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Abstract 
This paper proposes a computationally fast scheme 

for denoising a video sequence. Temporal processing 
is done separately from spatial processing and the two 
are then combined to  get the denoised frame. The 
temporal redundancy is exploited using a scalar state 
1-D Kalman filter. A novel way is proposed to  esti- 
mate the variance of the state noise from the noisy 
frames. The spatial redundancy is exploited using an 
adaptive edge-preserving Wiener filter. These two es- 
timates are then combined using simple averaging to  
get the final denoised frame. Simulation results for 
the foreman, trevor and susie sequences show an im- 
provement of 6 to  8 dB in PSNR over the noisy frames 
at  PSNR of 28 and 24 dB. 

1 Introduction 
Noise gets added to  video in the process of record- 

ing it. This problem is even more acute when con- 
verting from video on analog tapes to  video in digital 
format. Noise is undesirable not only because it de- 
grades the visual quality of the video but also because 
it degrades the performance of subsequent processing 
such as compression. 

In [1] a spatiotemporal Kalman filter based ap- 
proach to  denoising video is described. Their ap- 
proach requires a 3-D AR model for the the image 
sequence. Results are presented with the parameters 
of this model estimated from the original clean video 
sequence. Also, the dimensionality of the state vector 
at each pixel is high (consisting of a causal spatiotem- 
poral support around each pixel). This increases the 
amount of computation as well as storage required for 
processing each frame. 

In [Z] a temporal motion compensated adaptive lin- 
ear MMSE filter is proposed. The motion estimates 
are obtained using a robust algorithm proposed by Fo- 
gel [3]. The noisy pixel value and two pixels each in 
the past and future along the motion trajectory of this 
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pixel are used to  compute the local statistics. The de- 
noised estimate is obtained using the same approach as 
used by Kuan [7] for spatial adaptive "linear" MMSE 
filtering (the final estimate is actually non-linear after 
incorporating these statistics). The motion estimation 
algorithm has high computational cost and four mo- 
tion vectors (8 values) need to  be stored for each pixel 
in addition to  storing the frames. 

In [4] an adaptive weighted averaging filter is pro- 
posed. This approach relies on the fact that averaging 
pixels in a spatiotemporal neighborhood (after motion 
compensation) of a given pixel gives good estimates 
if these pixels have nearly same intensity (except the 
variation due to  noise). A pixel differing in intensity 
by more than a threshold (decided by noise variance) 
from the pixel of interest is considered an outlier and 
is not used in the averaging. Other pixels are weighed 
according to  how much they differ from the current 
pixel value. This scheme is especially suited for low 
SNRs and abruptly changing scene content. 

In [5]  the minimum mean absolute difference 
(MAD1) block or the block at the same location 
(MADO) in the previous (or next) frame is chosen as 
the temporal neighbor of current block depending on a 
threshold on MADO/MADl and also on MADO. The 
idea is to  make sure that the match is not due to  
matching of noises in the two blocks in which case 
averaging (which is used to  get the denoised block) 
would be ineffective. 

A comprehensive review of video denoising tech- 
niques can be found in [6] .  

In our scheme, temporal and spatial processing for 
the current frame are done separately and then com- 
bined. The temporal redundancy is exploited using 
a 1-D Kalman filter. The state of the Kalman fil- 
ter a t  each pixel is a scalar viz. pixel intensity value. 
The pixel at the previous instant in the motion trajec- 
tory of the current pixel is taken as the previous state. 
We describe a novel way of adaptively estimating the 
variance of state noise without resorting to  the orig- 
inal clean frames. We use simple integer pixel block 

0-7803-5467-2/99/$10.00 (0 1999 IEEE 
152 

mailto:dugad@vision.ai.uiuc.edu


Original n=time O r i g i n a l  
Frame I,-l Frame In r7-1 r n 0 t l D r l  trajectory .__ 

,---- . - - ~  .-*~ - - ~  -... 
, I ,  
I # ,  

_ _ _ A - - - - L . - _ J _ _ . _  
, I ,  
, I ,  
8 8 ,  
, I ,  

___, ___. 
I ,  
I ,  
I ,  
I ,  

_ _ _  

x,-1 = 1,-1(*) x, = In(*) 
Figure 1: System Model for establishing the Kalman 
Filtering Equations. 
matching for estimating the motion vectors. The spa- 
tial redundancy is exploited using the adaptive edge- 
preserving Wiener filter proposed by Kuan [7]. These 
two estimates are then combined using simple averag- 
ing to  get the final denoised frame. Separation of tem- 
poral and spatial processing, simple block matching 
for motion estimation and scalar state of the Kalman 
filter make our scheme computationally fast. Also only 
the previous frame and two values per pixel of current 
frame (for Kalman filter) are required to be stored 
apart from the current frame. PSNR performance of 
our scheme for the foreman, trevor and susie sequences 
is comparable to the results in [l, 2, 41 at much less 
computational and memory requirements. 

2 Temporal Kalman Filtering 
Figure 1 shows the setup of our system. n denotes 

the discrete instants of time at which the video frames 
arrive. Consider tracking the motion of a point object 
denoted by an asterisk in the figure. The intensity of 
this object in the current (original) frame I ,  is denoted 
by X ,  and that in the previous (original) frame I,-1 
is denoted by X,-l. Ideally X, = X,-l but due to  
error in estimating the motion trajectory or due to  
other reasons like change in illumination we have 

x, = x,-1 + U, 

where U, represents the error or innovation in X, 
compared to X,_l. We shall call U, as the motion 
noise and model it as zero mean Gaussian and inde- 
pendent from one pixel location to another and also 
independent over time. We shall see soon how the 
motion trajectory and statistics of U, are computed. 

Usually the original intensity values get corrupted 
by noise in the process of recording the video and 
hence our observation of the intensity X, is given by 

Y, = x, + v, 
where V, represents the undesirable noise that we are 
interested in removing. V,, is also modeled as zero 

(1) 

(2) 

mean Gaussian and independent over space and time 
(AWGN) and independent of U,. We note that Eqs. 
(1) and (2) can be set up at each pixel location in the 
current frame I,. 

Eqs. (1) and (2) are ideally suited for application 
of a Kalman filter t o  estimate the actual intensity 
(state) X ,  given all of the past and current observa- 
tion Y(,) = {Yo,. . . , Y,}. The Kalman filter actually 
gives an iterative procedure to compute the best (in 
MSE sense) linear estimate of X, given Y(,), How- 
ever t o  be able to apply the Kalman filter we need to 
know the motion trajectories and the following statis- 
tics for all pixels in the current frame: (a) E[Xo] and 
var(X0). For practical implementation we can take Xo 
as y0 and var(Xo) as zero. However it is found exper- 
imentally that after about 20 frames the initial esti- 
mates are inconsequential : the Kalman filter reaches 
about the same PSNR irrespective of the initial esti- 
mates. (b) var(V,). This is the variance of the unde- 
sirable recording noise. For the purpose of this paper 
we shall assume that this is known but it can be easily 
estimated. (c) var(U,). This is computed as described 
next. 

Before describing how the variance of motion noise 
is estimated, consider how the motion trajectories are 
determined. Divide the current frame into 8 x 8 
blocks as shown in Fig. 1. Consider one such block 
say B, in the current frame and find its motion com- 
pensated block (integer pixel) in the previous frame 
i.e. find the 8 x 8 block B,_l in the previous frame 
that is closest t o  B, in the mean square sense. Then 
a given pixel in B, corresponds to the corresponding 
pixel in B,-1. This gives the motion trajectory for all 
pixels in the current frame. 

The motion noise arises due to  error in estimat- 
ing the true motion or due to  change in illumination 
or scene change etc. From Eq. (1) we see that the 
motion noise represents the change in the intensity of 
the point object as it moves. We do not have access 
to the original frames and hence to  alleviate the ef- 
fect of recording noise we shall estimate var(U,) as 
( p r L  - pn-1)2 where p, = mean(B,) is the maximum 
likelihood estimate of X, assuming all X, are same 
in block B, and similarly for f i n - >  = mean(B,,-1). 
Then under some conditions (pn - pn-l)' is the best 
estimate of var(U,). 

Now we have completely defined our system. To es- 
timate X, we apply the Kalman filtering equations. A 
further improvement is obtained by using the denoised 
version of previous frame (which is available when pro- 
cessing the current frame) for calculating the motion 
vectors for current frame. 
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3 Combining the Kalman and Wiener 
Estimates 

We use the spatial domain adaptive edge-preserving 
Wiener filter proposed by Kuan [7] to  exploit the spa- 
tial correlation in each video frame. The Wiener- 
denoised frames are then combined (as described be- 
low) with Kalman-denoised frames obtained as de- 
scribed in the previous section. We use a 3 x 3 win- 
dow for implementing the Wiener filter. In most cases 
the Wiener filter does better than the Kalman filter. 
However one can outsmart both by combining them 
as described next. 

Since the Kalman and Wiener filters employ inde- 
pendent algorithms and also work along spatial and 
temporal directions respectively it would reasonable 
to  assume that the error due to  the two filters are 
uncorrelated. The errors are zero mean since each is 
an unbiased estimator. We know that averaging two 
uncorrelated unbiased estimates of a signal gives an 
unbiased estimate which has 3 dB less MSE compared 
to  the average of the MSEs of individual estimators. 

Hence one way to  combine the two estimates is 
t o  simply average the denoised frames obtained from 
Wiener and Kalman filters working independently. 
This simple scheme typically yields more than 1 dB 
improvement in the PSNR compared to  either filter. 
This scheme will be referred to  as “average” scheme. 

Another way to  combine the two estimates is to  use 
Wiener denoised version of the current frame and de- 
noised (according to  this scheme) version of previous 
frame for estimating the motion vectors. The Kalman 
filtering scheme using these motion vectors will be re- 
ferred to  as “kalman-joint” scheme. These kalman- 
joint estimate and the Wiener estimate for the current 
frame are averaged to  get the final denoised frame. 
This scheme will be referred to  as the “joint” scheme. 

4 Results 
The following table gives the IPSNR (improvement 

in PSNR compared to  the PSNR of corresponding 
noisy frame) values averaged over 10 frames for the 
foreman (FR), trevor (TR) and susie (SU) sequences 
at 28 dB (E std. dev. 10) and 24 dB (E std. dev. 
16) PSNR of noisy frames. Kal, wnr, avg, jnt and kal- 
jnt refer to  the kalman filtering scheme of Section 2, 
and the Wiener, average, joint and the kalman-joint 
schemes of Section 3. Note (1) The avg scheme does 
about 1 dB better over the best of kal and wnr (2) jnt 
does much better compared to  avg especially at low 
PSNR (3) kal-jnt performs better compared to  wnr at 
low PSNR. Figure 1 shows the IPSNR variation for 
the foreman sequence. Note that the kal-jnt scheme 
borrows knowledge from the wiener filter only to  esti- 

mate the motion vectors; the updating is done using 
kalmanfilter. This supports the argument that a video 
sequence normally has much more temporal correla- 
tion compared to  spatial correlation. How much we 
can exploit the temporal correlation depends largely 
on how accurate motion estimates we can get. 

Figures 2(a)-2(f) show the results for the trevor se- 
quence. Note that the Kalman solution retains much 
of the texture of the shirt-strips and the background 
compared to  the Wiener solution even though it has 
much lower PSNR. 

Figure 3 shows results for the susie sequence. Com- 
paring figures 3(c) and 3(d) we see that the Kalman 
solution is visually better compared to  Wiener solu- 
tion. Also it retains more texture of the hair region 
compared to  the Wiener solution. 

Detailed results can also be found at 
http://vision. ai. uiuc. edu/”dugad/draft/icipggdenoise. html. 
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Seq. frames PSNR kal wnr 
FR 141-150 28 3.7 4.2 
FR 141-150 24 4.9 5.0 
TR. ai-4n 28 3.8 4.6 

avg jnt kaljnt  
5.5 5.6 3.9 
6.5 6.9 5.8 
5.5 5.7 4.3 

2.61 
1W 105 110 116 120 125 130 135 140 145 160 

l'arnen"mPsr-> 

Figure 1: Foreman sequence at 24 dB PSNR. 
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31-40 24 4.7 5.8 6.6 7.2 6.1 
75-84 28 4.0 5.3 6.1 6.5 4.9 
75-84 24 4.8 6.1 6.9 7.7 6.4 

2(f) joint 
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(g) original (h) Kalman (joint) 
Figure 3: Frame 84 of susie sequence with 24 dB PSNR. (a) original (b) noise added (c) Wiener solution using a 
3 x 3 window. (d) Kalman solution working independently of the Wiener solution. (e) average of ( c )  and (d). ( f )  
using Kalman and Wiener filter jointly. (g) original (h) Kalman solution for the joint case. 
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