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ABSTRACT
Various methods have been proposed for image enhancement
and restoration. The main difficulty is how to enhance the
structures uniformly while suppressing the noise without arti-
facts. In this paper, we tackle this problem in the gradient do-
main instead of the traditional intensity domain. By enhanc-
ing the gradient field, we can enhance the structure uniformly
without overshooting at the boundary. Because the gradi-
ent field is very sensitive to noise, we apply an orientation-
isotropy adaptive filter to the gradient field, suppressing the
gradients in the noise regions while enhancing along the ob-
ject boundaries. Thus we obtain a modulated gradient field,
which is usually not integrable. We reconstruct the enhanced
image from the modulated gradient field with least square er-
rors by solving a Poisson equation. This method can enhance
the object contrast uniformly, suppress the noise with no arti-
facts, and avoid setting stopping time as in PDE methods. Ex-
periments on noisy images show the efficacy of our method.

1. INTRODUCTION

In many medical image processing applications, such as X-
Rays, Ultrasound and MRI enhancement and restoration, noise
needs to be suppressed while structure preserved or even en-
hanced. Signal processing based methods, such as wavelet [2],
and more recently curvelet [10] and contourlet [1], have been
efficiently used in image denoising since the noise is evenly
distributed among the wavelet coefficients and is generally
small. With a properly chosen threshold, the noise can be effi-
ciently suppressed. On the other hand, signal-based methods,
such as curvelet [11] and retinex enhancement algorithms [9],
are also used for image enhancement. However, it is very
hard for these methods to enhance edges consistently at dif-
ferent bandwidths. It usually overshoots at the edges but fails
to bring out the contrast for the whole object.

Recently, some Partial Differential Equation (PDE) based
methods have attracted much attention in image processing
for their ability to reduce noise while preserving important
features of the images. The linear isotropic diffusion equa-
tion is equivalent to Gaussian filtering, which may result in
edge blurring or relocation. For nonlinear anisotropic diffu-
sion such as Perona and Malik’s formulation [6], the diffu-
sion of image gray values depends on the gradient magnitude

and the diffusion is stopped across edges or discontinuities.
However, it is very hard to determine the stopping time of
diffusion to obtain nontrivial results. Coherence nonlinear
anisotropic diffusion by Weickert [13] is more directional in
both the gradient and the contour directions. This method
may have ”brushstroke” effects in non-structure regions due
to the errors in local structure estimation.

In this paper, we propose a novel image restoration and
enhancement method in the gradient domain. Intuitively, any
drastic change in image intensity corresponds to large gra-
dients, and any noise region corresponds to small or inco-
herent gradient field. The basic idea of this approach is to
enhance the large gradient field and suppress the low gradi-
ent field, therefore enhancing the structure such as edges or
discontinuities. High dynamic range image/video compres-
sion [4, 12] shares a similar flavor. Unfortunately, gradient
domain method is usually very sensitive to high frequency
noise, which is usually amplified by the gradient operator.
Our scheme to deal with this problem is based on the local
structure estimation. Our method can potentially avoid ”over-
shooting” near the edges as in signal-based methods and has
no ”brushstroke” effect in the non-structure regions since it
will not force structure onto a region that has none by direct
suppression of the gradients of those regions.

The detail of our gradient-based image restoration method
is explained in Section 2. In Section 3, we give some prelimi-
nary but very promising results. Finally, we draw the conclu-
sion in Section 4.

2. GRADIENT-BASED IMAGE RESTORATION AND
ENHANCEMENT

The main steps of the gradient-based image restoration and
enhancement method are as follows: we first estimate the
local structure properties (such as structure coherence and
orientation) based on the gradient structure tensor. In the
high structured region (corresponding to high coherence), the
orientation-isotropy adaptive gaussian filter is applied to the
gradient map, and then we enhance the large gradients. In the
low structured or isotropic noise region (corresponding to low
coherence), the gradient field is suppressed. Then, we can re-
construct a denoised image from the modulated gradient field.
However, the modulated gradient field is usually not a valid



Fig. 1. Illustration of the algorithm. LEFT: noisy image
(above) and its gradient (bottom);M IDDLE: structure co-
herence (above), orientation (middle) and isotropy (bottom);
RIGHT: estimated gradient field (above) and reconstructed
image (bottom) by solving a Poisson equation.

one since it will violate the zero-curl constraint, which will
be explained in Section 2.3. By solving a poisson equation,
we can then find the potential field (the filtered image) whose
gradient field is closest to the modulated gradient field in the
sense of least squares. These steps are illustrated in Figure 1.

2.1. Coherent Structure Analysis Using Gradient Struc-
ture Tensor

The structure tensor is defined as:T = ( xxT

‖x‖n ), where()
indicates weighted local average. Structure tensor has been
widely used in local coherence estimation. An efficient im-
plementation of the structure tensor is the gradient structure
tensor, which can be estimated in the following way. We first
estimate the gradientg = ∇I at scaleσg, and then com-
pute the gradients by convolving the image with the first order
derivatives of a gaussian.

gi = I(x)⊗ ∂

∂xi
G(x; σg), i ∈ (1, ..., N) (1)

The gradient structure tensor is defined byT ≡ ggT .
In image processing, structure tensor is defined for a 2D neigh-
borhood,I(x, y), by:

T =
[

I11 I12

I12 I22

]
, g =

[
Ix

Iy

]
(2)

where,I11 = I2
x, I12 = IxIy, I22 = I2

y . We can then compute
the eigenvalues of the matrix

λ1,2 =
(

I11 + I22 ±
√

(I11 − I22)2 + 4I2
12

)
/2 (3)

with λ1 ≥ λ2. The corresponding eigenvectors are deter-
mined by

v1

∥∥∥∥v2 =
(

2I12

I22 − I11 +
√

(I11 − I22)2 + 4I2
12

)
(4)

Fig. 2. Orientation-Isotropy Kernels.LEFT: Symmetric gaus-
sian kernel withσ = 4; M IDDLE: Kernel withσ1 = 1, σ2 =
4 andθ = π/4; RIGHT: Kernel with σ1 = 1, σ2 = 4 and
θ = π/2.

The eigenvectors,v1 andv2, correspond to the directions of
maximum and minimum variations, respectively.

Some properties can be obtained from the analysis of gra-
dient structure tensor:

• Confidence or Anisotropy,α: Confidence measure is
the confidence of structure orientation estimation, de-
fined asα = (λ1 − λ2)/(λ1 + λ2). If λ1 ≈ λ2, then
α ≈ 0, and the structure is isotropic. Ifλ1 >> λ2, then
α ≈ 1, and the structure is linear or anisotropic.

• Coherence,C: Local structure is estimated fromλ1

and λ2. Homogeneous regions are characterized by
λ1 = λ2 ≈ 0, edges byλ1 >> λ2 ≈ 0 and corners by
λ1 ≥ λ2 >> 0. Structure coherence measures the co-
herence within a window, defined byC = |λ1 − λ2| =√

(I11 − I22)2 + 4I2
12.

• Orientation, θ: The second eigenvector ofT defines
the coherence orientation since it corresponds to the di-
rection with the lowest fluctuations. The orientation is
defined byθ = arctan (2I12/(I22 − I11 + C)).

These parameters will be used for orientation-isotropy adap-
tive filtering in the following section.

2.2. Orientation-Isotropy Adaptive Filtering

In this section, we build an orientation-isotropy adaptive filter
for image restoration and enhancement based on the structure
coherence orientation and isotropy estimated above, similar
to that by O’Malley and Kakadiaris [5]. However, we only
estimate the filter kernel for the pixels whose coherence is
larger than some threshold instead of for every pixel, since the
regions with low coherence is usually noise region. We can
directly suppress the gradient in those regions. Therefore, our
method is more efficient. Secondly, the filtering in our method
is operated on the gradient field, instead of on gray values of
images, and thus we can obtain continuous surface in later
image reconstruction process. For image enhancement, the
new gradient field is obtained as follows:

g
′
i =





(
C

µ ·Avg(C)

)ρ

· gi, for C ≥ Cthres (5)

β · gi, for C < Cthres (6)



where,β is the suppression factor (0 ≤ β ≤ 1) for reducing
the noise;Avg(C) is the mean value of the coherence in the
structured regions;µ (0 < µ ≤ 1) andρ (−1 ≤ ρ < 0) are
constant. The parameters we used in practice are as follows:
µ = 0.3 ∼ 0.6, ρ = −0.2 ∼ −0.4. It means that for the
structured regions, we magnify the small gradient, where the
coherence is smaller thanµAvg(C), and attenuate the large
gradient such that the dynamic range of the image is com-
pressed. Parameterρ attenuates the gradient with larger co-
herence. For image restoration, the new gradient field is ob-
tained as follows:

g
′
i =

{
γ · gi ⊗G(σ1, σ2, θ), for C ≥ Cthres (7)

β · gi, for C < Cthres (8)

where,Cthres is the threshold value for coherence;γ is the
enhancement factor, respectively (γ ≥ 1); andG(σ1, σ2, θ)
is the orientation-isotropy kernel withσ1 andσ2 defined by
σ1 = σmin + (1 − α)(σiso − σmin), σ2 = σiso

2/σ1,where,
the minimum scale for the minor axis,σmin, is defined for
preventingσ2 becoming zero. Whenα = 0, we have the
normal gaussian kernel withσ = σiso. Figure 2 illustrates
some kernels with different orientation and isotropy.

2.3. Image Reconstruction From Gradient Field

Given a modified gradient field,G, our task is to reconstruct
an image,I, whose gradient field is closest toG. One natural
way to achieve this is to solve the equation∇I = G. How-
ever, since the original gradient field is modified, the resulting
gradient field is not necessarily integrable. Some part of the
modified gradient may violate∇ × G = 0 (i.e. the curl of
gradient is 0). In such a case, our task is to find a potential
function I, whose gradients are closest toG in the sense of
least squares by searching the space of all 2D potential func-
tions, that is, to minimize the following integral in 2D space:

f = min
∫∫

F (∇I, G)dxdy (9)

where,F (∇I, G) = ‖∇I −G‖2 = ( ∂I
∂x−Gx)2+( ∂I

∂y−Gy)2

According to the Variational Principle, a functionF that min-
imizes the integral must satisfy the Euler-Lagrange equation:

∂F

∂I
− d

dx

∂F

∂Ix
− d

dy

∂F

∂Iy
= 0 (10)

We can then derive a 2D Poisson Equation:

∇2I = ∇ •G (11)

where∇2 is the Laplacian operator,∇2I = ∂2I
∂x2 + ∂2I

∂y2 and
∇ • G is the divergence of the vector fieldG, defined as∇ •
G = ∂Gx

∂x + ∂Gy

∂y .
In order to solve the Poisson equation (Equation 11), we

use the Neumann boundary conditions∇I · ~n = 0, where

Fig. 3. Image Enhancement Results.LEFT: Original image;
RIGHT: Enhanced image using our gradient-based method.

~n is the normal on the boundaryΩ. In this case, the inten-
sity gradients are approximated by forward difference:∇I =
[I(x + 1, y)− I(x, y), I(x, y + 1)− I(x, y)]T . We represent
Laplacian as:
∇2I = [−4 · I(x, y) + I(x− 1, y) + I(x + 1, y) + I(x, y +
1) ]. The divergence of gradient is approximated as:∇•G =
Gx(x, y)−Gx(x− 1, y) + Gy(x, y)−Gy(x, y − 1).

This results in a large system of linear equations. We use
the 2D multigrid algorithm [8] to iteratively find the optimal
solution to minimize Equation 9.

3. EXPERIMENTAL RESULTS

We give some examples in this section to illustrate the validity
of our gradient-based algorithm in image enhancement and
restoration.

Figure 3 is a noisy mammogram image with high inten-
sity range (note the oversaturated bright region). Using Equa-
tions 5 and 6, we can efficiently enhance the structure of the
image while suppressing some noise. The advantage of our
algorithm for enhancement is that we can uniformly enhance
the thin lines and the large objects. Most importantly, we do
not have any overshooting problems. We experimentally cho-
senCthres = 12.

Fig. 4. Image Restoration Results: (Left) Noisy image;
(Right) Reconstructed image using our algorithm. (better
viewed in PDF with magnification)

Figure 4 shows a denoising example of X-ray phantom
with some thin structures. We can see that most of the struc-
tures in the image are preserved in our result. If the noise is



(a)                                                              (b)                                                             (c)                                                            (d)                                                            (e)

Fig. 5. Image Restoration Results Comparison Using Different Algorithms. (a) Noisy image; (b) Coherence enhancing dif-
fusion; (c) Nonlinear diffusion; (d) Wavelet Denoising; (e) Reconstructed image using our gradient-based image restoration
algorithm.

totally suppressed in the noise regions, the image will look
unnatural for clinical practice. Therefore, we chosenγ =
1.5 ∼ 2 andβ = 0.3 in Equations 7 and 8. Other parameters
we used in the experiment are:σmin = 0.2, σiso = 2, and
experimentally chosenCthres = 100. Figure 5 is the Lena
image corrupted with zero-mean Gaussian noise (variance =
0.01). We can see that the image structures (edges and other
discontinuities) are preserved and the noise is suppressed us-
ing our gradient-based method. Some structures on the face
are missing. This is because our current implementation of
the gradient computation is not optimized. We would like to
apply multiple-scale technique to reliably detect all the sig-
nificant intensity transitions in the future.

We compare our algorithm using the state-of-the-art im-
age restoration algorithms: coherence enhancing diffusion,
edge-preserving nonlinear diffusion, and wavelet-based method
(we use the nonlinear diffusion package and wavelet package
downloaded from Mathworks (http://www.mathworks.
com). The ”brushstroke” effect results in the noise regions us-
ing the coherence enhancing diffusion algorithm. For edge-
preserving nonlinear diffusion, we carefully tuned the param-
eters (such as stopping time) for the best results. The filtered
image in the left-bottom of Figure 5 has very flat regions, and
some details are lost. The wavelet-based method has artifacts
in sharp boundaries. Our gradient-based method preserves
edges and suppresses noises at the same time. In the future,
we would like to investigate the relationship between these
methods and ours, and compare our method with most recent
methods in image denoising [3, 7].

4. CONCLUSION

We have described a novel image restoration and enhance-
ment algorithm by combining the gradient domain method
with the adaptive filtering method. We solve the intrinsic
problem of the gradient domain method (e.g. sensitive to
noise) and apply it to robustly enhance the structures and re-
duce the noise. Our method can enhance the structures uni-
formly without overshoot, suppress the noise with no arti-
facts, and avoid setting stopping time. We have obtained very
promising image restoration and enhancement results using

the gradient-based method. We believe such a new approach
will deliver a huge impact to the image processing society.
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