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Abstract. This paper presents an overview of the work we have done over the
last several years on object recognition in images from region-based image repre-
sentation. The overview focuses on the following related problems: (1) discovery
of a single 2D object category frequently occurring in a given image set; (2)
learning a model of the discovered category in terms of its photometric, geomet-
ric, and structural properties; and (3) detection and segmentation of objects from
the category in new images. Images in the given set are segmented, and then
each image is represented by a region graph that captures hierarchy and neigh-
bor relations among image regions. The region graphs are matched to extract the
maximally matching subgraphs, which are interpreted as instances of the discov-
ered category. A graph-union of the matching subgraphs is taken as a model of the
category. Matching the category model to the region graph of a new image yields
joint object detection and segmentation. The paper argues that using a hierarchy
of image regions and their neighbor relations offers a number of advantages in
solving (1)-(3), over the more commonly used point and edge features. Experi-
mental results, also reviewed in this paper, support the above claims. Details of
our methods as well of comparisons with other methods are omitted here, and can
be found in the indicated references.

1 Introduction

This paper presents an overview of the region based approach to object recognition and
related problems that we have developed over the last several years, and briefly explains
its advantages over the more commonly used methods based on point and edge features
(e.g., [1, 20, 21, 32, 39, 52, 59, 65]). We briefly describe the major components of our
work; details can be found in [6, 54–56].

As a way of addressing recognition-related issues, we consider the following prob-
lem. Suppose we are given a set of arbitrary, unlabeled images that contains frequent
occurrences of 2D objects from an unknown category. Whether, and where, any objects
from the category occur in a specific image from the set is unknown. We are interested
in extracting instances of the category from the image set, and obtaining a compact
category model in terms of photometric, and geometric and other structural properties.
A model derived from such training can then be used to determine whether a new test
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image contains objects from the learned category, and when it does, to segment all
occurrences of the object.

This problem brings together most recognition related issues of interest here, and
serves well to highlight the strengths and shortcomings of different approaches. Our
region based formulation of this problem, originally presented in [6, 54–56], offers a
general framework, subsumes most existing region-based methods, and achieves best
performance on challenging benchmark datasets, including Caltech-101 and Caltech-
256 [20], and Weizmann Horses [9]. We have shown that our approach:

1. Facilitates access to important object properties that are frequently used as recog-
nition cues, including
(a) Photometric (e.g., color, brightness),
(b) Geometric (e.g., size, shape), and
(c) Structural properties (e.g., layout and recursive embedding of object parts), and

2. Allows simultaneous detection and segmentation, of the target objects and their
parts;

3. Simplifies object representation, e.g., for use as statistical models for object classi-
fication;

4. Allows efficient and robust learning and inference of object models; and
5. Enables object modeling under various degrees of supervision, including no super-

vision.

In this paper, we review the part of our work related to objects belonging to a single cat-
egory [6, 54–56]. Our approach therein consists of four major steps. Given an arbitrary
image set, in step 1, each image is segmented using a multiscale segmentation algo-
rithm, and then represented by a region graph capturing the hierarchical and neighbor
relations among image regions. Nodes of this graph correspond to regions, ascendant-
descendant edges capture their recursive embedding, and lateral edges represent neigh-
bor relations with sibling regions, i.e., those other regions that are embedded within the
same parent region. The root of the graph represents the entire image. Step 2 discovers
frequent occurrences of an object category in the images by searching for their similar
subimages. This is done by matching the corresponding region graphs, and finding their
common subgraphs. The set of maximally matching subgraphs is interpreted as occur-
rences of the discovered object category. In step 3, the matching subgraphs are fused
into a single graph-union, which is taken to constitute the canonical model of the dis-
covered object. The graph-union is defined as the smallest graph which contains every
subgraph extracted in step 2. In step 4, a newly encountered image is also represented
by the region graph that captures the hierarchical and neighbor relations among the
image regions. This region graph is then matched with the graph-union model learned
in step 3 to simultaneously detect and segment all occurrences of the category in the
new image. This matching also identifies object parts along with their containment and
neighbor relationships present, which can be used as an explanation of why each object
is recognized.

We have also investigated the following other closely related recognition problems,
the work on which we will not review in this paper. In [5], we presented a region-
based method for extracting a taxonomy of categories from an arbitrary image set. The
taxonomy captures hierarchical relations between the categories, such that layouts of
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frequently co-occurring categories (e.g., head, body, legs, and tail) define more com-
plex, parent categories (e.g., horse). The taxonomy also encodes sharing of categories
among different ascendant categories. In the rest of this paper, by “hierarchy” we will
refer to both region embedding and their neighbor relations, or layout. As demonstrated
in [5], the above hierarchical region-based image representation improves the efficiency
of search for shared categories; the available inter-category taxonomy yields sublinear
complexity of recognizing all categories that may be present in the image set. Also, in
[55], we showed that a hierarchy of regions helps capturing contextual properties of an
object (e.g., co-occurrence statistics, and layout of other objects in the vicinity). This is
used for estimating the significance of detecting a category in pointing to the presence
of other, co-occurring categories in the image. Finally, in [4, 57], we addressed two re-
lated problems, that of texture segmentation, and detecting and segmenting the texture
elements, called texels. An image texture can be characterized by statistical variations
of the photometric, geometric, and structural properties of texels, and relative orien-
tations and displacements of the texels. Since regions facilitate direct capturing these
texel properties, our region-based approach outperforms existing methods on bench-
mark datasets.

The remainder of this paper is organized as follows. Sec. 2 briefly reviews differ-
ent image features frequently used for recognition. Extraction of a hierarchy of regions
from an image is presented in Sec. 3. Sec. 4.1 explains how to discover frequent occur-
rences of an object category by matching the region hierarchies of a given set of images.
Fusing the matching subgraphs into a graph-union, which constitutes the object model,
is presented in Sec. 4.2. Finally, Sec. 5 presents some of our empirical results that
demonstrate the advantages of using hierarchical region-based image representations
for single-category discovery, modeling, and recognition.

2 Regions as Image Features

Recent work typically uses point-based features (e.g., corners, textured patches) and
edges (e.g., Canny, Berkeley’s edge map) to represent images [16, 35–37, 48]. Inter-
est points and edges have been shown to exhibit invariance to relatively small affine
transforms of target objects across the images [35, 37, 48]. However, there are a num-
ber of unsatisfying aspects associated with point features and edges. They are usually
defined only in terms of local, gray-level discontinuities (e.g., gradients of brightness),
whereas target object occurrences in the image occupy regions. Therefore, the inher-
ent locality of points and edges is dimensionally mismatched with the full 2D spatial
extent of objects in the image. As a direct consequence, point-based object detection
requires the use of scanning windows of pre-specified size and shape, and often result
in multiple, overlapping, candidate detections that need to be resolved in a postpro-
cessing step (e.g., non-maxima suppression). This postprocessing is usually based on
heuristic assumptions about the numbers, sizes, and shapes of objects present. Since
the final result of this is identification of the points associated with detected objects, it
leads to only approximate object localization, not exact object segmentation . To obtain
object segmentation, usually the probabilistic map is thresholded which provides likely
object locations. This suffers from errors because both locations of local features and
the threshold values depend on the particular scene and imaging conditions.
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A number of approaches, including our previous work, use image regions as features
[2, 6, 8, 11, 18, 27, 28, 31, 43, 55, 56, 64, 67–69]. These methods argue that regions
are in general richer descriptors, more discriminative, and more noise-tolerant than in-
terest points and edges. Regions are dimensionally matched with object occurrences
in the image. Therefore, regions make various constraints, frequently used in object
recognition—such as those dealing with continuation, smoothness, containment, and
adjacency—implicit and easier to incorporate than points and edges. Region boundaries
coincide with the boundaries of objects and their subparts. This allows simultaneous ob-
ject detection and segmentation. Since there are fewer regions than local features, using
regions often leads to great computational savings, and better performance because,
e.g., the number of outliers is significantly reduced.

As always, it is worth noting that the impact of any shortcomings of an image seg-
mentation algorithm should not be confused with the weaknesses of region based rep-
resentation. For example, oversimplifying assumptions made by some segmentation
algorithms about shape, curvature, size, gray-level contrast, and topological context of
regions to be expected in an image [24, 38] may lead to segmentation errors of specific
types. The same holds for algorithms that implement scale as input parameter which
controls the degree of image blurring and subsampling for segmentation [10, 34], or
pre-select the number of regions as input parameter [49]. In addition, most segmen-
tation algorithms also use an oversimplified model of photometric profiles of image
regions, as being homogeneous and surrounded by step discontinuities, instead of the
more realistic ramp (non-step) discontinuities. Therefore, many regions in real images
with small intensity gradients do not get segmented, thus adversely affecting object
recognition. These limitations of specific segmentation algorithms aside, the use of re-
gions as primitives well serves the objectives of object recognition.

To obtain good segmentation results, we use a multiscale segmentation algorithm
presented in [3, 7, 53]. It partitions an image into homogeneous regions of a priori un-
known shape, size, gray-level contrast, and topological context. A region is considered
to be homogeneous if variations in intensity within the region are smaller than intensity
change across its boundary, regardless of its absolute degree of variability. Image seg-
mentation is performed at a range of homogeneity values, i.e., intensity contrasts. As
the intensity contrast increases, regions with smaller contrasts strictly merge. A sweep
of the contrast values thus results in the extraction of all the segments present in the
image.

3 Segmentation Tree and Region Descriptors

After segmenting an image, the resulting regions and their spatial and structural rela-
tionships can be used for recognition. A number of approaches do not exploit region
relationships, but account for region intrinsic properties, and treats the regions as a bag
of visual words [28, 45]. Other methods additionally account for pairwise region rela-
tions [27], and the contextual information provided by larger ancestor regions within
which smaller regions are embedded [33]. Our work [6, 55, 56], along with several
other methods [25], generalizes previous approaches by additionally accounting for the
spatial layout and recursive embedding of regions in a segmentation tree.
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Fig. 1. Segmentation trees of sample Caltech-101 images [20]: (left) segmentations obtained for
two sample intensity contrast values from the exhaustive range [1,255]; (right) sample nodes of
the corresponding segmentation tree, where the root represents the whole image, nodes closer to
the root represent large regions, while their children nodes capture smaller embedded details. The
number of nodes (typically 50–100), branching factor (typically 0–10), and the number of levels
(typically 7–10) in different parts of the segmentation tree are image dependent, and automatically
determined.

In the segmentation tree, the root represents the whole image, nodes closer to the root
represent large regions, while their children nodes capture smaller embedded details, as
depicted in Fig. 1. The tree in general may not have regular structure (e.g., quad-tree).
For example, the multiscale segmentation of [3, 7, 53] gives the number of nodes (typ-
ically 50–100), branching factor (typically 0–10), and the number of levels (typically
7–10) that are image dependent in different parts of the tree. Thus, the segmentation
tree is a rich image representation that is capable of capturing object properties (a)–(d),
mentioned in Sec. 1.

The segmentation tree (ST), however, cannot distinguish among many different ways
in which the same set of subregions may be spatially distributed within the parent re-
gion. This may give rise to significantly different visual appearances, while the region-
embedding properties remain the same. Consequently, STs for many visually distinct
objects are identical. The ST can be extended by including the information about 2D
spatial adjacency among the regions – while retaining the information about their re-
cursive embedding. This new model augments ST with region adjacency graphs, one
for the children of each ST node. A neighbor edge is added between two sibling nodes
in ST if the corresponding two regions are neighbors in the image. This transforms ST
into a graph, consisting of two distinct sets of edges – one representing the original,
parent-child hierarchy, and the other, consisting of lateral links, representing the newly
added neighbor relationships (Fig. 2). The neighbor relationships between any nonsib-
ling nodes in CST can be easily retrieved by examining the neighbor relations of their
ancestor nodes. To highlight the presence of the complementary, neighbor informa-
tion modifying the segmentation tree, the new representation is referred to as connected
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Fig. 2. Example Connected Segmentation Trees (CSTs): Lateral edges (red) that link neighboring
image regions are added to the corresponding segmentation trees (black) of the images. CSTs
reduce ambiguity about the region layout.

segmentation tree (CST), even though it is strictly a graph. Both nodes and edges of CST
have attributes, i.e., they are weighted, where the node (edge) weight is defined in terms
of properties of the corresponding region (spatial relationship between regions). Thus,
CST generalizes ST to represent images as a hierarchy of region adjacency graphs. As
multiscale regions may be viewed as a basic vocabulary of object categories, the CST
may be seen as a basis for defining general purpose image syntax, which can serve as an
intermediate stage to isolate and simplify inference of image semantics. In the follow-
ing, we will interchangeably use CST and region hierarchy to denote the same image
representation—namely, the hierarchical graph representation that captures recursive
embedding of regions, as well as region layout at all levels.

Each node v in the region hierarchy can be characterized by a vector of properties of
the corresponding region, denoted as ψv. In our previous work, we use intrinsic photo-
metric and geometric properties of the region, as well as relative inter-region properties
describing the spatial layout of the region and its neighbors. In this way, ψv encodes
the spatial layout of regions, while the CST structure itself captures their recursive con-
tainment. The properties are defined to allow scale and rotation-in-plane recognition
invariance. In particular, elements of ψv are defined relative to the corresponding prop-
erties of v’s parent-node u, and thus ultimately relative to the entire image.

Let w, v, and u denote regions forming a child-parent-grandparent triple. Then, the
properties of each region v we use are as follows: (1) normalized gray-level contrast
gv, defined as a function of the mean region intensity G, gv� |Gu−Gv|

|Gv−Gw| ; (2) normal-

ized area av�Av/Au, where Av and Au are the areas of v and u; (3) area dispersion
ADv of v over its childrenw∈C(v), ADv� 1

|C(v)|
∑

w∈C(v)(aw−aC(v))2, where aC(v)

is the mean of the normalized areas of v’s children; (4) the first central moment μ11
v ;

(5) squared perimeter over area PAv� perimeter(v)2

Av
; (6) angle γv between the principal

axes of v and u; the principal axis of a region is estimated as the eigenvector of ma-

trix 1
µ00

[
µ20 µ11

µ11 µ02

]
associated with the larger eigenvalue, where the μ’s are the stan-

dard central moments; (7) normalized displacement
−→
Δv� 1√

Au

−→
d v , where |−→d v| is the
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Fig. 3. Fig. 3. Properties of a region associated with the corresponding node in the segmentation
tree: Region u (marked red) contains a number of embedded regions v, v1, v2, . . . (marked blue).
The principal axes of u and v subtend angle γv , the displacement vector dv connects the cen-
troids of u and v, while the context vector Fv records the general direction in which the siblings
v1, v2, . . . of v are spatially distributed.

distance between the centroids of u and v, and �−→d v is measured relative to the prin-
ciple axis of parent node u, as illustrated in Fig. 3;

√
Au represents an estimate of the

diameter of parent region u; and (8) context vector
−→
F v�

∑
s∈S(v)

As

|−→d vs|3
−→
d vs, where

S(v) is the set of v’s sibling regions s, and |−→d vw| is the distance between the cen-

troids of v and s, and �−→d vs is measured relative to the principle axis of their parent
node u; as illustrated in Fig. 3, the context vector records the general direction v sees
its sibling regions and disallows matching of scrambled layouts of regions at a spe-
cific tree level. In summary, the vector of region properties associated with node v
is ψv=[gv, av,ADv, μ

11
v , PAv, γv,

−→
Δv,
−→
F v]T. Each element of ψv is normalized over

all multiscale regions of all training images to take a value in the interval [0, 1]. This
list of useful region properties, can be easily modified to reflect the needs of different
applications.

The aforementioned hierarchical region-based image representation will allow recog-
nition performance with the following desirable invariance characteristics with respect
to: (i) Translation, in-plane rotation and object-articulation (changes in relative orienta-
tions of object parts): because the segmentation tree itself is invariant to these changes;
(ii) Scale: because subtree matching is based on relative properties of nodes, not ab-
solute values; (iii) Occlusion in the training set: because subtrees are registered and
stitched together within the tree-union encoding the entire (unoccluded) category struc-
ture; (iv) Occlusion in the test set: because subtrees corresponding to visible object parts
can still be matched with the model; (v) Small appearance changes (e.g. due to noise):
because changed regions may still be the best matches; (vi) Region shape deformations
(e.g., due to minor depth rotations of objects): because changes in geometric/topological
properties of regions (e.g., splits/mergers) are accounted for during matching; and (vii)
Clutter: because clutter regions, being non-category subimages, are not repetitive and
therefore frequent.
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Any object occurrences in images will correspond to subgraphs within the corre-
sponding CSTs. The goal of learning is to identify these subgraphs and capture their
canonical node and node-connectivity properties. The goal of inference is to use this
graph model to identify, within the CST of a new image, subgraphs that represent in-
stances of the learned class. In the following two sections, we explain object learning
and recognition using the region hierarchy.

4 Learning Object Properties

This section argues that hierarchical region-based representations of images possess
two major features—namely, that they: (a) facilitate learning under various degrees of
supervision, and (b) relax the requirements for complex object models and classifiers.

4.1 Object Discovery as Graph Matching

To communicate the natural variations of objects to a recognition algorithm, typically, a
set of training images has to be manually annotated. Supervision in training may involve
the following: manually segmented object instances in training images, bounding boxes
placed around the objects, or only object labels associated with the entire images. In
case the bounding boxes are available in training, they immediately provide access to
similar subgraphs of region hierarchies corresponding to instances of the target object
class. If the bounding boxes are not available, the object occurrences can be discovered
by matching the region hierarchies of images from the same class, and thus identifying
their similar subgraphs. Below, we explain how to match CSTs, and thus obtain a set of
their similar subgraphs, which will be used then to learn the object model or classifier.

Two images may have a number of similar regions, which may confuse the matching
algorithm. However, if similar regions also have similar nesting and layout properties,
then it is very likely that they represent meaningful image parts, e.g., instances of the
same object class, which indeed should be matched. Our algorithm achieves robustness
by pairing regions whose photometric, geometric, and structural properties match, and
the same holds for their neighbors, and these two conditions recursively hold for their
embedded subregions. Such region matching can be formalized using the graph match-
ing techniques. In the following, we first briefly review graph-based image matching
methods, and then present our approach.

Image matching using graph image representations may be performed by: (a) exploit-
ing spectral properties of the graphs’ adjacency matrices [44, 50, 51]; (b) minimizing
the graph edit-distance [12, 47, 62]; (c) finding a maximum clique of the association
graph [41]; (d) using energy minimization or expectation-maximization of a statistical
model [23, 63]. All these formulations can be cast as a quadratic assignment problem,
where a linear term in the objective function encodes node compatibility functions, and
a quadratic term encodes edge compatibility functions. Therefore, approaches to graph
matching mainly focus on: (i) finding suitable definitions of the compatibility functions;
and (ii) developing efficient algorithms for approximately solving the quadratic assign-
ment problem (since it is NP-hard), including a suitable reformulation of the quadratic
into linear assignment problem. However, most popular approximation algorithms (e.g.,
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relaxation labeling, and loopy belief propagation) critically depend on a good initializa-
tion and may be easily trapped in a local minimum, while some (e.g., deterministic
annealing schemes) can be used only for graphs with a small number of nodes. Grad-
uated nonconvexity schemes [26], and successive convexification methods [30] have
been used to convexify the objective function of graph matching, and thus alleviate
these problems. In our work, we use the replicator dynamics algorithm to solve the
underlying convex problem, as explained in the sequel.

Let H = (V,E, ψ, φ) denote the region hierarchy, where V = {v} and E =
{(v, u)} ⊆ V × V are the sets of nodes and edges, and ψ and φ are functions that
assign attributes to nodes, ψ : V→[0, 1]d, and to edges, φ : E→[0, 1]. Given two
shapes, H and H ′, the goal of the matching algorithm is to find a subgraph isomor-
phism, f :U→U ′, where U⊆V and U ′⊆V ′, which minimizes the cost, C, defined as

C = min
f

⎡

⎣β
∑

(v,v′)∈f

avv′ + (1 − β)
∑

(v,v′,u,u′)∈f×f

bvv′uu′

⎤

⎦ , (1)

where the a’s are non-negative costs of matching nodes v and v′ = f(v), and the b’s
are non-negative costs of matching edges (v, u) ∈ E and (v′, u′) ∈ E′, and β ∈ [0, 1]
weights their relative significance to matching.

To minimize C, we introduce a confidence vector, X , indexed by all node pairs
(v, v′)∈V×V ′, whose each element xvv′∈[0, 1] encodes the confidence that node pair
(v, v′) should be matched. Matching can then be reformulated as estimating X so that
C is minimized. That is, we relax the discrete problem of (1) to obtain the following
quadratic program (QP):

min
X

[
βATX + (1− β)XTBX

]
,

s.t. ∀(v, v′)∈V×V ′, xvv′≥0,
∀v′∈V ′,

∑
v∈V xvv′=1,

∀v∈V,
∑

v′∈V ′ xvv′=1,

(2)

where A is a vector of costs avv′ , and B is a matrix of costs bvv′uu′ . We define avv′ =
‖ψ(v) − ψ(v′)‖2. Also, we define bvv′uu′ so that matching edges of different types–
namely, hierarchical and neighbor edges—is prohibited, and matches between edges of
the same type with similar weights are favored in (2): bvv′uu′ = ∞ if edges (v, u) and
(v′, u′) are not of the same type; and bvv′uu′ = |φ(v, v′)− φ(u, u′)| if edges (v, u) and
(v′, u′) are of the same type. Both the a’s and b’s are normalized to [0,1].

To satisfy the isomorphism constraints of matching, the algorithm matches regions
with regions, and separately region relationships with corresponding relationships, while
preserving the original node connectivity of H and H ′. The constraints in (2) are typi-
cally too restrictive, because H and H ′ may have relatively large structural differences
in terms of the number of nodes and their connectivity, even if H and H ′ represent two
objects from the same class. These structural differences may, e.g., arise from different
outputs of the segmentation algorithm on images of the same object class but captured
under varying illumination. In this case, splitting or merging regions along their shared,
low-contrast boundary may occur which affects the structure of H and H ′. Therefore,
a more general many-to-many matching formulation would be more appropriate for
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our purposes. The literature reports a number of heuristic approaches to many-to-many
matching [19, 42, 58], which however are developed only for weighted graphs, and thus
cannot be used for our region hierarchies that have attributes on both nodes and edges.
To relax the constraints in (2), we first match H to H ′, which yields solutionX1. Then,
we match H ′ to H , which yields solution X2. The final solution, X̃ , is estimated as
an intersection of non-zero elements of X1 and X2. Formally, the constraints in (2) are
relaxed as follows: (i) ∀(v, v′) ∈ V×V ′, xvv′ ≥ 0; and (ii) ∀v ∈ V,

∑
v′∈V ′ xvv′ = 1

when matching H to H ′; and ∀v′ ∈ V ′,
∑

v∈V xvv′ = 1 when matching H ′ to H .
Thus, by using an auxiliary matrixW = βdiag(A)+ (1−β)B, we reformulate (2) and
arrive at the following one-to-many matching problem

min
X

XTWX,

s.t. ∀(v, v′)∈V×V ′, xvv′≥0,
∀v′∈V ′,

∑
v∈V xvv′=1,

(3)

which can be efficiently solved by using the replicator dynamics update rule [40]:

X ← WX

XTWX
. (4)

The proof that the optimization of (3) results in the subgraph isomorphism follows from
the well-known Motzkin-Strauss theorem, as shown in [40, 41].

Complexity of our matching isO((|V |+|E|)2). Our implementation in C takes about
1min on a 2.8GHz, 2GB RAM PC for two CSTs with approximately 50 nodes.

The matching subgraphs may represent complete object occurrences or their parts
(e.g., due to partial occlusion, or changes in illumination, viewpoint, or scale variations
across the images). Therefore, the extracted similar subgraphs provide for many ob-
servations of entire objects or their parts in the class. This allows robust estimation of
the region-based object model. Note that as a result of matching region hierarchies, we
immediately have access to correspondences between nodes and edges of all extracted
subgraphs. These correspondences can be used to learn a canonical graph of the object
class that subsumes all extracted instances, and thus represents the object model.

4.2 Region-Based Object Model

The region-based object model is aimed at capturing how image regions are recursively
laid out to comprise an object, and what their geometric and photometric properties are.
From a set of given or extracted similar CSTs, as explained in the previous section,
our goal is to obtain a compact, canonical model of the target class. In our work we
formulate this canonical graph as graph-union.

Graph-unions are well studied graph structures, the detailed treatment of which can
be found, for example, in [13–15, 29, 60, 61]. The graph-union T is the smallest graph,
which contains every graph from a given set D. Ideally, T should be constructed by
first finding the maximum common subgraph of D, and then by adding to the com-
mon subgraph, and appropriately connecting, the remaining nodes from D. However,
finding this maximum common subgraph would entail prohibitive complexity if D is
large. Therefore, we resort to a suboptimal sequential approach. In each iteration T is
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Fig. 4. Construction of graph-union T from the extracted set of similar CSTs
D={t1, t2, . . . , tN}: In each iteration, a selected CST t from D is first matched against
the current estimate T (n), which yields their maximum common subgraph τ (marked black).
Then the unmatched nodes from t are added and appropriately connected (marked gray), to form
T (n+1). The result is the graph-union.

extended by adding a new CST t from D until every CST from D has been added to
the graph-union, as illustrated in Fig. 4. As can be seen, the selected t is first matched
against the current estimate T (n), which results in their common subtree τ , and then the
unmatched nodes from t are added and appropriately connected to τ in order to form
T (n+1). For matching t and T (n), we use the same algorithm presented in Sec. 4.1.
After adding the unmatched nodes, the result is the graph-union, which preserves the
node connectivity from D.

5 Results

Region hierarchies, as our image representations, allow joint object detection, recog-
nition and segmentation. This can be achieved by matching the learned graph-union
model, presented in the previous section, with the region hierarchy of a new image. In
our approach, the matching subgraphs whose similarity measure is larger than a spec-
ified threshold are taken as detected objects. This detection simultaneously delineates
object boundaries, due to using regions as basic image features. This section reviews
the empirical validation of our approach, presented in [6]. The experiments demon-
strate advantages of using region-based image representations and object modeling for
recognition versus alternative approaches.

We consider 14 categories from four datasets: 435 faces, 800 motorbikes, 800 air-
planes, 526 cars (rear) from Caltech-101 [20]; 328 Weizmann horses [9]; 1554 images
queried from LabelMe [46] to contain cars, trees, and buildings together; and 200 im-
ages with 715 occurrences of cows, horses, sheep, goats, camels, and deer from UIUC
Hoofed Animals dataset [6]. Caltech-101 images contain only a single, prominently
featured object from the category, except for images of cars (rear) containing multiple,
partially occluded cars appearing at different scales, with low contrast against textured
background. The Weizmann dataset contains sideviews of walking/galloping horses of
different breeds, colors and textures, with different object articulations in their natural
(cluttered) habitat. LabelMe is a more difficult collection of real-world images which
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contain many other object categories along with the queried ones, captured under dif-
ferent lighting conditions, and at varying scales. The Hoofed Animals dataset presents
the mentioned challenges, and has higher complexity as it contains multiple instances
of multiple very similar animal categories per image, requiring high inter-category
resolvability.

The Caltech-101 and Weizmann categories are learned one category at a time on
the training set that consists of Mp randomly selected examples showing the category,
and Mn≥0 images from the background category in Caltech-101 (M=Mp+Mn). The
LabelMe and Hoofed Animals categories are all learned together by randomly selecting
M images from the corresponding dataset. To recognize and segment any category
occurrences in a test image, the learned category model is matched with CST of the
image. The matched subtrees (i.e., detections) whose similarity measure is larger than
a threshold are adjudged as detected objects. Results shown in tables and figures are
obtained for the threshold that yields equal error rate. We use the following definitions
of detection (DE), and segmentation (SE) errors. Let D denote the area that a detection
covers in the test image, and G denote the ground-truth object area. Then, DE�D∩G

D∪G ,

and SE�XOR(D,G)
D∪G . A detection is a false positive if DE<0.5, otherwise it is a true

positive (TP). Recognition is evaluated only on TP’s by visual inspection.

5.1 Qualitative Evaluation – Segmentation

Figs. 5–6 demonstrate high accuracy of simultaneous object detection and segmentation
in images from LabelMe and Hoofed Animals datasets, using M=50 training images.
Each TP in the figures is correctly recognized. CSTs outperform STs in both object
detection and segmentation, especially in cases of partial occlusion (e.g., cars and cows
in Fig. 6), and for objects defined rather as a region spatial layout than containment
(e.g., spotted cows in Fig. 6). In these cases, modeling of the region adjacency by CSTs
proves advantageous. Segmentation is good even in cases when object boundaries are
jagged and blurred (e.g., trees in Fig. 5), and when objects from the same category
occlude each other, forming a complex region topology with low-intensity contrasts

Fig. 5. Samples from Hoofed Animals (left) and LabelMe (right). Segmentation results of CST
are overlaid on the original. Different colors denote recognized categories. CST successfully
resolves small differences between the categories sheep and goats.
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(a) original image (b) STs (c) CSTs

Fig. 6. CSTs outperform STs in both detection and segmentation on samples from Hoofed Ani-
mals (top) and LabelMe (bottom). Undetected image parts are masked out.

(e.g., cars in Fig. 5). Objects that are not detected, for the most part, have low intensity
contrasts with the surround, and thus do not form category-characteristic subgraphs
within CSTs that can be matched with the category model.

5.2 Qualitative Evaluation – Model

Fig. 7 illustrates the model G obtained for the category horses, learned on six, randomly
selected images D from the Weizmann dataset. Nodes v in G, depicted as rectangles,
contain regions from D that got matched with v during learning. As can be seen, the
structure of G correctly captures the recursive containment and neighbor relations of
regions occupied by the horses in D. For example, nodes head, neck, and mane are
found to be children of node head&neck, and they are all identified as neighbors. Also,
it is correct that head&neck and tail are not neighbors. Similar background regions that
co-occur with horses in D may also be included in the model (e.g., nodes corresponding
to fence). Typically, the percentage of background nodes out of the total number of
model nodes is small (3-5%).

5.3 Quantitative Evaluation

Fig. 8 (left) presents the recall-precision curves (RPC) of detection for the Caltech-101
categories using CSTs and STs. Detection performance in the presence of occlusion is
tested by masking out a randomly selected rectangular area in the image, and replacing
this area with a patch from the background category of Caltech-101. CST increases
the area under the RPC of ST by 6.5 ± 0.3%, and by 3.1 ± 0.2% in the presence
of the occluding patch covering 20% of the image. Invariance to in-plane rotation is
tested by randomly rotating test images. Performance on these rotated images is the
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Fig. 7. CST-based model of Weizmann horses learned on the input images shown in the top row

Fig. 8. (left) Detection recall-precision curves: “CST-unweight” means that edges in CST are not
weighted. 20% is the size of a rectangular occlusion w.r.t. the image size. Mp=10, Mn=10. ST
is the method of [54]. (right) Recognition accuracy of CST and ST for the varying ratio of Mp

and Mn in the training set.

same as the one presented in Fig. 8. Measuring the strength of neighborliness using
the generalized Voronoi diagram improves performance over the case when the weights
of links in CST are set to take only values 1 or 0, referred to as CST-unweight. CST
increases the area under the RPC of CST-unweight by 2.3± 0.3%. Fig. 8 (right) shows
recognition accuracy of CST and ST. A small increase in Mn does not downgrade the
accuracy. As Mn becomes larger, objects belonging to other categories start appearing
more frequently, and thus get learned, making the training set inappropriate. Increasing
Mp yields smaller recognition error. CST outperforms ST in recognition, and longer
maintains high accuracy with the increase ofMn. In general, the number of nodes in the
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Table 1. Detection recall, segmentation and recognition errors (in %) on LabelMe and Weizmann
Horses datasets, using the same number of training and test images as in [17, 45, 66]

LabelMe Trees LabelMe Buildings LabelMe Cars Weizmann Horses
Recall 47.6±6.9 92.6±6.9 67.6±6.9 91.9±5.2

Seg. error 41.6±7.9 34.6±13.4 32.5±8.2 7.2±2.5
Rec. error 19.7±3.8 11.6±2.9 12.9±4.8 7.9±4.1

Table 2. Detection recall, segmentation and recognition errors (in %) on UIUC Hoofed Animals
dataset, using the same number of training and test images as in [17, 45, 66]

Horses Cows Deer Sheep Goats Camels
Recall 81.2±10.3 78.4±4.2 88.1±6.9 81.2±5.3 78.2±8.6 89.9±7.2

Seg. error 15.9±5.3 17.1±4.6 11.1±8.4 24.8±7.2 20.1±8.1 11.5±5.1
Rec. error 7.8±4.2 6.5±6.2 7.7±3.4 7.8±4.1 12.2±5.4 3.2±3.9

model quickly reaches saturation as new positive examples are added to the training set,
and continues to very slowly increase, in part, due to chance repetitions of background
regions.

Table 1 and Table 2 summarize detection recall, and segmentation and recognition
errors obtained for the equal error rates on LabelMe, Weizmann, and Hoofed Animals
datasets. For Hoofed Animals, CST outperforms ST in detection recall by 7.5%, seg-
mentation by 10.7%, and recognition by 8.6%. For comparison, we obtained SE=6.5%
on a relatively simple UIUC (multiscale) car dataset, using the same set-up as in [22],
while their result is SE=7.9%. The other hierarchical approaches cited here use non-
benchmark datasets, or report a single retrieval result for the entire Caltech-101, be-
yond the focus of this paper. Non-hierarchical approaches that model objects using
image segments obtained at only one pre-selected scale, report the following state-of-
the-art results: [45] – SE=47% for buildings, and SE=79% for cars of LabelMe; [66]
– SE=7% for Weizmann horses; and [17] – SE=18.2% for Weizmann horses. In com-
parison with these approaches, Table 1 indicates that the CSTs yield better, or, in only
a few cases, very similar performance. Regarding recognition accuracy, Fig. 8 shows
that we outperform by 1.8 ± 0.3% the recognition rate of 94.6% of [17] on the four
Caltech-101 categories. Other approaches cited here use a different, less demanding
recognition evaluation based on classifying either the entire images or bounding boxes
around objects.

The results demonstrate that our approach is invariant with respect to: (i) translation,
in-plane rotation and object articulation, since CST itself is invariant to these changes;
(ii) certain degree of scale changes, since matching is based on relative properties of
regions; (iii) occlusion in the training and test sets, since graph-union registers the entire
(unoccluded) category structure from partial views of occurrences in the training set,
while subgraphs of visible object parts in the CST of a test image can still be matched
with the model; (iv) minor depth rotations of objects causing their shape deformations,
because structural instability of CSTs (e.g., due to region splits/mergers) is accounted
for during matching; and (v) clutter, since clutter regions are not frequent and thus
not learned.
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6 Conclusions

We have argued in this paper that using multiscale regions as basic image features:
(a) Facilitates capturing photometric, geometric, and structural properties of objects;
(b) Allows simultaneous object discovery, recognition and segmentation; and (c) En-
ables efficient and robust learning and inference of region-based object representations.
We have reviewed our region-based object recognition framework developed over the
last several years. While the framework is capable of extracting a taxonomy of object
categories from an arbitrary image set, and segmenting textures into texels, we have
focused here on a compact subset of these problems. We have considered the related
problems of single category discovery, detection, and segmentation. We have discussed
how this set of problems poses many recognition related challenges, which are inade-
quately addressed by existing methods that use point and edge features. The summary
of our experimental results that we have presented here shows that use of regions offers
a number of advantages for object recognition over point and edge features.
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