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ABSTRACT

This paper describes a novel view-based algorithm for
3D object recognition using a network of linear units. The
SNoW learning architecture is a sparse network of linear
functions over a pre-defined or incrementally learned feature
space and is specifically tailored for learning in the presence
of a very large number of features. We use the pixel-level
representation in the experiments and compare the perfor-
mance of SNoW with Support Vector Machines and near-
est neighbor methods on 3D object recognition using the
100 objects in the Columbia Image Object Database (COIL-
100). Experimental results show that SNoW-based method
outperform SVM-based system in terms of recognition rate
and the computational cost involved in learning. The empir-
ical results also provide insight for practical and theoretical
considerations on view-based methods for 3D object recog-
nition.Keywords: View-Based Object Recognition, Support
Vector Machine, SNoW, Winnow

1 Introduction

View-based object recognition has attracted much atten-
tion in recent years. In contrast to methods that rely on pre-
defined geometric (shape) models for recognition, the prob-
lem is posed as one of matching appearance of an object
in a two-dimensional image against the compact models of
objects’ appearance learned from two-dimensional images
in which the objects appear in different poses and illumina-
tions. The appearance of an object is the combined effects
of its shape, reflectance properties, pose, and the illumina-
tion in the scene. Although shape and reflectance are intrin-
sic properties that do not change for any rigid object, pose
and illumination vary from one scene to another. The visual
learning problem is viewed as one to learn a compact model
of the object’s appearance under different poses and illumi-
nation conditions.

Among the methods on view-based object recognition,
parametric eigenspace [9] [10] and support vector machine
approaches [13] have demonstrated excellent recognition re-
sults on the COIL-20 and COIL-100 databases. Although
these systems can recognize objects in almost real-time, the
computational cost involved in learning is extremely high.
Consequently the methods in the literature use only small,
often unspecified, different subsets of objects from the whole
database for experiments, which makes it difficult to com-

pare the results. Furthermore, the training sets used in these
methods consist of images taken in nearby poses (usually10Æ apart). This particular experimental setup, as we will
show, makes the learning problem less challenging. It is of
great interest to compare the performance of these methods
when only a limited number of views of the objects are pre-
sented during training.

In this work, we propose a method that applies the SNoW
(Sparse Network of Winnows) learning algorithm [15] to
3D object recognition and compare the performance of our
method with the SVM and nearest neighbor methods. SNoW
is a sparse network of linear functions that utilizes the Win-
now update rule [7]. SNoW is specifically tailored to learn-
ing in domains in which the potential number of features
taking part in decisions is very large, but may be unknown
a priori. Some of the characteristics of this learning archi-
tecture are its sparsely connected units, the allocation offea-
tures and links in a data driven way, the decision mechanism
and the utilization of an feature-efficient update rule. SNoW
has been used successfully on a variety of large scale learn-
ing tasks in natural language processing [15] [4] and face
detection [16].

This paper is organized as follows. We review the re-
lated view-based methods that learn to recognize 3D objects
in Section 2. The motivation and the SNoW learning ar-
chitecture are discussed in Section 3. Section 4 presents
experimental results and compares the performance of the
proposed method with the SVM and nearest neighbor meth-
ods. We conclude this paper with comments on these learn-
ing methods and future work in Section 5.

2 Related Work

A number of view-based schemes have been developed to
recognize 3D objects. Poggio and Edelman [12] show that
3D objects can be recognized from the raw intensity values
in 2D images, which we will call here as the pixel-based
representation, using a network of generalized radial basis
functions. They argue and demonstrate that full 3D structure
of an object can be estimated if enough 2D views of the ob-
ject are provided. Turk and Pentland [19] demonstrate that
human faces can be represented and recognized by “eigen-
faces.” Representing a sample face image as a vector of pixel
values, the eigenfaces are the eigenvectors associated with
the largest eigenvalues which are computed from a covari-
ance matrix of the sample vectors. The attractive feature of
this work is that the eigenfaces can be learned from the sam-
ple images in pixel representation without any feature selec-



tion. The eigenspace approach has since been adopted in dif-
ferent vision tasks from face recognition to object tracking.
Murase and Nayar [9] [10] develop a parametric eigenspace
method to recognize 3D objects directly from their appear-
ance. For each object of interest, a set of images in which
the object appears in different poses is obtained as training
examples. Next, the eigenvectors are computed from the
covariance matrix of the training set. The set of images is
projected to a low dimensional subspace, spanned by a sub-
set of eigenvectors, in which the object is represented as a
manifold. A compact parametric model is constructed by
interpolating the points in the subspace. In recognition, the
image of a test object is projected to the subspace and the
object is recognized based on the manifold it lies on. Using
a subset of the Columbia Object Image Library (COIL-100),
they show that 3D objects can be recognized accurately from
their appearances in real-time.

Support vector machines (SVM) have also been applied
to 3D object recognition. Scholkopf [18] applies SVM to
recognize 3D objects in which 3D CAD models, such as an-
imals and chairs, are used for experiments. The results show
great promise of SVM in visual learning. Pontil and Verri
[13] also adopt SVM for 3D object recognition. They use
the COIL-100 dataset for experiments in which the training
sets consist of 36 images (one for every10Æ) for each of
the 32 objects and the test sets consist of the remaining 36
images for each object. For 20 experiments where the ob-
jects are randomly selected from the COIL-100, the system
achieves perfect recognition rate. Most recently, Roobaert
and Van Hulle [14] also use COIL-100 to train and compare
the performance of SVMs with different input representa-
tions. They also show the performance of the SVMs when
only a limited number of views of the objects are available
in training. Similar to [13], they only use a subset of the
COIL-100 dataset in the experiments. Also, both methods
uselinear SVMs to recognize objects using pixel-based rep-
resentation.

Note that the abovementioned methods learn to recog-
nize 3D objects from sample images of varying poses in
pixel-based representation. There exist numerous methods
that learn models of 3D objects or features such as outlines
[11], geometric moments [2], and local feature descriptors
[17]. The focus of this paper is to introduce a novel learn-
ing method for 3D object recognition using the raw intensity
values in the 2D images.

3 Motivation and Approach

Several learning methods have been developed to recog-
nize 3D objects from their appearances in varying poses. In
this section, we first review the Sparse Network of Winnows
(SNoW) learning algorithm. The SNoW learning architec-
ture is a sparse network of linear functions over a pre-defined
or incrementally learned feature space and is specifically tai-
lored for learning in the presence of a very large number of
features. We use the pixel-level representation in the experi-
ments and compare the performance of SNoW with Support
Vector Machines and nearest neighbor methods on 3D object
recognition using the 100 objects in the Columbia Image Ob-
ject Database (COIL-100). We then describe how we apply

SNoW learning algorithm to 3D object recognition, followed
by a discussion and comparison with the SVM algorithm.

3.1 The SNoW Architecture

The SNoW (Sparse Network of Winnows) learning ar-
chitecture is a sparse network of linear units over a common
pre-defined or incrementally learned feature space. Nodes
in the input layer of the network represent simple relations
over the input and are used as the input features. Each linear
unit is called atarget nodeand represents relations which
are of interest over the input examples. SNoW can be used
for two-class or multiple-class pattern recognition problem.
In this paper, the reason for using SNoW as two-class clas-
sifier is to have a fair comparison with SVM (which is de-
signed for a two-class pattern recognition problem). For a
two-class (A andB) problem, two target nodes are used,
one as a representation for patternA and the other for an
patternB. Similarly, n targets are used for an-class prob-
lem. Given a set of relations (i.e.,typesof features) that
may be of interest in the input image, each input image is
mapped into a set of features which areactive(present) in it;
this representation is presented to the input layer of SNoW
and propagates to the target nodes. Features may take ei-
ther binary values, just indicating the fact that the feature is
active (present), or real values, reflecting its strength; in the
current application, all features are binary. Target nodesare
linked via weighted edges to (some of the) input features.
LetAt = fi1; : : : ; img be the set of features that are active
in an example and are linked to the target nodet. Then the
linear unit isactiveif and only ifXi2At wti > �t
wherewti is the weight on the edge connecting theith feature
to the target nodet, and�t is its threshold.

In the current application a single SNoWunit which in-
cludes two subnetworks, one for each of the targets, is used.
For a two-class (A andB) problem, a given example is
treated autonomously by each target subnetwork; that is, an
image labeled as a patternA is used as a positive example
for the targetA and as a negative example for theB target,
and vice-versa. Similarly for an class problem, an image
labeled as ai is used as a positive example for targeti and
as a negative example for targetj, j = 1; : : : ; n; ; j 6= i,
and vice versa. The learning policy is on-line and mistake-
driven; several update rules can be used within SNoW. The
most successful update rule, and the only one used in this
work is a variant of Littlestone’s Winnow update rule [7];
this is a multiplicative update rule tailored to the situation in
which the set of input features is not known a priori, as in the
infinite attribute model [1]. This mechanism is implemented
via the sparse architecture of SNoW. That is, (1) input fea-
tures are allocated in a data driven way – an input node for
the featurei is allocated only if the featurei is active in the
input image and (2) a link (i.e., a non-zero weight) exists be-
tween a target nodet and a featurei if and only if i has been
active in an image labeledt. Thus, the architecture also sup-
ports augmenting the feature types from external sources in
a flexible way, an option we do not use in the current work.



The Winnow update rule has, in addition to the threshold�t at the targett, two update parameters: apromotionpa-
rameter� > 1 and ademotionparameter0 < � < 1. These
are used to update the current representation of the targett
(the set of weightswti ) only when a mistake in prediction is
made. LetAt = fi1; : : : ; img be the set of active features
that are linked to the target nodet. If the algorithm predicts0 (that is,

Pi2At wti � �t) and the received label is1, the
active weights in the current example arepromotedin a mul-
tiplicative fashion:8i 2 At; wti  � � wti :
If the algorithm predicts1 (

Pi2At wti > �t) and the re-
ceived label is0, the active weights in the current example
aredemoted: 8i 2 At; wti  � � wti :
All other weights are unchanged. The key feature of the
Winnow update rule is that the number of examples1 it re-
quires to learn a linear function grows linearly with the num-
ber of relevant features and only logarithmically with the
total number of features. This property seems crucial in do-
mains in which the number of potential features is vast, but
a relatively small number of them is relevant (this does not
mean that only a small number of them will be active, or have
non-zero weights). Winnow is known to learn efficiently any
linear threshold function and to be robust in the presence of
various kinds of noise and in cases where no linear-threshold
function can make perfect classification, and still maintain
its abovementioned dependence on the number of total and
relevant attributes [8] [6].

Once target subnetworks have been learned and the net-
work is evaluated, a decision support mechanism is em-
ployed, which selects the dominant active target node in the
SNoW unit via a winner-take-all mechanism to produce a fi-
nal prediction. In general, but not in this work, units’ output
may be cached and processed along with the output of other
SNoW units to produce a coherent output.

3.2 Learning 3D Objects with SNoW

In this paper, we apply the SNoW approach to 3D ob-
ject recognition. Our method makes use of Boolean fea-
tures that encode the positions and intensity values of pix-
els. Let the pixel at(x; y) of an image with widthw and
heighth have intensity valueI(x; y) (0 � I(x; y) � 255).
This information is encoded as a feature whose index is256 � (y � w + x) + I(x; y). This representation ensures
that different points in thefposition � intensityg
space are mapped to different features. (That is, the feature
indexed256�(y�w+x)+I(x; y) is activeif and only if the
intensity in position(x; y) is I(x; y).) In our experiments,
the values forw andh are 32 since each object sample has
been normalized to an image of32 � 32 pixels. Note that
although the number of potential features in our representa-
tion is262; 144 (32� 32� 256), only1024 of those are ac-
tive (present) in each example, and it is plausible that many1In the on-line setting [7] this is usually phrased in terms ofa
mistake-bound but is known to imply convergence in the PAC [20]
[5] (Probably Approximately Correct) sense.

features will never be active. Since the algorithm’s complex-
ity depends on the number of active features in an example,
rather than the total number of features, the sparseness also
ensures efficiency.

We compare the performance of the proposed SNoW-
based method with the SVM-based method in 3D object
recognition. Since SVM is a two-class classifier, one way
to recognize objects from multiple classes is to build a hy-
perplane for each pair of the objects. In the one-against-
one scheme, ann-class pattern recognition problem requiresn(n�1)2 binary classifiers to be trained using SVM. To clas-
sify test data, pair-wise competition between all the ma-
chines is performed which is similar to a tennis tournament.
The final winner determines the class of the test data. Al-
ternatively, the one-against-the-rest scheme requires only n
classifiers in that each classifier is trained with the sam-
ples belong to one class (with label 1) and the rest of the
samples as the another class (with label -1). The advan-
tage of this scheme is that the number of classifiers to be
trained and stored is linear in the number of classes involved,
as opposed to the other scheme which requires exponen-
tial number of classifiers. But the downside of this scheme
is that some test samples may not be classified into a sin-
gle class because the training samples are not partitioned
into two well-defined homogeneous classes. The recogni-
tion rates of SVM and SNoW based methods shown in Table
2 are performed using the one-against-one scheme. In other
words, we train

�1002 � = 4950 classifiers for each method.
Furthermore, every test sample needs to go through99
(50+25+12+6+3+2+1) classifiers to determine which class
it belongs to.

3.3 Support Vector Machine

Both SNoW and SVM have been proposed as new ma-
chine learning algorithms with theoretical derivations using
the VC (Vapnik-Chervonenkis) theorem. Vapnik [21] uses
the VC theory to show that SVM has an upper bound of the
error on the unseen test patterns as a function of error on
training and the VC dimension of the classifier. Littlestone
[7] also uses VC theory and shows that there is an upper
bound for the number mistakes before the Winnows learns a
concept (i.e., converges). SVM and SNoW have also been
applied to various problems in natural language processing
to hand digit recognition. Recently, SVM-based methods
have demonstrated good performance in 3D object recogni-
tion [18] [13] [14]. We compare the performance of SNoW
and SVM algorithms for 3D object recognition. In this sec-
tion, we briefly review SVM approach.

Support Vector Machine (SVM), developed by Vapnik
and colleagues, is a learning method for pattern recognition
and regression problems [21] [3]. One characteristic of SVM
is that it aims to find an optimal hyperplane such that the ex-
pected recognition error for the unseen data points is mini-
mized. According to the structural risk minimization induc-
tive principle, a function that describes the training datawell
and belongs to a set of functions with lowest VC dimension
will generalize well regardless of the dimensionality of the
input space [3]. Based on this principle, the SVM is a sys-
tematic approach to find a linear function that belongs to a



Figure 1. Columbia Obje
t Image Library (COIL-100) 
onsists of 100 obje
ts of varying poses(5Æ apart). The obje
ts are shown in row order where the highlighted ones are 
onsidered morediÆ
ult to re
ognize in [13℄.
set of functions with lowest VC dimension. The SVM also
provides non-linear function approximations by mapping the
input vectors into a high dimensional feature space where a
linear hyperplane can be constructed. Although there is no
guarantee that that a linear hyperplane will always exist in
the high dimensional feature space, it is likely to find a lin-
ear separator (i.e., hyperplane in a SVM) in the projected
space.

Given a set of samples(x1; y1), (x2; y2), : : : , (xl; yl)
wherexi (xi 2 RN ) is the input vector ofN dimension andyi is its label (yi 2 f�1; 1g) for regression problem, SVM
aims to find a optimal hyperplane that leaves the largest pos-
sible fraction of data points of the same class on the same
side while maximizes the distance of either class from the
hyperplane (margin distance). Vapnik [21] shows that max-
imizing the margin distance is equivalent to minimizing the
VC dimension in constructing an optimal hyperplane. The
problem of finding the optimal hyperplane is thus posed as a
constrained optimization problem in SVM and solved using
the quadratic programming techniques. The optimal hyper-
plane, which determines the class of a data pointx, is in the
form f(x) = sgn( lXi=1 yi�i � k(x;xi) + b)
wherek(�; �) is a kernel function andsgn is a threshold func-
tion (with threshold value = 0) to determine the label of an
input vector. Constructing an optimal hyperplane is equiv-
alent to determining nonzero�i. Any vectorxi that cor-
responds to a nonzero�i is a supported vector(SV) of the
optimal hyperplane. One feature of SVM is that the num-
ber of support vectors is usually small, thereby producing a
compact classifier.

For a linear SVM, the kernel function is just the simple
dot product of vectors in the input space while the kernel
function in a nonlinear SVM projects the samples to a feature
space of higher (possibly infinite) dimensions via a nonlinear
mapping function: : RN ! FM ; M � N
and construct a hyperplane inFM . The motivation is that
it is more likely to find a linear function, as done in linear
SVM, in the high dimensional feature space. Using Mercer
theorem, the expensive calculations in projecting samples

into high dimensional feature space can be reduced signif-
icantly by using a suitable functionk such thatk(x;xi) =  (x) �  (xi)
where is a nonlinear projection function. Several ker-
nel functions, such as polynomial functions and radial basis
functions, have been shown to satisfy Mercer theorem and
been used in nonlinear SVM. By using different kernel func-
tions, the SV algorithm can construct a variety of learning
machines, some of which coincide with classical architec-
tures. However, this also results in a drawback since one
needs to find the “right” kernel function in using nonlinear
SVM. SVM is also more prone to outliers in the data than
mistake bound methods.

4 Experiments

We use the COIL-100 dataset to test our method and
compare its performance with other view-based methods in
the literature. In this section, we first describe the charac-
teristics of the COIL-100 dataset and then show and com-
pare the performance of several methods in numerous exper-
iments, followed by comments on the empirical results.

4.1 Dataset and Experimental Setups

We use the Columbia Object Image Library (COIL-
100) database for experiments (available at http: //
www.cs.columbia.edu/ CAVE/ coil-100.html). The COIL-
100 dataset consists contains color images of 100 objects
where the images of the objects were taken at pose intervals
of 5Æ, i.e., 72 poses per object. The images were also nor-
malized such that the larger of the two object dimensions
(height and width) fits the image size of128 � 128 pixels.
Figure 1 shows the images of the 100 objects taken in frontal
view, i.e., zero pose angle. The 32 highlighted objects in
Figure 1 are considered more difficult to recognize in [13]
and are also used in our experiments. Each color image is
converted to a gray-scale image of32 � 32 pixels for our
experiments.

We approach the recognition problem by considering
each of the pixel values in a sample image as a coordinate
in a high dimensional space (i.e., the image space). Conse-
quently, each training and testing sample consists of 1,024
components. In this paper, we assume that the illumination
conditions remain constant and hence object pose is the only



variable of interest (which is true for the objects in the COIL-
100 dataset).

4.2 Ground Truth of the COIL-100 Dataset

At first glance, it seems difficult to recognize the objects
in the COIL dataset because it consists of a large number
of objects with varying pose, texture, shape and size. Since
each object has 72 images of different poses (5Æ apart), many
view-based recognition methods use 36 of them for train-
ing (10Æ apart) and the remaining images for testing. How-
ever, we conjecture that this particular recognition problem
(36 poses for training and the rest 36 poses for testing) is
not difficult because of dense sampling. In other words, the
data points of the same object are close to each other in the
image space (where each data point represents an image of
an object in a certain pose). Consequently, it is easier to
interpolate the data points in the subspace [9] and to con-
struct an optimal hyperplane to separate the points of two
classes [13] [14]. Our experiments with a simple nearest
neighbor classifier (using Euclidean distance) on this prob-
lem show that the recognition rate is98:50% (54 errors out
of 3600 tests). Although it is well known that nearest neigh-
bor method requires a lot of memory for storing templates
and requires a lot of template matching in recognition, the
recognition rate of this simple method is comparable to the
complex SVM approaches [13] [14]. This experiment shows
that the abovementioned recognition problem is not difficult
and therefore not appropriate for comparison among differ-
ent methods. Figure 2 shows some of the mismatched ob-
jects by nearest neighbor method.

It is interesting to see that the pair of the objects in the
mistakes made by the nearest neighbor classifiers have sim-
ilar geometric configurations and similar poses. A close in-
spection shows that most of the recognition errors are made
between the three packs of chewing gums, bottles and cars.
Consequently, the set of selected objects in an experiment
has direct effects on the recognition rate. However, most
methods in the literature use only a subset of the 100 objects
(typically 20 to 30) from the COIL dataset for experiments.
Table 1 shows the recognition rates of nearest neighbor clas-
sifiers in several experiments in which 36 poses of each ob-
ject are used for templates and the remaining 36 poses are
used for tests.Table 1. Re
ognition rates of nearestneighbor 
lassi�er

30 objects 32 objects shown The whole
randomly selected in Figure 1 100 objects

from COIL selected by [13] in COIL

Errors/Tests 14/1080 46/1152 54/3600
Recognition rate 98.70% 96.00% 98.50%

The experimental results using 30 and 32 objects reveal
that the recognition problem when a large number of views
of the objects are present during training is not as difficult
as it seemed to be. Thus, we perform experiments in which
the number of views of objects are limited to compare the
performance of these learning methods.

4.3 Empirical Results

Table 2 shows the recognition rates of SNoW-based
method, SVM-based method (using linear dot product for
the kernel function), and nearest neighbor classifier usingthe
COIL-100 dataset. We vary the number of views of an object
(n) during training and use the rest of the views (72� n) of
an object for testing.Table 2. Experimental results of three 
las-si�ers using the 100 obje
ts in the COIL-100 dataset

view/object
36 18 8 4 2

3600 5400 6400 6800 7000
tests tests tests tests tests

SNoW 95.81% 92.31% 85.13% 81.46% 75.49%
Linear SVM 96.03% 91.30% 84.80% 78.50% 72.81%
Nearest Neighbor 98.50% 87.54% 79.52% 74.63% 65.31%

The experimental results show that SNoW-based method
performs as well as SVM-based method when many views
of the objects are present during training and outperforms
SVM-based method when the numbers of views are limited.
On the other hand, the time to train a classifier using SNoW
is about86% of that to train one using SVM. Although it
is not surprising to see that the recognition rate decreasesas
the number of views available during training decreases, it
is worth noticing that both SNoW and SVM algorithms are
capable of recognizing 3D objects in the COIL-100 dataset
with satisfactory performance if enough number of views
(e.g.,> 18) are provided. Also, even if only a limited num-
ber of views (e.g., 8 and 4) are used for training, the perfor-
mance of both methods degrades gracefully. This indicates
that both SNoW and SVM algorithms are robust and perform
well even when class size increases.

The idea of finding support vectors for the optimal hyper-
plane in SVM-based method has an analogue to learning the
“relevant” features when the “irrelevant” features abound.
In other words, SVM aims to determine the necessary input
vectors such that an optimal hyperplane can be constructed
while reducing the risk to make a mistake in the future (i.e.,
structural risk minimization). The essence of the SNoW al-
gorithm is to identify the relevant features to construct a net-
work of linear units based only on the relevant attributes.
Also, the number of mistakes made by this method grows
only logarithmically with the number of irrelevant attributes
in the examples. In the SVM-based methods, the ratio of the
support vectors over the number of input vectors is roughly27:78% (20 out of 72) while the ratio of the relevant features
over the number of possible features is about5:27% (13,805
out of 262,144). Caution should be observed in analyzing
these numbers since the number of possible features is usu-
ally much higher than the number of input vectors. These
ratios show that both methods are capable of determining
what is necessary in recognizing the objects effectively.

Since the one-against-one scheme requires an exponen-
tial number of classifiers to be trained and stored, it is of
great interest to compare the performance with the alter-
native one-against-the-rest scheme. Table 3 shows that al-



(a) (8:80,23:85) (b) (27:80,42:75) (c) (31:80,79:85) (d) (65:90,13:265) (e) (65:270,13:265)

(f) (67:70,84:75) (g) (69:80,91:75) (h) (76:80,23:255) (i) (96:260,69:85) (j) (98:270,99:195)Figure 2. Mismat
hed obje
ts by nearest neighbor method, where (x : a; y : b) means that obje
tx with view angle a is re
ognized as obje
t y with view angle b. It shows some of the 54 errors(out of 3,600 test samples) made by the nearest neighbor 
lassi�er.
though the recognition rates of the SNoW-based classifiers
trained with the alternative scheme are not as good as the
counterpart, the recognition rates do not decrease drastically.Table 3. Re
ognition rates of SNoW usingtwo learning paradigms

view/object
SNoW 36 18 8 4 2

one-against-one 95.81% 92.31% 85.13% 81.46% 75.49%
one-against-the-rest 90.52% 84.50% 81.85% 76.00% 72.6%

5 Discussion and Conclusion

We have described a novel view-based method to rec-
ognize 3D objects using SNoW. Empirical results show
that the SNoW-based method outperforms other methods
in terms of recognition rates except for one case (i.e., 36
views). Furthermore, the computational cost to train a clas-
sifier using SNoW is less when using SVM.

For a fair comparison among different methods, this pa-
per uses pixel-based presentation in the experiments. Al-
though the current work achieves good recognition rates on
the COIL-100 dataset when each image is represented as a
vector of pixel values, it is of great interest to use local fea-
tures as input vectors during training and testing. Feature
extraction alleviates the burden of classifiers in that theydo
not need to learn models from raw inputs. This is particu-
larly important in dealing with complicated objects in large
datasets. Local features such as geometric moments at mul-
tiple scales seem feasible and attractive since they encode
the objects in terms of more complex descriptors, yielding a
more compact representation. Our future work will use this
representation to recognize 3D objects.
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