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Abstract

This paper is aimed at evaluating the semantic infor-
mation content of multiscale, low-level image segmen-
tation. As a method of doing this, we use selected fea-
tures of segmentation for semantic classification of real
images. To estimate the relative measure of the infor-
mation content of our features, we compare the results
of classifications we obtain using them with those ob-
tained by others using the commonly used patch/grid
based features. To classify an image using segmenta-
tion based features, we model the image in terms of a
probability density function, a Gaussian mixture model
(GMM) to be specific, of its region features. This GMM
is fit to the image by adapting a universal GMM which
is estimated so it fits all images. Adaptation is done us-
ing a maximum-aposteriori criterion. We use kernelized
versions of Bhattacharyya distance to measure the simi-
larity between two GMMs and support vector machines
to perform classification. We outperform previously re-
ported results on a publicly available scene classifica-
tion dataset. These results suggest further experimenta-
tion in evaluating the promise of low level segmentation
in image classification.

1. Introduction
This paper is primarily aimed at evaluating the se-

mantic information content of low-level segmentation
of images. Specifically, we wish to evaluate the power
of features directly derived from the segmentation to
model semantics of image classes, versus other fea-
tures that are obtained by other operators. We do
this by comparing their classification performances for
datasets previously classified into different semantic
classes. Further, automatic prediction of the semantic
class of a given scene is an important problem in its
own right. It could potentially be utilized in applica-
tions such as web-scale image search and retrieval, and
it could also help in other vision problems, for exam-
ple in disambiguating the context for object recogni-
tion/detection. It remains to be a challenging problem
due to the large variability in the properties and spatial

distribution of the objects that constitute a single scene
class, lighting conditions, viewpoint and scale changes,
etc. Thus, in addition to evaluating the information con-
tent of segmentation, this paper therefore also simulta-
neously presents an alternative approach to the semantic
classification problem.

The most commonly used image representations for
scene classification are in terms of properties of im-
age patches. Rectangular or circular patches are sam-
pled densely along a regular grid overlaid onto the im-
age or at points detected by an interest point detector.
These patches are described in various ways, includ-
ing in terms of normalized intensity values, SIFT fea-
tures, color and texture histograms, or filter responses
[10][7] [4][13][3]. These descriptions then serve as the
basis for class representations. They are either directly
fed into discriminative algorithms [10] such as support
vector machines (SVM), or first, generatively modeled
by bag-of-words models [7][3], probabilistic graphical
models [7], or latent topic models [13][3], followed by
learning of some discriminative aspects of these gener-
ative models using a classifier.

As an alternative to the patch-, grid-, and filter-based
representations above, in this paper we use features de-
rived from a low-level segmentation of the image. We
use the multiscale segmentation algorithm given in [1]
which is designed to detect image regions regardless of
their shape and size, spatial distribution, and contrast.
The algorithm organizes all detected regions hierarchi-
cally into a tree data structure where the root node cor-
responds to the whole image. Nodes closer to the root
correspond to larger regions, while their children nodes
capture embedded details. Our representation consists
of intrinsic properties of the image regions (capturing
region geometry and its photometric appearance), as
well as properties of their mutual embedding properties
which are captured in the tree. Together the two sets of
properties constitute our feature space whose capabili-
ties we wish to evaluate via semantic scene classifica-
tion.

Overview of Our Approach Our approach consists
of the following major steps. We first obtain paramet-
ric models of the aforementioned two sets of proper-
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ties of image segmentation, to represent them concisely.
We achieve this by fitting a Gaussian mixture model
(GMM) to the region properties observed within an im-
age. This avoids the need for choosing a specific vocab-
ulary per image and selecting the number of histogram
bins or sizes associated with the widely used bag-of-
words model or histogramming methods. Another ad-
vantage is that by utilizing kernel functions which mea-
sure the similarity between GMMs we can let the SVMs
directly exploit the generative models in a discrimina-
tive setting.

However, the usual problem with such estimation of
high-dimensional probability density functions (pdf), in
this case a GMM, is the scarcity of the training sam-
ples. One approach to overcoming this problem is to
first capture the gross distributional characteristics of
the entire set of samples, e.g., via a universal GMM.
This approach is popular in speech processing [8][12],
and is also now becoming popular in computer vision
[11][14]. We adapt the universal GMM to each im-
age using a maximum-aposteriori (MAP) criterion. The
goal of this adaptation is to maximize the posterior
probability of the parameters of the image-generative
model (GMM) given the universal GMM and the new
data, i.e. regions of the image to be modeled. This is
accomplished using an expectation-maximization (EM)
procedure [8].

Once each image is modeled by a GMM, we use
SVMs for classification. For SVMs to work on these
GMMs, we need a kernel function which measures the
similarity between two GMMs. We use kernelized ver-
sions of the Bhattacharyya distance [2] for this purpose.

We begin the description of our approach by first pre-
senting in Section 2 the low-level segmentation based
image representation we use, and the classification al-
gorithm. Then in Section 3 we present experimental
results. We conclude the paper with a discussion of the
results in Section 4.

2. Models and Algorithms
2.1 Image Representation

We represent an image by the list of its regions ob-
tained by a low-level multiscale segmentation algorithm
[1]. Each region is described by the following 20 fea-
tures: (1) area, (2) mean intensity, (3) standard devia-
tion of the intensity, (4) (perimeter)2 / area, (5) outer-
ring area, i.e. the area of the region except its children,
(6) orientation, (7) eccentricity, (8) solidity, i.e. the pro-
portion of the pixels in the convex hull that are also in
the region, (9-12) the first four central moments, (13)
mean contrast of the boundary, (14) standard deviation
of the boundary contrast, (15-16) x-y coordinates of the
center of mass expressed in the image coordinate sys-
tem, (17) perimeter, (18) extent, i.e. the ratio of pixels
in the region to pixels in the total bounding box, (19)

major axis length, (20) minor axis length. As mentioned
earlier, these features capture different aspects of image
segmentation, including intrinsic geometric (1,4,6-12,
15-20) and photometric properties (2,3) of the regions,
their relative properties (13, 14), and a topological prop-
erty (5). More diversity in the selection of these features
is possible, and will be a part of our future work which
will be guided by the results obtained in this paper.

Images as adapted GMMs We want to model an im-
age by a GMM of its region properties. However, as
mentioned above, robustly fitting a GMM to a small
number of regions (some images have only 30-40 re-
gions) is a problem. To overcome this, we employ the
MAP adaptation (or Bayesian adaptation). A previously
trained universal GMM is used as a prior mixture and
adapted to the image that we want to model. Then,
the image is represented by this adapted GMM. For this
purpose, we train a universal GMM using all the regions
of all training images by using EM. We denote this uni-
versal GMM by its parameters Θu = {cui , µu

i ,Σ
u
i }N

u

i=1,
where cui is the mixture coefficient, µu

i is the mean, and
Σu

i is the covariance matrix of the ith Gaussian. N is
the number of Gaussian components in the mixture.

MAP adaptation Once the universal GMM is
trained, we adapt it to the regions of each image that
we want to model. Let this image be I and let it have
R regions: I = {ri|i = 1, 2, . . . , R}. Recall that ri
is a 20-dimensional vector. For completeness, we pro-
vide the equations for the MAP adaption here (see [8]
or [11] for details). The adaptation is achieved by an
EM procedure.

In the E-step, occupancy probabilities, i.e. the prob-
ability that an observed region r is generated by the ith

Gaussian component is estimated:

wi(r) =
cipi(r|Θ)∑N

j=1 cjpj(r|Θ)
(1)

where

pi(r|Θ) =
exp{− 1

2 (r − µi)
′Σ−1

i (r − µi)}
(2π)(D/2)

√
|Σi|

(2)

In the M-step, the parameters of the GMM are re-
estimated (adapted):

ĉi =

∑R
j=1 wi(rj) + τ

R+N · τ
(3)

µ̂i =

∑R
j=1 wi(rj)rj + τµu

i∑R
j=1 wi(rj) + τ

(4)

Σ̂i =

∑R
j=1 wi(rj)rjr

′
j + τ(Σu

i + µu
i µ
′u
i )∑R

j=1 wi(rj) + τ
−µ̂iµ̂

′
i (5)
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version # train [10] [4],[3] Our best Our average Our average
per class (N = 1) (N = 75)

gray 100 83.70% - 86.61% (N = 1) 85.32± 0.71% 84.87± 0.92%
gray 50% - 84.39% [4] 87.88% (N = 1) 86.81± 0.82% 85.95± 0.68%
color 50% - 86.65% [4], 87.80% [3] 88.31% (N = 1) 87.19± 0.97% 86.46± 0.82%

Table 1. Comparison of classification performances of our method and others.

Here the parameter τ is called the relevance factor and
it regulates the balance between the universal GMM and
the new data, i.e. the image that we want to model. In
our experiments, we choose the value of τ using cross-
validation.

2.2 Classification
We use SVMs for classification. As each image

is represented by a GMM (adapted from the univer-
sal GMM), we need a similarity function between two
given GMMs. For the special case of N = 1, we use
the Bhattacharyya kernel [14] which has the following
closed form solution for two Gaussians p and q:

K(p, q) = |Σ|1/2|Σp|−1/4|Σq|−1/4

exp
(
− 1

4µ
′
pΣ−1

p µp − 1
4µ
′
qΣ−1

q µq + 1
2µ
′Σµ

) (6)

where µ = 1
2 (Σ−1

p µp + Σ−1
q )−1µq) and Σ = (1

2Σ−1
p +

1
2Σ−1

q )−1.
For the case of N > 1, there is no exact solution.

For this, various approximations have been proposed
[14] in the literature. We use the following approxima-
tion from [5] which uses the fact that there is one-to-one
correspondence between the Gaussians of the universal
model and the adapted model. For two GMMs p and q:

K(p, q) ≈
∑N

i=1

{[
1
2

(
Σp

i +Σu
i

2

)− 1
2

(µp
i − µu

i )
]T

[
1
2

(
Σq

i +Σu
i

2

)− 1
2

(µq
i − µu

i )
]}

+

∑N
i=1 tr

[(
Σp

i +Σu
i

2

) 1
2

(Σp
i )−

1
2

(
Σq

i +Σu
i

2

) 1
2

(Σq
i )−

1
2

]
(7)

Note that the second term on the right hand side of
the equation can be written as an inner product of two
vectors – since the covariance matrices are diagonal –
which makes its implementation easy and its evaluation
efficient.

3. Experiments
For experimental validation, we used the publicly

available dataset of Oliva and Torralba1 [10]. This
dataset contains 2688 color images organized in 8

1http://people.csail.mit.edu/torralba/code/
spatialenvelope/

classes: coast, forest, mountain, open country, highway,
inside city, tall building, and street. Each class has a dif-
ferent number of images, ranging between 292 to 410.

We compare our results with two previous meth-
ods: one that uses gist features and SVM [10] and
another that uses SIFT features and a hybrid genera-
tive/discriminative method [4][3]. In [10], the dataset
is split into training and testing subsets by randomly
choosing 100 images for training from each class, and
using the rest for testing. Although the images are in
color, the authors use the grayscale versions since gist
features cannot utilize color information. In [4][3], the
authors split the dataset into two by randomly choosing
half of the images per class for training, and they use
the rest for testing. Results on both grayscale and color
versions of the datasets are reported. In all experiments
of [10][4][3], the classification accuracy is reported as
the mean of the diagonal of the confusion matrix. How-
ever, the authors do not mention whether these reported
numbers are the best results they get over different ran-
dom splits of the dataset, or they are the average results
over a number of trials. We present our best results as
well as the average results we get over 10 random splits.

For each random split of the dataset, we ran our
GMM system for four different choices of the number
of components N : 1, 50, 75, and 100. The relevance
factor, τ was fixed to 50, 5, 2, and 1, respectively. These
values were found in our preliminary experiments by 5-
fold cross-validation on the training sets.

When there is only a single component in our GMM
(N = 1), i.e. the model is a single multidimensional
Gaussian, we used a full-covariance matrix. When
N > 1, we used diagonal-covariance matrices. There
are two reasons for using diagonal-covariance matrices,
both motivated by computational considerations: 1) It
is easier to avoid singularities (in the covariance matri-
ces) during the GMM training and/or adaptation, 2) It is
much more efficient in terms of time and memory.

The classification performances of the previous
methods and our method are given in Table 1. We out-
perform the previously reported results in all cases. In-
terestingly, in almost all experiments, the single full-
covariance Gaussian model (N = 1) outperformed the
GMM with multiple components. Very rarely was the
GMM better than the single full-covariance model. We
believe that this situation might be due to three reasons:
1) Since GMM (N > 1) uses only diagonal-covariance
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Figure 1. Class confusion matrix of our classifier for
8 classes.

Figure 2. Misclassified image examples. Images in
the upper row belongs to the “coast” class but they were
labeled as “opencountry”. And, images in the lower
row belongs to the “opencountry” class but they were
labeled as “coast”.

matrices, it only takes into account the variances of the
features, and this will tend to increase the required num-
ber of components, to compensate for the covariances of
features. On the other hand, all the covariance informa-
tion is captured in the single Gaussian case. 2) There is
no exact similarity measure between two GMMs. The
approximation we used might be degrading the classi-
fication performance. 3) Although we have not tested
it statistically, the region properties of a given image
might be truly distributed as a single multidimensional
Gaussian. Other researches also reported that single,
full-covariance Gaussian models give consistently good
results, and are sometimes better than a GMM [6][9].

Figure 1 shows a typical confusion matrix for the
“color, 50%” version of the dataset. The most confused
two classes are “open country” and ”coast”, which is
also the case in previous work [10][4][3]. We give a
couple of misclassified images from these classes in
Figure 2 as an example of how challenging the dataset
is.

4. Conclusions and Discussions
Experimental results suggest that the use of multi-

scale, low-level image representation is promising for
scene classification. In this preliminary investigation,
we have made use of only a limited diversity of features
available in the segmentation as is clear from Sec. 2.1
(e.g., we use only one topological feature). In future
work, we plan to evaluate the information content of re-
gion based features more methodically, using greater di-
versity of segmentation features, for scene classification
and other similar semantic tasks, and on other datasets.
We also plan to use data-adaptive recognition and clas-
sification methods so the results of the evaluation are
more representative of the power of the features instead
of being a consequence of differences in the recognition
methods used.
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