) of
segmentation trees. Each point represents a tree.

region. The shape of the histogram shows that there are
two dominant orientations: horizontal (0°), and vertical
(—90° and 90°). It has previously been reported [10],
[36] that the distribution of edge orientations in nat-
ural images is biased towards horizontal and vertical
directions, which is consistent with our finding here.
Presumably, this bias could be attributed to the existence
of an omnipresent ground and that objects counter the
gravitational force more efficiently when standing at
horizontal and vertical directions than oblique angles.

2.2.3 Photometric scale

Fig. 4 (Right) shows the histogram of the photomet-
ric scale of the regions detected by our segmentation
algorithm. Other than the decrease, as expected, in the
number of regions as the lowest acceptable contrast for
the regions is increased, the histogram quantifies the
decrease: the number of regions versus the photometric
scale follows an exponential distribution (tested using
Pearson’s x? test). It appears that this exponential trend
can be explained by a simple model: suppose that a
region X is surrounded by N other regions Y1, Ys,..., Yy
which are spatially adjacent to it. Let Gx represent
the grayscale intensity of region X, and assume that
all the pixels within a region have the same intensity.
Then, the photometric scale of region X can be written
min(|Gx — Gy;|) [1], [3]. The distribution of
mean grayslcale intensity of regions is given in Fig. 4
(Left,bottom). While the histogram looks like a truncated
Gaussian distribution, the data fits better to a beta
distribution. Therefore, Gx, Gy, can be taken as beta-
distributed random variables. We compute the distribu-
tion of ox by simulation, as we are not aware of a closed-
form expression for it. We draw a large sample of values
for Gx, Gy, from the fit beta distribution, and compute
ox. It turns out that this simulated ox also follows the
exponential distribution.

224 Area

Fig. 5 (Left) shows the log-log plot of (relative) number
of regions as a function of normalized region area. As
the plot suggests, most of the regions are small. In
fact, the percentage of regions which have area less
than 5% of the image is 98.81%. Region areas seem to
follow a power law (confirmed using a x? test) shown
in red. This result seems to be a property of sizes of
objects (and object parts) projected onto the image plane.
Region area depends on the viewing distance and the
apparent size of objects (and their parts) as captured by
segmentation. Assuming the area statistics subsume all
possible viewing angles and distances, it is reasonable

as ox =
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to speculate that object sizes in nature follow a power
law. However, we are not aware of any work on such
statistics of objects.

2.2.5 Depth and average branching factor

Both the depth and average branching factor (ABF) of
segmentation trees seem to follow the normal distribu-
tion with p = 13.34,0 = 3.31 and ¢ = 1.92,0 = 0.25,
respectively. One interesting observation on depth and
ABF values is that they are inversely proportional (see
Fig. 5 (Right), line fit to data has negative slope), i.e.
more branching less depth, and vice versa. This implies
a “conservation of number of regions” rule.

2.3 MRF modeling of the segmentation graph

Let S be the segmentation graph of an image I.
Natural image statistics can be easily specified if we have
a model for p(I), i.e. the probability that I is an image.
In this work, we develop this model in terms of the
segmentation graph properties of the image by assuming
the probability I is equivalent to the probability of
observing its segmentation graph S, i.e. p(S) ~ p([).

We assume that a node in the segmentation graph
together with its immediate neighbors (parent, children,
sibling (Voronoi or adjacent) regions) form a maximal
clique of the segmentation graph®. Let r; denote the
property vector extracted from the clique defined with
reference to the k" region. ry, is the concatenation of the
intrinsic properties of the node and its relative properties
(described in Sec. 2.1) determined through the clique.
Suppose S has K nodes, then our proposed model is:

p(S; HUJ T3 ©), ey

where we parametrized p( ) w1th our model parameters
© and 9(-) is the clique-potential function, and Z(-) is a
normalization factor called the partition function. Using
the Markov-Gibbs equivalence, we can write (1) as:

1

———e 59 where Z(O) :/ e

p(S;0) = 7©) ,

—E‘(s;@))ds7

@)
where V is the space of all possible segmentations and
E(-) is the energy function which is defined as:

K
=Y U(r:0). 3)

U(-) is called the log-potentigl function, in fact, we have
U(-) = In 1(-). We discuss the form U(+) in Section 2.3.2.

2.3.1 Estimating the parameters, ©, of the model

It is well known that maximum likelihood (ML) es-
timation of O is intractable because of the partition
function Z(©). A simple approximate scheme to ML
estimation is the pseudo-likelihood estimation which
is an asymptotically consistent estimator of ML [21].
Pseudo-likelihood (PL) approximation is based on the
conditional probability of a node given its immediate
neighbors. In our case, we define it as the probability of

3. Similarly, in the Fields-of-Experts model, a 5x5 square patch
centered on a pixel is assumed to define a maximal clique.

observing ry:
p(1;©) = ¢ VO [ [ =Urg, 4

Q
where (2 is the space of all possible values that a property
vector can take. Then, PL is:

7U Tk,

K
0) = Hp(r’“’ ]._.[ f —U(rO) gy ®)

One way to maximize PL is by gradlent ascent where
the gradient is:
0In(PL(O))
00

r© BU(T ())
_ Kfsze e
Joeuts @)dr

_Z()U rk,

(6)
Note the integrals in the first term above. Depending
on the dimensionality of the property vectors, numerical
integration techniques ranging from simple quadrature
methods to Monte Carlo methods could be used. Other
than gradient ascent, a recently popular method to opti-
mize Eq. (2) is the contrastive-divergence method which
has been used in the FoE models. We do not use this
method because it would require us to draw samples
from V, the space of all possible segmentations.

2.3.2 Potential functions

The criterion for a good potential function, U(-), is
such that it should be minimized when it describes
a clique, i.e. a node and its immediate neighbors as
completely as possible. That is, U(r; ©) should be min-
imum, if the property vector r is describing a valid
region together with the regions corresponding to its
segmentation graph neighbors. A natural choice would
be to use a negated probability density function (pdf).
We note that when U(r; ©) is in the form:

U(r) = —In(q(r)) @)
where ¢(-) is a pdf, the maximization PL becomes much
easier due to the fact that the denominator in (4) always
evaluates to 1 since ¢(-) is a pdf. This saves a lot of
computation because we no longer need the first term
and the high-dimensional integrals in the gradient (6).

Following the observation above, we choose ¢(-) to be
a Gaussian mixture model (GMM) due to its generality
and some empirical evidence that GMMs model region
properties well in certain tasks [4]. With these choices,
maximizing pseudo-likelihood boils down to fitting a
GMM, for which we use the standard expectation-
maximization algorithm.

3 EXPERIMENTS

In this section, we demonstrate the use of our pro-
posed model in three different applications: image clas-
sification, semantic segmentation and object detection.

3.1 Image classification

We make use of our proposed model for image classi-
fication using the Fisher kernel approach [20], [24]. Let
S1 and S, be two different segmentation graphs which
are generated by the prior p(S;0). Then, a represen-
tative feature vector for S; is f1 = Velogp(S1;0). fi
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represents S; because the gradient of the prior model
evaluated at S; describes the directions in which the
model parameters should be changed to best fit S;. In
fact, fi is a sufficient statistics for S; [20]. Similarity
between between S; and S; is given by the kernel
K(S1,S2) = f{f F~1f,, where F is the Fisher information
matrix of p(S; ©). Appropriately scaled f; (i.e. F2f)is
called the Fisher vector representing S; (see [24], [25] for
further details). Note that the size of the Fisher vector
depends only on the number of parameters of p(S;©)
and not on the size (number of nodes) of S;. Efficient
linear classifiers can be trained on Fisher vectors.

We used the PASCAL VOC 2007 dataset. In our experi-
ments, we used all the features described in Sec. 2.1 with
the exception that we compressed PHOG features using
PCA due to the high dimensionality of the PHOG vec-
tors (21 cells, each 8 dimensional, hence 168 dimension
in total). Instead of fixing the reduced number of PHOG
dimensions, we allowed it to vary as a parameter of the
system. In addition to this parameter, the only parameter
of our model is the number of Gaussian components
in the potential function (Eq (7)). We tuned these two
parameters by cross-validation on the “trainval” set.

First, we trained a single universal prior (as described
in Sec. 2.3.1) using all the images of all classes. Then,
we extracted the Fisher vectors using this prior and
trained linear Support Vector Machine (SVM) classifiers
[8]. We call this universal prior model as SS-U, short for
“universal segmentation statistics”.

While experimenting with SS-U, we observed that the
optimal parameters, i.e. # of Gaussian components, and
the reduced dimensionality of PHOG, are different for
different classes. Following this observation, we trained
another system where we learned a separate prior model
for each class. We call this system as SS-PC, short for
“segmentation statistics per class”.

The average APs obtained by SS-U and SS-PC are
shown in Table 1, together with the state-of-the-art re-
sults on this dataset. Although our proposed models
does not perform as well as the best method available,
SS-PC seems to be among the top performing methods.
All the methods above SS-PC use sophisticated and
costly learning algorithms. “Iterative Contextualizing”
[32] iteratively combines object detection and image
classification. Similarly “Cls + Loc” [16] combines the
best method of PASCAL VOC 2007 with a costly sliding
window-based object detector. Multiple kernel learning
(MKL) [41] also trains a costly learning system and uses
thousands of features. The “kernel codebook” [38] and
the Improved Fisher Kernel (IFK) [25] are comparable to
our proposed model in simplicity but we are working
with less features (per image) than they do. On average,
a typical 500x500 image gives us only a few hundred
regions (the actual average over the 2000 image dataset
is about 350), whereas [25] extracts around 5000 fea-
tures (every 16 pixels, at five scales). Another difference
between SS-PC and [25] is that instead of using the

6
[ Method [ AP ] Method [ AP |
Iterative Contextual. [32] | 70.5 || Best of VOCO07 [11] | 59.4
Cls + Loc [16] 63.5 IFK (SIFT) [25] 58.3
MKL [41] 62.2 SS_U 53.4
SS-PC 61.1 Standard FK [25] 47.9
Kernel Codebook [38] 60.5
TABLE 1

Comparison of the proposed models SS-U and SS-PC with the
state-of-the-art on PASCAL VOC 2007.

“spatial pyramid”[25] approach, we store the location
information within the feature vector. This is a simpler
approach than the spatial pyramid where one needs to
train separate models per “spatial cell”. The performance
difference between SS-PC and [25] could be attributed to
both different features (i.e. regions vs dense patches) and
spatial aggregation schemes.

3.2 Semantic Segmentation

In our second experiment, we show how to use image
priors to help improve semantic segmentation of images.
To this end, we use the MSRC-21 dataset which contains
591 images of 21 classes. The task is to label every pixel
of the test images with one of these 21 labels. We follow
the practice of [31] and randomly split the set into 276
training and 315 testing images.

Our semantic segmentation model is as follows. Sup-
pose that we have a classifier which can predict the
semantic label of a region. To label a pixel, we first
classify the regions that contain it. Note that a certain
pixel might be included in more than one region because
of the segmentation hierarchy. The classifier returns its
predictions along with confidence scores, or probabil-
ities. Then, we choose the label with the maximum
confidence and assign it to the pixel in question. We use
a SVM with RBF kernel as our region classifier and train
it on all the regions of all the training images.

Now, let us look at how image priors help this process.
The region classifier is actually trained to compute the
probability p(c|r) where ¢ is the class variable and r
represents a region, i.e. its properties. However, we are
also given the images that contain these training regions.
In fact, we can learn p(c|r,S)* instead of just p(c|r),
where S is the segmentation graph of the image that
contains region r. If we write out:

_ p(r,Sle)ple) _ plrle)p(Sie)p(c)
p(elr, S) = = ®)
p(r, ) p(r, S)
where we assumed conditional independence of r and
S given the class c. Then,

plelr, S) o< plelr)p(Sle). ©)
The first term on the right hand-side above is the
region classifier and the second term is the class-
conditional image prior. This expression shows the con-
tribution of the image prior in region classification.
Implementation of the prior: From a theoretical point
of view, one can learn a prior p(S;©) (as described in
Sec. 2.3.1) using only those images that contain objects

4. This must actually be p(c|r, S\r) but we can assume S\r ~ S as
the average region size is small compared to the size of the image.
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of class ¢, and then use it to compute p(S|c).

There are two problems with this. First, one needs to
compute the value of the partition function, Z(©), but
this is intractable. Second, p(S;©) is a generative model
and it is not trained to discriminate between different
classes; so, one should not expect to get better classifica-
tion performance than a discriminatively trained model
would give. Fortunately, these problems can be easily
addressed by inverting p(S|c) and assuming a uniform
probability on classes:

p(elr, S) oc p(elr)p(elS)p(S). (10)

The solution to semantic segmentation problem is then

(1)

where p(5) is removed because it does not change the
solution.

We train an image classifier based on the learned
image statistics, p(S; ©), as in the previous section. Then,
p(c|S) is estimated using this classifier by fitting a sig-
moid function to raw classifier outputs.

We give per-class and average segmentation accuracies
on the MSRC-21 dataset in Table 2. Note that the model
with the prior (Eq. (9)) improves the average result by
8.6%. Although we believe that this improvement is
sufficient to demonstrate the use of our proposed image
prior model, we also include in Table 2 two results from
state-of-the-art methods for comparison. With the prior
model, our result is better than that of [31] despite the
simplicity of our method. Both [31], [23] use sophisticated
and costly random field models with many more fea-
tures extracted per image than we do.

3.3 Object Detection

In this section, we demonstrate how our model helps
improve the performance of an off-the-shelf object de-
tector (we use [12]) on the PASCAL VOC 2007 dataset.

From an abstract point of view, an object detector is
trained to compute p(o|bb), that is the probability of o,
an instance from a certain object class is observed, given
a subimage bb, or some measurements extracted from
this subimage. As we did in the previous section, when
we use the image in addition to the subimage, we have:
plolbh, S) ox p(olbb)p(Slo).

To compute p(o|bb), we take the confidence scores
output by the object detector and simply scale them
appropriately. For the image prior term, p(Slo), we
train an image classifier using the image statistics, as
we did in the previous experiment. In our preliminary
experiments, we noticed that the overall performance
benefits from non-linearly scaling p(S|o). In particular,
we used an exponential scaling: p(S|o)*, a > 0. In
the overall decision, the contribution of the image prior
term is calibrated by oo whose value is chosen by cross-
validation on the trainval set.

We present the object detection performance in Table
3. The first row gives the detection results for the object
detector alone, i.e. p(o|bb). The second row shows the
performance of the detector with the image prior, i.e.

¢* = arg max p(c|r, S) = arg max p(c|r)p(c|S)

p(o|bb, S). The use of the prior increases the detection
performance by 3.3% on average over 20 classes. This
is a larger improvement than the context-rescoring im-
provement proposed in [12]. Our object detection results
are comparable with the state of the art results [12], [32]
given in the last two rows of Table 3.

4 DISCUSSION

We presented a set of statistics based on low-level
segmentation of natural images. Based on these statistics,
we were able to confirm that dominant orientations in
natural images are horizontal and vertical. We also pro-
vided new findings such as that the number of regions
versus photometric scale follows an exponential distribu-
tion, and that there are more regions in the lower halves
of the images than there are in the upper halves. We
proposed a MRF based model to learn the segmentation
statistics and used this model in three high-level appli-
cations. One might ask why not directly optimize the
segmentation for a given high-level task, i.e., semantic
segmentation, as done in [15], [14], [7]. While doing so
is a realistic and useful research direction to explore,
it is not the main goal of this paper. Here we have
aimed at obtaining a probabilistic model of photometric,
geometric and topological structure of natural images,
short of any semantics. Our approach is that tasks like
semantic segmentation can follow our general segmen-
tation as a follow up stage, and we have demonstrated
that this separation is feasible. Doing so reduces the extra
(combinatorial) complexity that would accrue from task
specific segmentations - from having to pair tasks and
segmentations for simultaneous optimization.

The main limitation of our model is that it is not a
truly generative model for images, i.e. the model is not
able to reconstruct the image. For this reason, for a class
of problems where the output itself is a natural image,
e.g. denoising, inpainting, etc., it is not trivial how to
use our model. On the other hand, we believe that many
high-level vision problems might benefit from the model
proposed in this paper. We tried to demonstrate this in
three simple applications.
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