View-Based 3D Object Recognition Using SNoW

Ming-Hsuan Yang Narendra Ahuja Dan Roth
Department of Computer Science and Beckman I nstitute
University of lllinoisat Urbana-Champaign, Urbana, IL 61801
mhyang@vison.ai.uiuc.edu ahuja@vision.ai.uiuc.edu danr @cs.uiuc.edu

ABSTRACT pare the results. Furthermore, the training sets used sethe

methods consist of images taken in nearby poses (usually

This paper describes a novel view-based algorithm for
3D object recognition using a network of linear units. The
SNoW learning architecture is a sparse network of linear
functions over a pre-defined or incrementally learned fieatu
space and is specifically tailored for learning in the presen
of a very large number of features. We use the pixel-level

10° apart). This particular experimental setup, as we will
show, makes the learning problem less challenging. It is of
great interest to compare the performance of these methods
when only a limited number of views of the objects are pre-
sented during training.

In this work, we propose a method that applies the SNoW

representation in the experiments and compare the perfor- (Sparse Network of Winnows) learning algorithm [15] to
mance of SNoW with Support Vector Machines and near- 3D object recognition and compare the performance of our
est neighbor methods on 3D object recognition using the method with the SVM and nearest neighbor methods. SNoW
100 objects in the Columbia Image Object Database (COIL- is a sparse network of linear functions that utilizes the Win
100). Experimental results show that SNoW-based method now update rule [7]. SNoW is specifically tailored to learn-
outperform SVM-based system in terms of recognition rate ing in domains in which the potential number of features
and the computational cost involved in learning. The empir- taking part in decisions is very large, but may be unknown
ical results also provide insight for practical and theioadt a priori. Some of the characteristics of this learning archi-
considerations on view-based methods for 3D object recog- tecture are its sparsely connected units, the allocatideaf

nition. tures and links in a data driven way, the decision mechanism
and the utilization of an feature-efficient update rule. 8No
Keywords: View-Based Object Recognition, Support has been used successfully on a variety of large scale learn-

ing tasks in natural language processing [15] [4] and face
detection [16].

This paper is organized as follows. We review the re-
lated view-based methods that learn to recognize 3D objects

View-based object recognition has attracted much atten- in Section 2. The motivation and the SNoW learning ar-
tion in recent years. In contrast to methods that rely on pre- chitecture are discussed in Section 3. Section 4 presents
defined geometric (shape) models for recognition, the prob- experimental results and compares the performance of the
lem is posed as one of matching appearance of an objectproposed method with the SVM and nearest neighbor meth-

in a two-dimensional image against the compact models of ods. We conclude this paper with comments on these learn-
objects’ appearance learned from two-dimensional images ing methods and future work in Section 5.

in which the objects appear in different poses and illumina-
tions. The appearance of an object is the combined effects
of its shape, reflectance properties, pose, and the illumina
tion in the scene. Although shape and reflectance are intrin- A number of view-based schemes have been developed to
sic properties that do not change for any rigid object, pose recognize 3D objects. Poggio and Edelman [12] show that
and illumination vary from one scene to another. The visual 3D objects can be recognized from the raw intensity values
learning problem is viewed as one to learn a compact model in 2D images, which we will call here as the pixel-based
of the object’s appearance under different poses and #lumi representation, using a network of generalized radialsbasi
nation conditions. functions. They argue and demonstrate that full 3D strectur
Among the methods on view-based object recognition, of an object can be estimated if enough 2D views of the ob-
parametric eigenspace [9] [10] and support vector machine ject are provided. Turk and Pentland [19] demonstrate that
approaches [13] have demonstrated excellent recogniion r human faces can be represented and recognized by “eigen-
sults on the COIL-20 and COIL-100 databases. Although faces.” Representing a sample face image as a vector of pixel
these systems can recognize objects in almost real-tiree, th values, the eigenfaces are the eigenvectors associatled wit
computational cost involved in learning is extremely high. the largest eigenvalues which are computed from a covari-
Consequently the methods in the literature use only small, ance matrix of the sample vectors. The attractive feature of
often unspecified, different subsets of objects from theleho  this work is that the eigenfaces can be learned from the sam-
database for experiments, which makes it difficult to com- ple images in pixel representation without any featurecsele

Vector Machine, SNoW, Winnow

1 Introduction

2 Related Work



tion. The eigenspace approach has since been adopted in difSNoW learning algorithm to 3D object recognition, followed
ferent vision tasks from face recognition to object tragkin by a discussion and comparison with the SVM algorithm.
Murase and Nayar [9] [10] develop a parametric eigenspace
method to recognize 3D objects directly from their appear-
ance. For each object of interest, a set of images in which
the object appears in different poses is obtained as tiginin

3.1 TheSNoW Architecture

The SNoW (Sparse Network of Winnows) learning ar-
| N he ei d f h chitecture is a sparse network of linear units over a common
examples. Next, the eigenvectors are computed from the pre-defined or incrementally learned feature space. Nodes

coyanan((j:e maltrlx gf the t.ralnllng Zet' The set of :jm;ges Isb in the input layer of the network represent simple relations
prOJectg to a low |men5|9na su Space_’ spanned by a sub-, ey the input and are used as the input features. Each linear
set of eigenvectors, in which the object is represented as a

unit is called atarget nodeand represents relations which

manifold. A compact parametric model is constructed by are of interest over the input examples. SNoW can be used
interpolating the points in the subspace. In recognitibe, t for two-class or multiple-class pattern recognition peshl

imgge ,Of a test .object Is projected to the s‘ﬂb?'pace and. theIn this paper, the reason for using SNoW as two-class clas-
object is recognized ba_sed O_n the manlfqld it lies on. Using sifier is to have a fair comparison with SVM (which is de-
a subset of the Columb|a Object Image L.|brary (COIL-100), signed for a two-class pattern recognition problem). For a
they show that 3D quects (?an be recognized accurately from two-class @ and B) problem, two target nodes are used,
their appearances in rea}-nme. . one as a representation for pattetnand the other for an
Suppqrt vector m.a.chlnes (SVM) have also peen applied patternB. Similarly, n targets are used for &-class prob-
to 3D iject rec.ognltl.on. Scholkopf [18] applies SVM to lem. Given a set of relations (i.etypesof features) that
_recogmze b _objects in which 3D CAD models, such as an- may be of interest in the input image, each input image is
imals and chairs, are used for experiments. The results showrnapped into a set of features which amive(present) in it

grgat lpromcljse OfSSVN; |n3\/|suzz)ll leaming. I.D.onnl a?]d verri this representation is presented to the input layer of SNoW
[ﬁ ]goso ao%p; M ?r Do J,eCt recpgnlktll.o:. J ey.u.se and propagates to the target nodes. Features may take ei-
the IL-1 ataset for experiments in which the training ther binary values, just indicating the fact that the featigr

shetsszons_lst of 3%':;'&985 (one for eYé"Vf) ;Or each_ (?f 36ac’[ive (present), or real values, reflecting its strengttihie
the 32 objects and the test sets consist of the remaining 36, o ¢ application, all features are binary. Target naates

!mages for each object. For 20 experiments where the ob- linked via weighted edges to (some of the) input features.
jects are randomly selected from the COIL-100, the system Let A, = {ix in} be the set of features that are active

achieves perfect recognition rate. Most re(.:ently, Rodbaer in an example and are linked to the target ned@hen the
and Van Hulle [14] also use C_OIL-.100 to t_raln and compare linear unit isactiveif and only if

the performance of SVMs with different input representa-

tions. They also show the performance of the SVMs when Z wy > 6,

only a limited number of views of the objects are available i€ Ay

in training. Similar to [13], they only use a subset of the
COIL-100 dataset in the experiments. Also, both methods

uselinear SVMs to recognize objects using pixel-based rep- In the current application a single SNowWit which in-

resentation. .
. cludes two subnetworks, one for each of the targets, is used.
Note that the abovementioned methods learn to recog- . .
For a two-class 4 and B) problem, a given example is

n!ze 3D objects from sgmple |mage§ of varying poses in treated autonomously by each target subnetwork; that is, an
pixel-based representation. There exist numerous methods. . .
; . image labeled as a patterhis used as a positive example
that learn models of 3D objects or features such as outlines .
. ) for the targetA and as a negative example for tBetarget,
[11], geometric moments [2], and local feature descriptors . . .
and vice-versa. Similarly for a class problem, an image

[17]. The focus of this paper is to introduce a novel learn- . I )
h . » . . . labeled as d is used as a positive example for targetnd
ing method for 3D object recognition using the raw intensity

wherew! is the weight on the edge connecting itiefeature
to the target node, andd; is its threshold.

. . as a negative example for targgtj = 1,... ,n, ,j # i,
values in the 2D images. . . L . .
and vice versa. The learning policy is on-line and mistake-
3 Motivation and Approach driven; several update rules can be used within SNoW. The

most successful update rule, and the only one used in this

Several learning methods have been developed to recog-work is a variant of Littlestone’s Winnow update rule [7];
nize 3D objects from their appearances in varying poses. In this is a multiplicative update rule tailored to the sitoatin
this section, we first review the Sparse Network of Winnows which the set of input features is not known a priori, as in the
(SNoW) learning algorithm. The SNoW learning architec- infinite attribute model [1]. This mechanism is implemented
ture is a sparse network of linear functions over a pre-ddfine via the sparse architecture of SNoW. That is, (1) input fea-
or incrementally learned feature space and is specificaily t  tures are allocated in a data driven way — an input node for
lored for learning in the presence of a very large number of the feature is allocated only if the featurgis active in the
features. We use the pixel-level representation in theréxpe inputimage and (2) a link (i.e., a non-zero weight) exists be
ments and compare the performance of SNoW with Support tween a target nodeand a featuré if and only if has been
Vector Machines and nearest neighbor methods on 3D objectactive in an image labeled Thus, the architecture also sup-
recognition using the 100 objects in the Columbia Image Ob- ports augmenting the feature types from external sources in
ject Database (COIL-100). We then describe how we apply a flexible way, an option we do not use in the current work.



The Winnow update rule has, in addition to the threshold
f; at the target, two update parameters: pgomotionpa-
rametera > 1 and ademotionparametef) < 8 < 1. These
are used to update the current representation of the target
(the set of weightsv!) only when a mistake in prediction is
made. Letd; = {i1,...,im} be the set of active features
that are linked to the target nodelf the algorithm predicts
0 (thatis, >, c 4, w! < 6;) and the received label i the
active weights in the current example premotedn a mul-
tiplicative fashion:

. t t
Vi € At,w; < a - w;.

If the algorithm predictsl (3, 4, w! > 6;) and the re-
ceived label i9, the active weights in the current example
aredemoted

Vi€ Ay, wl « 8- wh.

All other weights are unchanged. The key feature of the
Winnow update rule is that the number of examplige-
quires to learn a linear function grows linearly with the nrum
ber of relevantfeatures and only logarithmically with the
total number of features. This property seems crucial in do-
mains in which the number of potential features is vast, but
a relatively small number of them is relevant (this does not
mean that only a small number of them will be active, or have
non-zero weights). Winnow is known to learn efficiently any
linear threshold function and to be robust in the presence of
various kinds of noise and in cases where no linear-threishol
function can make perfect classification, and still maimtai

features will never be active. Since the algorithm’s comple
ity depends on the number of active features in an example,
rather than the total number of features, the sparseness als
ensures efficiency.

We compare the performance of the proposed SNoW-
based method with the SVM-based method in 3D object
recognition. Since SVM is a two-class classifier, one way
to recognize objects from multiple classes is to build a hy-
perplane for each pair of the objects. In the one-against-
one scheme, an-class pattern recognition problem requires
2(2~1 pinary classifiers to be trained using SVM. To clas-
sify test data, pair-wise competition between all the ma-
chines is performed which is similar to a tennis tournament.
The final winner determines the class of the test data. Al-
ternatively, the one-against-the-rest scheme requirgsson
classifiers in that each classifier is trained with the sam-
ples belong to one class (with label 1) and the rest of the
samples as the another class (with label -1). The advan-
tage of this scheme is that the number of classifiers to be
trained and stored is linear in the number of classes indylve
as opposed to the other scheme which requires exponen-
tial number of classifiers. But the downside of this scheme
is that some test samples may not be classified into a sin-
gle class because the training samples are not partitioned
into two well-defined homogeneous classes. The recogni-
tion rates of SVM and SNoW based methods shown in Table
2 are performed using the one-against-one scheme. In other
words, we train(*3’) = 4950 classifiers for each method.

2
Furthermore, every test sample needs to go throfigh

its abovementioned dependence on the number of total and(50+25+12+6+3+2+1) classifiers to determine which class

relevant attributes [8] [6].

it belongs to.

Once target subnetworks have been learned and the net-

work is evaluated, a decision support mechanism is em-
ployed, which selects the dominant active target node in the
SNoW unit via a winner-take-all mechanism to produce a fi-

nal prediction. In general, but not in this work, units’ outp

3.3 Support Vector Machine

Both SNoW and SVM have been proposed as new ma-
chine learning algorithms with theoretical derivationéngs
the VC (Vapnik-Chervonenkis) theorem. Vapnik [21] uses

may be cached and processed along with the output of otherhq /¢ theory to show that SVM has an upper bound of the

SNoW units to produce a coherent output.
3.2 Learning 3D Objectswith SNoW

In this paper, we apply the SNoW approach to 3D ob-
ject recognition. Our method makes use of Boolean fea-
tures that encode the positions and intensity values of pix-
els. Let the pixel a{z,y) of an image with widthw and
heighth have intensity valud(z,y) (0 < I(z,y) < 255).
This information is encoded as a feature whose index is
256 x (y x w + z) + I(z,y). This representation ensures
that different points in th¢posi ti on x intensity}
space are mapped to different features. (That is, the featur
indexed256 x (y x w+z)+I(z, y) isactiveif and only if the
intensity in position(z,y) is I(z,y).) In our experiments,
the values forw andh are 32 since each object sample has
been normalized to an image 82 x 32 pixels. Note that
although the number of potential features in our representa
tion is262, 144 (32 x 32 x 256), only 1024 of those are ac-
tive (present) in each example, and it is plausible that many

LIn the on-line setting [7] this is usually phrased in termsaof
mistake-bound but is known to imply convergence in the PAQ [2
[5] (Probably Approximately Correct) sense.

error on the unseen test patterns as a function of error on
training and the VC dimension of the classifier. Littlestone
[7] also uses VC theory and shows that there is an upper
bound for the number mistakes before the Winnows learns a
concept (i.e., converges). SVM and SNoW have also been
applied to various problems in natural language processing
to hand digit recognition. Recently, SVM-based methods
have demonstrated good performance in 3D object recogni-
tion [18] [13] [14]. We compare the performance of SNoW
and SVM algorithms for 3D object recognition. In this sec-
tion, we briefly review SVM approach.

Support Vector Machine (SVM), developed by Vapnik
and colleagues, is a learning method for pattern recognitio
and regression problems [21] [3]. One characteristic of SVM
is that it aims to find an optimal hyperplane such that the ex-
pected recognition error for the unseen data points is mini-
mized. According to the structural risk minimization induc
tive principle, a function that describes the training daésl
and belongs to a set of functions with lowest VC dimension
will generalize well regardless of the dimensionality of th
input space [3]. Based on this principle, the SVM is a sys-
tematic approach to find a linear function that belongs to a



Figure 1. Columbia Object Image Library (COIL-100) consists of 100 objects of varying poses
(5° apart). The objects are shown in row order where the highlighted ones are considered more
difficult to recognize in [13].

set of functions with lowest VC dimension. The SVM also
provides non-linear function approximations by mappirg th

input vectors into a high dimensional feature space where a
linear hyperplane can be constructed. Although there is no

guarantee that that a linear hyperplane will always exist in
the high dimensional feature space, it is likely to find a lin-
ear separator (i.e., hyperplane in a SVM) in the projected
space.

Given a set of sample&x1, y1), (x2,¥2), -+, (X1, u1)
wherex; (x; € RY) is the input vector ofV dimension and
yi is its label §; € {—1, 1}) for regression problem, SVM

into high dimensional feature space can be reduced signif-
icantly by using a suitable functidnsuch that

k(x,xi) = P(x) - (xi)
where ¢ is a nonlinear projection function. Several ker-
nel functions, such as polynomial functions and radialasi
functions, have been shown to satisfy Mercer theorem and
been used in nonlinear SVM. By using different kernel func-
tions, the SV algorithm can construct a variety of learning

machines, some of which coincide with classical architec-
tures. However, this also results in a drawback since one

aims to find a optimal hyperplane that leaves the largest pos- needs to find the “right” kernel function in using nonlinear
sible fraction of data points of the same class on the same SVYM. SVM is also more prone to outliers in the data than

side while maximizes the distance of either class from the
hyperplane (margin distance). Vapnik [21] shows that max-
imizing the margin distance is equivalent to minimizing the
VC dimension in constructing an optimal hyperplane. The

mistake bound methods.
4 Experiments

We use the COIL-100 dataset to test our method and

problem of finding the optimal hyperplane is thus posed as a compare its performance with other view-based methods in

constrained optimization problem in SVM and solved using
the quadratic programming techniques. The optimal hyper-
plane, which determines the class of a data pwins in the
form

1
F(x) = sgn(y_ yiai - k(x,xi) +b)
=1
wherek(-, -) is a kernel function andgn is a threshold func-
tion (with threshold value = 0) to determine the label of an
input vector. Constructing an optimal hyperplane is equiv-
alent to determining nonzera;. Any vectorx; that cor-
responds to a nonzeke; is asupported vecto(SV) of the
optimal hyperplane. One feature of SVM is that the hum-
ber of support vectors is usually small, thereby producing a
compact classifier.

For a linear SVM, the kernel function is just the simple
dot product of vectors in the input space while the kernel
function in a nonlinear SVM projects the samples to a feature
space of higher (possibly infinite) dimensions via a nordime
mapping function:

v:RY 5 FY, M>N

and construct a hyperplane ™. The motivation is that
it is more likely to find a linear function, as done in linear
SVM, in the high dimensional feature space. Using Mercer

the literature. In this section, we first describe the charac
teristics of the COIL-100 dataset and then show and com-
pare the performance of several methods in numerous exper-
iments, followed by comments on the empirical results.

4.1 Dataset and Experimental Setups

We use the Columbia Object Image Library (COIL-
100) database for experiments (available at http:
www.cs.columbia.edu/ CAVE/ coil-100.html). The COIL-
100 dataset consists contains color images of 100 objects
where the images of the objects were taken at pose intervals
of 5°, i.e., 72 poses per object. The images were also nor-
malized such that the larger of the two object dimensions
(height and width) fits the image size b28 x 128 pixels.
Figure 1 shows the images of the 100 objects taken in frontal
view, i.e., zero pose angle. The 32 highlighted objects in
Figure 1 are considered more difficult to recognize in [13]
and are also used in our experiments. Each color image is
converted to a gray-scale image f x 32 pixels for our
experiments.

We approach the recognition problem by considering
each of the pixel values in a sample image as a coordinate
in a high dimensional space (i.e., the image space). Conse-
quently, each training and testing sample consists of 1,024
components. In this paper, we assume that the illumination

I

theorem, the expensive calculations in projecting samples conditions remain constant and hence object pose is the only



variable of interest (which is true for the objects in the COI
100 dataset).

4.2 Ground Truth of the COIL-100 Dataset

At first glance, it seems difficult to recognize the objects

4.3 Empirical Results

Table 2 shows the recognition rates of SNoW-based
method, SVM-based method (using linear dot product for
the kernel function), and nearest neighbor classifier uiag
COIL-100 dataset. We vary the number of views of an object

in the COIL dataset because it consists of a large number (n) during training and use the rest of the viewa - n) of
of objects with varying pose, texture, shape and size. Since an object for testing.

each object has 72 images of different po$ésapart), many
view-based recognition methods use 36 of them for train-
ing (10° apart) and the remaining images for testing. How-
ever, we conjecture that this particular recognition peoibl

(36 poses for training and the rest 36 poses for testing) is

Table 2. Experimental results of three clas-
sifiers using the 100 objects in the COIL-
100 dataset

not difficult because of dense sampling. In other words, the - . Vie""g’bje“ - 5
data points of the same object are close to each other in the 3600 5400 5400 6800 7000
image space (where each data point represents an image of tests | tests | tests | tests | tesls
L : o : SNoW 95.81% | 92.31% | 85.13% | 81.46% | 75.49%
an object in a certain pose). Consequently, it is easier t0 — - reum 96.03% | 9130% | 84 80% | 78 50% | 72.81%
interpolate the data points in the subspace [9] and to con- ~Nearest Neighbor|| 98.50% | 87.54% | 79.52% | 74.63% | 65.31%

struct an optimal hyperplane to separate the points of two
classes [13] [14]. Our experiments with a simple nearest
neighbor classifier (using Euclidean distance) on this prob
lem show that the recognition rate48.50% (54 errors out

of 3600 tests). Although it is well known that nearest neigh-
bor method requires a lot of memory for storing templates
and requires a lot of template matching in recognition, the

The experimental results show that SNoW-based method
performs as well as SVM-based method when many views
of the objects are present during training and outperforms
SVM-based method when the numbers of views are limited.
On the other hand, the time to train a classifier using SNowW

recognition rate of this simple method is comparable to the is about86% of that to train one using SVM. Although it
complex SVM approaches [13] [14]. This experiment shows S not surprising to see that the recognition rate decreases
that the abovementioned recognition problem is not difficul  the number of views available during training decreases, it
and therefore not appropriate for comparison among differ- is worth noticing that both SNoW and SVM algorithms are
ent methods. Figure 2 shows some of the mismatched ob-capable of recognizing 3D objects in the COIL-100 dataset
jects by nearest neighbor method. with satisfactory performance if enough number of views
It is interesting to see that the pair of the objects in the (€.9.,> 18) are provided. Also, even if only a limited num-
mistakes made by the nearest neighbor classifiers have simber of views (e.g., 8 and 4) are used for training, the perfor-
ilar geometric configurations and similar poses. A close in- mance of both methods degrades gracefully. This indicates
spection shows that most of the recognition errors are made that both SNoW and SVM algorithms are robust and perform
between the three packs of chewing gums, bottles and cars.Well even when class size increases.
Consequently, the set of selected objects in an experiment ~ The idea of finding support vectors for the optimal hyper-
has direct effects on the recognition rate. However, most Plane in SVM-based method has an analogue to learning the
methods in the literature use only a subset of the 100 objects ‘relevant” features when the “irrelevant” features abound
(typically 20 to 30) from the COIL dataset for experiments. [N other words, SVM aims to determine the necessary input
Table 1 shows the recognition rates of nearest neighbor clas Vectors such that an optimal hyperplane can be constructed
sifiers in several experiments in which 36 poses of each ob- While reducing the risk to make a mistake in the future (i.e.,

ject are used for templates and the remaining 36 poses arestructural risk minimization). The essence of the SNoW al-
used for tests. gorithm is to identify the relevant features to construce& n

work of linear units based only on the relevant attributes.
Also, the number of mistakes made by this method grows
only logarithmically with the number of irrelevant attritas

in the examples. In the SVM-based methods, the ratio of the

Table 1. Recognition rates of nearest

neighbor classifier

30 objects 32 objects shown| Thewhole  support vectors over the number of input vectors is roughly
randomly selected in Figure 1 100 objects . .
from COIL selected by [13] | _in COIL 27.78% (20 out of 72) while the ratio of the relevant features
ErrorsiTests || T471080 | 46/1152 | 54/3600 over the number of possible features is abnar% (13,805
Recognition rate]| 9870% [ 96.00% | 98.50% out of 262,144). Caution should be observed in analyzing

these numbers since the number of possible features is usu-
ally much higher than the number of input vectors. These
The experimental results using 30 and 32 objects reveal ratios show that both methods are capable of determining
that the recognition problem when a large number of views what is necessary in recognizing the objects effectively.
of the objects are present during training is not as difficult Since the one-against-one scheme requires an exponen-
as it seemed to be. Thus, we perform experiments in which tial number of classifiers to be trained and stored, it is of
the number of views of objects are limited to compare the great interest to compare the performance with the alter-
performance of these learning methods. native one-against-the-rest scheme. Table 3 shows that al-
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(c) (31:80,79:85)

(d) (65:90,13:265)

(e) (65:270,13:265)

(f) (67:70,84:75)

(9) (69:80,91:75) (h) (76:80,23:255) (i) (96:260,69:85) (i) (98:270,99:195)
Figure 2. Mismatched objects by nearest neighbor method, where (z : a,y : b)) means that object
z with view angle a is recognized as object y with view angle b. It shows some of the 54 errors

(out of 3,600 test samples) made by the nearest neighbor classifier.

though the recognition rates of the SNoW-based classifiers [4]
trained with the alternative scheme are not as good as the

counterpart, the recognition rates do not decrease dadigtic 5]

Table 3. Recognition rates of SNoW using
two learning paradigms

6]

(71

| view/object
SNowW [ 36 ] 18 ] 8 [ 4 [ 2
one-against-one || 95.81% | 92.31% | 85.13% | 81.46% | 75.49%
one-against-the-rest” 90.52% | 84.50% | 81.85% | 76.00% | 72.6%

5 Discussion and Conclusion
[0

We have described a novel view-based method to rec-
ognize 3D objects using SNoW. Empirical results show (10
that the SNoW-based method outperforms other methods
in terms of recognition rates except for one case (i.e., 36
views). Furthermore, the computational cost to train a-clas
sifier using SNoW is less when using SVM.

For a fair comparison among different methods, this pa-
per uses pixel-based presentation in the experiments. Al-
though the current work achieves good recognition rates on [13]
the COIL-100 dataset when each image is represented as a
vector of pixel values, it is of great interest to use loca-fe (4]
tures as input vectors during training and testing. Feature
extraction alleviates the burden of classifiers in that tthey
not need to learn models from raw inputs. This is particu- [19]
larly important in dealing with complicated objects in larg
datasets. Local features such as geometric moments at mulq1¢]
tiple scales seem feasible and attractive since they encode
the objects in terms of more complex descriptors, yielding a

[11]

[12]

. . .7l
more compact representation. Our future work will use this
representation to recognize 3D objects.

[18]
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