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Abstract

Compressive sampling (CS) aims at acquiring a signal at
a sampling rate below the Nyquist rate by exploiting prior
knowledge that a signal is sparse or correlated in some do-
main. Despite the remarkable progress in the theory of CS,
the sampling rate on a single image required by CS is still
very high in practice. In this paper, a non-local compres-
sive sampling (NLCS) recovery method is proposed to fur-
ther reduce the sampling rate by exploiting non-local patch
correlation and local piecewise smoothness present in natu-
ral images. Two non-local sparsity measures, i.e., non-local
wavelet sparsity and non-local joint sparsity, are proposed
to exploit the patch correlation in NLCS. An efficient iter-
ative algorithm is developed to solve the NLCS recovery
problem, which is shown to have stable convergence behav-
ior in experiments. The experimental results show that our
NLCS significantly improves the state-of-the-art of image
compressive sampling.

1. Introduction
We have been witnessing the rapid development of dig-

ital image sensors with ever-increasing fidelity and res-
olution. Conventional digital sensors follow Shannon’s
Nyquist sampling theorem, which requires that the sam-
pling rate be above the Nyquist rate, i.e., twice the maximal
analog signal frequency. While incurring no loss of infor-
mation, Nyquist sampling generates a large amount of raw
data, which is challenging to acquire, encode and transfer in
many applications such as infrared imaging, magnetic reso-
nance imaging (MRI) and wireless sensor networks.

Recently, compressive sensing [8] or compressive sam-
pling (CS) [5], has been developed to reduce the sampling
rate below the Nyquist rate. Its main idea is that a sig-
nal can be decoded from incomplete compressive measure-
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Figure 1. Imaging via non-local compressive sampling (NLCS),
which consists of two steps—sensing and recovery. First, it ac-
quires the compressive measurement B by a random sampling ma-
trix Φ. Second, NLCS recovers an image I from the measurements
B = ΦI by iterating between two steps—non-local grouping and
non-local recovery.

ments by seeking its sparsity in some domain. The result-
ing sampling rate (defined as the ratio of the sample count
to the signal size) is roughly proportional to the signal spar-
sity. Much effort has been made to further reduce the sam-
pling rate of CS by exploring prior knowledge of natural
images and videos. The state-of-the-art method in image
CS (2DCS) [9, 14, 15] exploits two kinds of prior knowl-
edge of natural images/videos—piecewise smoothness by
total variation (TV) [18] and sparsity in the 2D wavelet do-
main. With this prior knowledge, it recovers an image I
from its random measurements B as follows:

min
I

TV(I) + λ‖Ψ2D(I)‖1 s. t. ΦI = B, (1)

where Φ is the sampling matrix, Ψ2D denotes the 2D
wavelet transform and λ is a regularization constant. How-
ever, due to that natural images are not sufficiently sparse
in the wavelet domain, 2DCS still requires a high sampling
rate and its recovery tends to blur sharp edges and texture.
Thus, the full promise of image CS remains unrealized.

In this paper, we propose a non-local compressive sam-
pling (NLCS) recovery method, which further reduces
the sampling rate of image CS by exploiting non-local



patch correlation and the conventional piecewise smooth-
ness prior in natural images. It is mainly motivated by the
recent advances in non-local mean approaches [4, 16, 7] in
image restoration. Non-local mean approaches successfully
achieve the state-of-the-art performance in image restora-
tion [7] by seeking the correlation of image patches. As
a common prior in natural images, the patch correlation
should help reduce the required sampling rate in CS.

Different from [11] that enforeces patch correlation by
recursive filtering, we enforce the patch correlation by a
non-local sparsity (NLS) measure and combine this mea-
sure with the conventional TV measure in a neat objec-
tive function. Two kinds of NLS measures, i.e., non-
local wavelet sparsity (NLWS) and non-local joint sparsity
(NLJS), are proposed, both of which can capture the patch
correlation, as well as the wavelet sparsity of patches them-
selves. Compared with NLWS used in image denoising
[7], NLJS better enforeces the patch correlation and thus
achieves higher recovery accuracy in CS.

Motivated by BM3D [7] in image denoising, we explore
the non-local sparsity of an image by clustering the image
patches into multiple groups and then imposing the corre-
lation prior within each group. However, in contrast with
the image denoising application, the original image is un-
known in CS except for its random measurements B, and
thus the patch-grouping information is unavailable prior to
the NLCS recovery. Thus, our NLCS needs to recover both
the unknown image and the grouping information about its
patches, which turns out to be a chicken-and-egg problem1.

In this paper, we address this problem by an iterative
scheme, where the unknown image and its patch-grouping
information are estimated alternatively. Figure 1 gives the
flow chart of our NLCS. First, the compressive measure-
ment B is obtained from a scene by a random sampling
matrix Φ . Then, our NLCS recovers an image I from the
measurementB = ΦI in two iterative steps: (1) given an in-
termediate image I , non-local grouping clusters its patches
into groups {Gi}ni=1; (2) Given {Gi}ni=1, non-local recov-
ery estimates an image I from B. An efficient algorithm is
proposed to solve this non-local recovery problem.

Related Work. Some research work has been done on
using patch or frame correlation for compressive sensing.
But, the way they use it is significantly different from our
NLCS. [11] proposed a non-parametric CS method, which
recursively uses non-local denoising filter (BM3D) to fill
the unobserved portion of the Fourier spectrum. This is
quite different from our parametric method—NLCS, which
has an explicit objective function including non-local spar-
sity measure and piecewise smoothness. In addition, this
method only works for Radon or Fourier sampling while
our NLCS is suitable for general CS applications. [10]
proposed a learning based CS method, which jointly de-

1Estimating one component requires and also benefits from the other.

signs and optimizes the patch-sensing matrix and the over-
complete patch dictionary. In contrast with this patch-
wise method, our approach is a holistic CS method that
takes measurements on the entire image and recovers the
image by taking advantage of its self-similarity prior. It
is worthwhile mentioning most existing CS systems, e.g.,
MRI modalities and single-pixel camera [9], use holistic
measurements. Also, this dictionary learning method can-
not provide a generic solution to CS, since its performance
largely depends on the training dataset. Three-dimensional
CS (3DCS) [20] significantly reduces the sampling rate of
video CS by exploiting the temporal correlation (low-rank)
of a video. This motivates us to explore the patch corre-
lation in image CS. Compared with seeking the temporal
correlation, where the video frames are highly corrected,
the patch correlation is more challenging to exploit in im-
age CS, due to the fact that the patch-grouping information
is unknown in CS.

2. Non-Local Compressive Sampling (NLCS)
2.1. Formulation

In additional to the piecewise smoothness prior and
wavelet sparsity used in 2DCS, our non-local compres-
sive sampling (NLCS) recovery exploits another ubiquitous
prior knowledge about natural images—patch correlation.
Let I ∈ RM×N denote a 2D image, and Ix a d × d im-
age patch at location x (2D coordinate) on I . The patches
of image I are divided into n groups G = {G1, ..., Gn}
by non-local grouping based on some similarity measure,
where Gi contains the coordinates of the patches belonging
to the i-th group. Patches from the i-th group stack into a 3D
cube denoted by IGi ∈ Rd×d×mi , where mi is the number
of patches in group Gi. Based on the grouping information
G, we seek patch correlation of image I by minimizing its
non-local sparsity. This non-local sparsity imposes the re-
quirements that (1) image patches repeat themselves across
the image and (2) image patches are sparse in some domain.
Taking advantage of this non-local sparsity of images, our
NLCS recovers a sharp and piecewise smooth image by

min
I,G

TV`1(I) + λNLS(I,G) s. t. ΦI = B, (2)

where NLS(I,G) measures the non-local sparsity of the
image based on the patch grouping information G. Here,
we employ the `1-norm based total variation TV`1(I) =
‖D1I‖1 + ‖D2I‖1, due to its superiority to the traditional
total variation TV`1`2 [19], where D1 and D2 are finite dif-
ference operators along horizontal and vertical axes. Al-
thought our NLCS is compatible with any compressive sam-
pling matrix, for computational efficieny, we choose the cir-
culant sampling in [17, 20], i.e., Φ = SC , where C is a
circulant matrix and S is a random subsampling matrix.



At the core of NLCS is the non-local sparsity measure
that gauges the correlation between patches and the spar-
sity of patches themselves. In this section, we will present
two non-local sparsity measures, namely, non-local wavelet
sparsity and non-local joint sparsity.

2.2. Non-Local Wavelet Sparsity

Many methods have been proposed to obtain the corre-
lation of a signal ensemble, e.g., imposing its low-rank [6]
and learning its low-dimensional subspace [2]. In NLCS,
we can adapt these methods to impose the correlation of
each patch group IGi (Figure 1) that is highly correlated
and almost lies in a rank-1 subspace. However, these
methods fail to take into account another important prior
knowledge—the sparsity of patches themselves.

A good candidate of the non-local sparsity measure is the
3D wavelet sparsity. It is popularly used to seek patch corre-
lation in image denoising (e.g., BM3D) and also employed
to impose temporal correlation in video CS [21]. Here, we
employ it to explore the non-local patch correlation in im-
age CS. On the 2D wavelet coefficients of each patch in a
group Ψ2D(IGi), we conduct wavelet transform along the
third axis, and compute non-local wavelet sparsity (NLWS)
as the sum of the `1 norm of all 3D wavelet coefficients:

NLWS(I,G) =

n∑
i=1

‖Ψ3D(IGi)‖1, (3)

where Ψ3D is the 3D wavelet transform.

2.3. Non-Local Joint Sparsity

Motivated by the observation that the matched patches
in one group are almost identical (up to some sparse er-
rors), we propose another non-local sparsity measure—non-
local joint sparsity (NLJS). Joint sparsity is initially pro-
posed in [1] to identify the common component and sparse
innovation components in a signal ensemble. Here, we ap-
ply the joint sparsity idea to a single image I consisting of
non-local patch groups (G) and define the non-local joint
sparsity of image I as follows:

NLJS(I,G) =

n∑
i=1

JS(IGi), (4)

where the joint sparsity JS(IGi) is defined as follows. For
each patch group IGi , we first conduct 2D wavelet trans-
form on each patch to obtain Ψ2D(IGi) ∈ Rd×d×mi . Then,
we decompose Ψ2D(IGi) into the sum of a replica of the
common component Zi ∈ Rd×d and the sparse innovation
components Ẑi ∈ Rd×d×mi . Then, the joint sparsity of IGi
is defined as

JS(IGi) = min
Zi,Zi

‖Zi‖1 + η‖Ẑi‖1,

s.t. [Zi : ... : Zi] + Ẑi = Ψ2D(IGi),

(5)

where [Zi : ... : Zi] denotes a 3D cube consisting of mi

replicas of Zi and η is a regularization constant that is equal
to or larger than 1. Minimizing the first term ‖Zi‖1 imposes
the wavelet sparsity of the patches themselves, similar to
2DCS, while minimizing the second term ‖Ẑi‖1 imposes
the patch correlation within each group. Therefore, for im-
ages that contain abundantly repeating local structures, η
can be set larger to emphasize the patch correlation prior.
Note that we have an explicit solution to the aforementioned
minimization problem. The optimal common component
Zi can be obtained by elementwise applying the median fil-
ter on Ψ2D(IGi) along the third dimension2.

In sum, NLWS and NLJS are both defined in the 2D
wavelet domain, but differ in the ways they impose patch
correlation. In NLWS, we conduct 1D wavelet transform
on Ψ2D(IGi) and sum up the `1 norm of all 3D wavelet
coefficients. Minimizing NLWS tends to impose the patch
correlation and also blur the patches, since all the wavelet
coefficients are uniformly penalized. In NLJS, by assuming
Ψ2D(IGi) is approximated by the rank-1 subspace (spanned
by Zi) , we sum up the `1 norm of Zi and the approxima-
tion error Ẑi. In this way, NLJS can heavily penalize the
high-frequency components Ẑi while slightly regularizing
the low-frequency component Zi. Thus, NLJS better re-
tains the sharp edges and textures in the recovered image.

3. An Efficient Algorithm for NLCS

Our NLCS algorithm in Eq. (2) attempts to recover the
underlying image I from its compressive measurements
ΦI by minimizing its total variation and non-local spar-
sity. However, the non-local sparsity is defined based on
the patch grouping G, which in turn requires knowledge of
the image I . Direct minimization over unknown I and G
is intractable. Instead, we present an iterative algorithm to
find an approximate solution. The iterative algorithm starts
with an initial estimate I recovered by 2DCS, and then it-
erates between two steps—(1) non-local grouping that ex-
tracts the patch grouping G from image I and (2) non-local
joint recovery that recovers the image I based on the up-
dated grouping information G.

3.1. Non-Local Patch Grouping

We use the same block-matching scheme in BM3D [7]
for non-local patch grouping. Given an estimated image
I , it first obtains n reference patches, denoted as Ixri ∈
Rd×d, 1 ≤ i ≤ n, by grid sampling with step size s.
Then, for each reference patch Ixri , it searches in its neigh-
borhood for up to m best matched patches such that each
matched patch Ix satisfies D(Ixri , Ix) = ‖Ψ2D(Ixri ) −

2In the case the patch number is even, where there are two mediate
values at each pixel, the smaller-magnitude one is the optimal value.



Ψ2D(Ix)‖22/d2 ≤ ε, where ε is a pre-defined constant.
These matched patches form the ith patch group IGi .

We set the threshold value ε such that the popular refer-
ence patches will have more (but up to m) matched patches
than the rare ones. In this way, the grouping information
will help to improve the recovery accuracy of the popular
patches without harming that of the rare ones. Thus, we
can increase the recovery accuracy of an image consisting
of abundant correlated patches, by incorporating this non-
local grouping information.

3.2. Non-Local Joint Recovery

Algorithm 1 Solve non-local joint recovery using inexact
ALM-ADM
Require: C, S, B and Pij ,∀i, j,
Ensure: I

1: I0 = g01 = g02 = b01 = b02 = R0 = e0 = zeros(M,N);
Z

0

i = Ẑ0
ij = fij = zeros(N1, N1).

2: while I not converged do
3: Separate Estimate of Auxiliary Variables χ:

χk+1 ← arg minχ L(Ik, χ, ρk).
4: Joint Reconstruction of Image I:

(Ik+1)← arg minL(I, χk+1, ρk).
5: Update of Lagragian Multipliers ρ:

bk+1
l ← bkl − τβ1(gk+1

l −DlI
k+1).

fk+1
ij ← fkij−τβ2(Z

k+1

i + Ẑk+1
ij −Ψ2D(PijI

k+1)).

ek+1 ← ek − τβ3(Rk+1 − CIk+1).
6: k ← k + 1.
7: end while

In this subsection, we present an efficient algorithm
for the non-local recovery using non-local joint sparsity
(NLJS). It is straightforward to extend it to solve the re-
covery problem using non-local wavelet sparsity (NLWS).

We denote the jth patch in the ith group as IGij and its
extraction matrix as Pij ∈ Rd2×MN , i.e., a binary ma-
trix each row of which has one nonzero entry ”1”. Thus,
we obtain IGij = PijI , where I and IGij are vectorized,
for simplicity of notation. For each patch IGij , there is a
common component Zi and an innovation component Ẑij
such that Zi + Ẑij = Ψ2D(PijI). Accordingly, for the
patch group IGi , the 3D cube of innovation components
Ẑi = [Ẑi1 : ... : Ẑimi ]. Thus, the non-local recovery prob-
lem is formulated as follows:

min
I,Zi,Ẑij

2∑
l=1

‖DlI‖1 + λ

n∑
i=1

(‖Zi‖1 + η

mi∑
j=1

‖Ẑij‖1),

s. t. SCI = B,Zi + Ẑij = Ψ2D(PijI),∀i, j. (6)

It is very difficult to directly solve this constrained opti-
mization problem consisting of multiple non-differentiable

sparsity-inducing terms (`1 norm). So, we employ the aug-
mented Lagrangian method-alternating direction method
(ALM-ADM), also called the alternating direction method
of multipliers (ADMM) in [3], to divide this complicated
problem into simpler sub-problems and addresses them it-
eratively. This ALM-ADM algorithm has been widely used
in compressive sensing [22]. By adding a set of auxiliary
variables χ , {g1, g2, Zi, Ẑi, R}, the non-local recovery
problem can be reformulated as

min
I,χ

2∑
l=1

‖gl‖1 + λ

n∑
i=1

(‖Zi‖1 + η

mi∑
j=1

‖Ẑij‖1) s. t.{
R = CI
SR = B

, gl = DlI, Zi + Ẑij = Ψ2D(PijI),∀i, j, l. (7)

This objective function given has the desirable property
that it is separable in two groups of variables— the image
I and its auxiliary variables χ = {g1, g2, Zi, Ẑi, R}. Thus,
this function can be minimized over one group of variables
by fixing the other group. Let ρ , {b1, b2, fij , e} be a set of
Lagrangian multipliers, we can write the Lagrangian func-
tion of this equality-constrained problem as follows.

L(I, χ, ρ) =

2∑
l=1

‖gl‖1 + λ

n∑
i=1

(‖Zi‖1 + η

mi∑
j=1

‖Ẑij‖1)

+
β2
2

∑
i,j

‖Ψ2D(PijI)− Zi − Ẑij +
fij
β2
‖22,Wij

+
β1
2

2∑
l=1

‖DlI − gl +
bl
β1
‖22 +

β3
2
‖CI −R+

e

β3
‖22, (8)

where SR = B, β1, β2 and β3 are large constant (e.g., 100),
and PTij is the transpose matrix of Pij . We will explain the
weighted `2 norm ‖ · ‖22,Wij

= (·)TWij(·) and its weight

(diagonal) matrix Wij ∈ Rd2×d2 in the section Joint Re-
construction of Image I .

As shown in Algorithm 1, after just one round of alterna-
tively minimizing the Lagrangian function L(I, χ, ρ) with
respect to I and χ, the multiplier ρ is updated immediately
with a step length τ . Thus, the ALM-ADM algorithm has
three iterative steps—(1) separate estimate of auxiliary vari-
ables χ, (2) joint reconstruction of image I and (3) update of
Lagrangian multipliers ρ. With fixed Lagrangian multpliers
ρk, we only update the image I and its auxiliary variables χ
in one round of iteration. Therefore, this algorithm is also
called inexact ALM-ADM [13, 22]. According to the the-
oretical analysis in [12], the inexact ALM-ADM is guaran-
teed to converge at τ ∈ (0, 1+

√
5

2 ), under certain technical
assumptions.

3.3. Separate Estimate of Auxiliary Variables

In this subsection, we discuss how to estimate the auxil-
iary variables χ from a given image I by minimizing their



sparsity-inducing `1-norm. Given a typical `1-norm mini-
mization problem mina ‖a‖1 + β

2 ‖a− b‖
2
2, it has a closed-

form solution â = S 1
β

(b), where S 1
β

(b) is the soft thresh-

olding function defined as max{abs(b) − 1
β , 0}. ∗ sign(b).

Accordingly, we respectively update the partial gradients g1
and g2, the common patchZi and the innovation component
Ẑi as follows:

gk+1
l = S 1

β1

(DlI
k +

bkl
β1

). (9)

Z
k+1

i = S 1
β2

(
1

mi

mi∑
j=1

Ψ2D(PijI
k)− Ẑkij +

fkij
β2

). (10)

Ẑk+1
ij = S 1

β2

(Ψ2D(PijI
k)− Zk+1

i +
fkij
β2

). (11)

Theoretically, to guarantee the convergence of the NLCS
algorithm, we need to iteratively update the pair (Zi, Ẑi)
until convergence. In practice, for computational efficiency,
we can apply only one round of updating (Zi,i ), which is
shown to have stable convergence behavior in experimental
results.

As for the circulant sample R, we first obtain it by ap-
plying circulant sampling on the image Ik and then set its
subsamples at locations X (decided by B and its subsam-
pling matrix S) as the measurements B.

Rk+1 = CIk+1 − ek+1/β3. (12)
Rk+1[X] = B. (13)

3.4. Joint Reconstruction of Image I

In this section, we discuss the joint reconstruction
of the image I from its auxiliary variables χ =
{g1, g2, R, Zi, Ẑi, 1 ≤ i ≤ n}.

After the first step, we have a set of patch estimates
Ψ2D(IGij ) = Zi + Ẑij , which constitue an over-complete
and spatially non-uniform representation of the image I .
The conventional way to recover the image I is aggregat-
ing all the patch estimates using a weighted average. Fol-
lowing this aggregation method, we impose a weighted `2
norm regularization ‖(PijI) − Zi − Ẑij +

fij
β2
‖22,Wij

in
Eq. (8), where ‖ · ‖22,Wij

= (·)TWij(·). The weight Wij

is defined to yield larger regularization weight on the rare
patches and smaller weight on the popular ones. Specif-
ically, for each pixel in the patch IGij = PijI , we set
its regularization weight as the inverse of its sampling fre-
quency over all the patchs {IGij}1≤i≤n,1≤j≤mi , i.e.,Wij =
Pij(

∑
i,j P

T
ijPij)

−1PTij .

By setting the derivative of the Lagrangian function
L(I, χ, ρ) with respect to I to be zero, we obtain the fol-

lowing condition on I .

β1

2∑
l=1

DT
l (DlI − gl +

bl
β1

) + β3C
T (CI −R+

e

β3
)

+β2(I −
∑
i,j

PTijΨ−12D(Zi + Ẑij −
fkij
β2

)∑
i,j P

T
ijPij

) = 0 (14)

Since DT
1 D1, D

T
2 D2 and CTC are circulant matrices and

multiplying each of them with I is equivalent to some con-
volution on I . Thus, we can effieciently recover Ik+1 by
using Fast Fourier Transform to solve Eq. (14).

4. Experimental Results

Figure 2. Images (from top-left to bottom-right): Barbara, Cam-
eraman, Lena, House, Building, TrainStation, Bone and Brain.

Our proposed NLCS focuses on compressive recovery,
and thus it can take the measurements obtained from exist-
ing compressive imaging cameras, e.g., single-pixel camera
[9]. In this work, instead of bothering with the imaging sys-
tem, we simulate the compressive measurement and evalu-
ate the performance of our NLCS algorithm, compared with
the traditional 2DCS methods. Our NLCS explores the non-
local sparsity of an image for compressive recovery, which
has shown to be an intrinsic property of many modalities of
image signals, such as visible light natural images [4, 16, 7]
and medical images [11]. More generally, our NLCS is ap-
plicable to any other signals as long as the patch correlation
assumption holds. To validate the effectiveness of our al-
gorithm, similar to previous works [11, 10], we select six
diverse natural images (Barbara, Cameraman, Lena, House,
Building, and TrainStation) and two medical images (Bone
and Brain) for evaluation3, as shown in Figure 2.

For computational efficiency, we employ circulant sam-
pling on these images and obtain the sampled data B =
SCI at different sampling rates. NLCS using NLWS,
NLCS using NLJS and the previous 2DCS are respectively
applied to recover the images from their sampled data B.

3Although it is desirable to evaluate the algorithm’s performance on
signals directly from medical imaging or satellite imaging systems, we are
limited by such data access. Experiment results with visible light images
should generalize to other modalities of signals with non-local sparsity.



Peak signal-to-noise ratio (PSNR) is used to gauge the re-
covery accuracy. In 2DCS (Eq. (1)), we empirically set the
weight parameter for 2D wavelet sparsity as λ = 0.66 for
all eight images. Then, our NLCS starts with the initial-
ization image recovered by 2DCS at λ = 0.66 and iter-
ates between non-local patch grouping and non-local joint
recovery. In non-local grouping, we set the patch size
d = 8, the step size s = 4 and the maximal group size
m = 8. In non-local recovery, we empirically set the same
parameters for both sparsity measures NLWS and NLJS: the
weight λ = 2 in Eq. (2), the over-regularization parameter
β1 = β2 = β3 = 100 in Eq. (8), and τ = 1.618 in Algo-
rithm 1. To recover the groups of highly correlated patches
for NLJS, we set the weight on the innovation component
as η = 10 in Eq. (5).

(a) (b)

Figure 3. Convergence behavior of the proposed NLCS—recovery
accuracy vs. the iteration number (up to 4). (a) NLCS using
NLWS and (b) NLCS using NLJS. We use the dotted line to con-
nect the NLCS recovery at iteration 4 to the ideal case where the
grouping information is extracted from the ground truth.

4.1. Quantative Evaluation

Admittedly, there is no theoretical guarantee that our
NLCS algorithm can obtain global optimum by iterating
between non-local grouping and non-local recovery. In Fig-
ure 3, we plot the curves of recovery accuracy of NLCS
using NLWS and NLJS with respect to the number of it-
erations at sampling rate of 20% for the eight test images.
Note that the recovery results at iteration zero are those from
2DCS. As shown, NLCS consistently improves the recovery
accuracy and typically converges in about four iterations.
To further evaluate the effectiveness of our NLCS, we also
list the results of its ideal case where the grouping informa-
tion is extracted exactly from the original image, which is
the theoretical limit of our NLCS algorithm. After reach-
ing its stable recovery accuracy, our NLCS using NLJS is
only about 1 dB lower than the ideal cases, indicating that
the NLCS is effective in recovering both the image and its
non-local grouping information. On the images with many

repeating structures (e.g., Barbara), NLCS has better per-
formance and also takes more iterations to converge. On
these eight images at sampling rate 10%, the final recov-
ery accuracy of NLCS with NLWS is on average 2.56 dB
higher than that of 2DCS, while the final accuracy of NLCS
with NLJS is on average 3.80 dB higher than 2DCS. These
significant improvement margins demonstrate the effective-
ness of the non-local sparsity prior for image CS. Compared
with NLWS, our NLJS is more effective as it models the
patch group as a rank-1 subspace up to some sparse errors.

For complete comparison, NLCS with NLWS/NLJS and
2DCS are evaluated on the eight images at varying sam-
pling rate (10%, 20% and 30%), as shown in Table 1. NLCS
using NLJS consistently outperforms NLCS using NLWS,
and both significantly improves over 2DCS at all sampling
rates. As expected, NLCS using NLJS achieve larger im-
provements in terms of recovery accuracy on images that
contain sharp edges (e.g., Building and TrainStation), and
images with repeating structures (e.g. Barbara). On Bar-
bara, the improvement is even as large as 6.81 dB over
2DCS at sampling rate 30%. On TrainStation, NLCS using
NLJS can improve the recovery accuracy up to 36.07 dB
at the sampling rate of only 10%, suggesting that our new
algorithm is much more practical compared with 2DCS.

4.2. Visual Quality Evaluation

To further compare our NLCS with 2DCS, we present
their visual recovery results on some typical images. As
shown in Figure 4 (note that images are better viewed in
PDF), despite as the-state-of-the-art in image CS, 2DCS re-
covers the Barbara image with texture and edges (or bound-
aries) blurred. By adding the regularization on the non-local
patch correlation, both NLCS using NLJS and NLWS can
recover the Barbara image with correct texture and sharp
edges. In the zoomed-in regions, we can see NLJS is supe-
rior to NLWS in recovering local details. The error maps of
visual recovery also show that NLJS is better than NLWS
and both significantly outperform 2DCS. In addition to the
Barbara image that is full of repeating structures, we also
show the visual recovery results on image TrainStation,
classical image Cameraman and the medical image Brain
in Figure 5. On these images, 2DCS always fails to recover
details well, while the results from our NLCS hold much
better fidelity to the ground truth and NLJS is always supe-
rior to NLWS as non-local sparsity prior.

5. Conclusion

In this paper, we have proposed a non-local compres-
sive sampling (NLCS) recovery method that exploits non-
local patch correlation and local piecewise smoothness in
a neat optimization work. Our NLCS recovery method is
shown to significantly reduce the required sampling rate of



Table 1. Evaluation of the proposed NLCS using NLWS, NLJS with 2DCS in terms of PNSR (dB) at varying sampling rate. We run NLCS
using NLWS and NLJS in four rounds of iterations and compare them with 2DCS (the improvement over 2DCS is highlighted as ”gain”)
and their ideal case where the grouping information is known.

Image Sampling 2DCS NLWS NLJS
round1 round2 round3 round4 gain ideal round1 round2 round3 round4 gain ideal

Barbara
10 % 22.73 23.78 24.11 24.24 24.29 1.56 25.85 24.28 25.07 25.48 25.70 2.97 28.60
20 % 24.85 26.91 27.65 27.94 28.06 3.21 29.34 28.07 29.63 30.31 30.60 5.75 32.12
30 % 27.01 30.17 31.12 31.37 31.43 4.42 32.23 31.69 33.35 33.76 33.83 6.81 34.35

Cameraman
10 % 24.70 25.97 26.26 26.30 26.31 1.61 27.16 26.89 27.44 27.62 27.67 2.97 29.01
20 % 28.52 29.89 30.05 30.08 30.10 1.58 30.42 30.88 31.04 31.04 31.02 2.50 31.98
30 % 31.46 32.65 32.75 32.81 32.80 1.34 32.99 33.61 33.78 33.75 33.73 2.27 34.48

Lena
10 % 26.24 27.55 27.81 27.80 27.85 1.61 28.68 28.37 28.80 29.90 28.92 2.68 30.40
20 % 29.63 31.23 31.46 31.45 31.48 1.85 32.12 32.17 32.54 32.64 32.67 3.03 33.67
30 % 32.42 34.23 34.38 34.40 34.38 1.96 34.85 35.09 35.37 35.40 35.41 2.99 36.12

House
10 % 30.39 32.84 33.19 33.30 33.31 2.92 34.08 33.74 34.24 34.33 34.37 3.98 35.20
20 % 33.69 35.91 36.14 36.17 36.19 2.50 36.78 36.28 36.59 36.66 36.69 3.00 37.80
30 % 35.81 37.88 38.18 38.24 38.26 2.45 38.82 38.18 38.64 38.83 38.92 3.11 39.86

Building
10 % 24.78 28.19 28.95 28.97 28.96 4.18 29.88 28.89 29.79 29.95 30.00 5.22 31.27
20 % 29.39 32.37 32.59 32.61 32.60 3.21 33.08 33.00 33.31 33.35 33.35 3.96 33.83
30 % 32.59 35.11 31.25 35.27 35.28 2.69 35.56 35.69 35.95 35.98 36.01 3.42 36.65

TrainStation
10 % 29.33 33.51 34.20 34.34 34.35 5.02 35.27 34.97 35.91 36.07 36.07 6.74 36.86
20 % 34.24 37.96 38.23 38.30 38.31 4.07 38.77 38.86 39.14 39.15 39.14 4.90 39.94
30 % 37.36 40.40 40.49 40.50 40.50 3.14 40.92 41.03 41.17 41.19 41.19 3.83 41.80

Bone
10 % 27.37 29.07 29.26 29.27 29.25 1.88 30.19 30.00 30.24 30.24 30.26 2.89 31.58
20 % 31.88 32.71 32.68 32.65 32.63 0.75 33.24 33.31 33.27 33.28 33.30 1.42 34.10
30 % 34.61 35.11 35.10 35.06 35.06 0.45 35.43 35.58 35.57 35.59 35.59 0.98 36.02

Brain
10 % 24.14 25.51 25.77 25.82 25.82 1.68 26.97 26.61 27.02 27.07 27.08 2.94 28.93
20 % 28.54 29.77 29.84 29.83 29.83 1.29 30.60 30.75 30.91 30.90 30.91 2.37 31.94
30 % 31.87 32.63 32.65 32.64 32.60 0.73 33.06 33.32 33.36 33.37 33.37 1.50 34.05

image CS and thus can greatly improve the existing com-
pressive imaging cameras. To impose the patch correlation
prior, we propose two non-local sparsity measures—non-
local wavelet sparsity (NLWS) and non-local joint sparsity
(NLJS). NLJS is consistently better than NLWS in recover-
ing sharp edges and fine textures. An efficient algorithm
consisting of two iterative steps, non-local grouping and
non-local recovery, is developed to solve the NLCS recov-
ery problem. Motivated by these promising experimental
results, we will apply our NLCS to real compressive imag-
ing systems (e.g., MRI system) in the next step.
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(a) (b) (c) (d)

Figure 4. Visual recovery of the proposed NLCS using NLWS and NLJS, in comparision with 2DCS on Barbara at 20% sampling rate.
Top: (a) original image, recovered images by (b) 2DCS (PSNR:24.85), (c) NLWS (PSNR:28.06), and (d) NLJS (PSNR:30.60). Bottom:
(a) image recovered by the ideal version of NLJS (PSNR:32.12), the error maps (with the color map on the left) of (b) 2DCS, (c) NLWS
and (d) NLJS. Note: regions in green are zoomed-in versions of regions in red, and images are better viewed in PDF.

(a) (b) (c) (d)

Figure 5. Visual recovery of NLCS using NLWS and NLJS, in comparison with 2DCS on TrainStation (sampling rate: 10%), Cameraman
(sampling rate: 20%) and Brain (sampling rate: 20%). (a) Original images, and images recovered by (b) 2DCS, (c) NLWS, and (d) NLJS.
Note: regions in green are zoomed-in versions of regions in red, and images are better viewed in zoomed PDF.


