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Abstract

This paper presents a new approach for representing
multidimensional data by a compact number of bases. We
consider the multidimensional data as tensors instead of
matrices or vectors, and propose a Tensor Rank-One De-
composition (TROD) algorithm by decomposing Nth-order
data into a collection of rank-1 tensors based on multilin-
ear algebra. By applying this algorithm to image sequence
compression, we obtain much higher quality images with
the same compression ratio as Principle Component Analy-
sis (PCA). Experiments with gray-level and color video se-
quences are used to illustrate the validity of this approach.

1. Introduction

In computer vision and graphics, we often encounter
multidimensional data, such as images, video, range data
and medical data such as CT and MRI. Each dimension is
associated with a variation along this direction. For exam-
ple, a color image can be considered as 3D data, two of the
dimensions (rows and columns) being spatial, and the third
being spectral (color), while a color video sequence can be
considered as 4D data, time being the fourth dimension be-
sides spatial and spectral. How to compactly represent the
data using a limited number of bases is an active research
problem.

Traditional methods to reduce the dimensionality of the
multidimensional data are usually to reshape the data into
vectors or matrices in order to apply the classical second or-
der array processing methods. One example of these meth-
ods is Principle Component Analysis (PCA), which has been
widely used, e.g., for face recognition [13] and represent-
ing 3D geometric animation sequences [1]. The spatial di-
mensions (image matrix in [13] and 3D coordinates in [1])
are regularized into row vectors before PCA is applied. One
resulting limitation of this is that the spatial redundancies
among the values of image matrix or 3D coordinates are

not investigated. For example, when the number of training
images is small in face recognition, PCA captures mostly the
temporal redundancy in corresponding pixels in the training
images. To overcome this problem, Shashua and Levin [12]
recently proposed representing a collection of images using
a set of rank-1 matrices. They represented an image using a
matrix instead of forcing it into a vector in order to capture
the spatial redundancy. Their approach is aimed at data of
dimensionality 3 or less.

In this paper, we consider the multidimensional data as
a tensor (first order data as vector, second order data as ma-
trix, and third or higher order data as tensor), and propose
a new algorithm to decompose a tensor into a set of rank-1
tensors based on multilinear algebra. This allows process-
ing data in arbitrary dimensions.

2. Related Work

Our approach belongs to the class of image/video cod-
ing methods that use a compact set of basis functions.
PCA [13, 1] is used to find a set of mutually orthogonal
basis functions which capture the largest variation in the
training data. Independent Component Analysis (ICA) is
another method used for image coding. ICA [3] model is a
generative model, which describes how the images are gen-
erated by a process of mixing a set of independent com-
ponents. ICA is very closely related to Blind Source Sep-
aration (BSS) [5]. There are many other methods, such as,
minimum entropy coding [2], sparse coding using simple-
cell receptive field properties [10] and rank-1 matrix cod-
ing [12]. All these image coding methods consider each
image as a vector or matrix. It is not trivial to extend these
methods to higher dimensional data.

We propose using multilinear algebra for coding N th or-
der multidimensional data. Recently, multilinear algebra
has been studied by many researchers, and applied to psy-
chology, chemometric and signal processing [4]. Higher-
Order Singular Value Decomposition (HOSVD) based on
multilinear algebra has recently been used in some com-
puter vision problems, such as motion signature analy-

0-7695-2128-2/04 $20.00 (C) 2004 IEEE



sis [14] and face recognition [15] by Vasilescu et.al,
and facial expression decomposition [17] by the authors.
Moreover, the approaches of the best rank-1 or best rank-
(R1, R2, . . . , RN ) approximation of higher-order tensors
have been studied [6, 8]. Lower-rank tensor approxima-
tion has been applied to noise reduction in color images by
treating it as a third order tensor [9] and performing dimen-
sionality reduction of image ensembles [16]. However, the
root mean square error (RMSE) of the reconstructed im-
ages using lower-rank tensor approximation is larger than
that obtained by PCA [16]. In this paper, we focus on ten-
sor rank-one decomposition instead of tensor rank-one ap-
proximation. The RMSE of reconstructed images using our
method is much smaller than that obtained by PCA for the
same compression ratio.

3. Tensor Rank-One Decomposition

3.1. Overview of Multilinear Algebra

In this section, we first introduce the relevant prelimi-
nary material concerning multilinear algebra. A high-order
tensor is represented as: A ∈ �I1×I2×...×IN . Like SVD

for matrices, HOSVD has been recently developed for ten-
sors [7]. Any tensor A can be expressed as the product:

A = S ×1 U (1) ×2 U (2) × · · · ×N U (N) (1)

where, S is a I1 × I2 × . . . × IN tensor of which the
subtensors Sin=α have the properties of all-orthogonality
and ordering based on the Frobenius-norms ‖Sin=α‖, and
U (n) = (U (n)

1 U
(n)
2 . . . U

(n)
In

) is a unitary (In × In) matrix.
S, known as core tensor, is in general a full matrix (not
pseudodiagonal). U (n) provides directions of maximal ori-
ented energy along the nth mode. Unfolding a tensor A
along the nth mode is denoted as uf(A, n). [8, 7, 6] are
good sources of details of multilinear algebra.

The n-rank of A, denoted by Rn = rankn(A), is the
dimension of the vector space spanned by the n-mode vec-
tors. An Nth-order tensor has rank 1 when it equals the outer
product of N vectors U1, U2, . . . , UN , i.e., ai1i2...iN

=
u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

, for all values of the indices, written as:

A = U (1) ◦ U (2) ◦ · · · ◦ U (N)

3.2. Tensor Rank-One Decomposition Algorithm

Given a real Nth-order tensor A ∈ �I1×I2×...×IN , we
find scalars λi and unit-norm vectors U

(1)
i , U

(2)
i , . . . U

(N)
i ,

such that the new tensor is the summation of a collection of
rank-1 tensors, i.e.,

Ã =
r∑

i=1

λiU
(1)
i ◦ U

(2)
i ◦ . . . ◦ U

(N)
i (2)

where r is the number of rank-1 tensors. This new tensor is
an optimal solution in the sense that it minimizes the least-
squares cost function:

f(Ã) =
∥∥∥A− Ã

∥∥∥
2

(3)

To obtain an optimal solution, we propose an iterative
tensor rank-one decomposition algorithm given toward the
end of this section. The basic idea is first to find a best rank-
1 tensor approximation of the original tensor A, i.e.,find a
scalar λ1 and U

(1)
1 , U

(2)
1 , . . . , U

(N)
1 , and then find the resid-

ual tensor Â = A−λ1U
(1)
1 ◦U

(2)
1 ◦ · · · ◦U

(N)
1 , which is the

difference between the reconstructed and original tensors.
Repeating the process using the residual tensor Â , we can
find a second rank-1 tensor, and so on.

To find a rank-1 approximation of the original tensor, we
use a formulation similar to that used in [8, 6]. A new
least-squares cost function, which minimizes the distance
between A and its approximation Â on the rank-1 manifold,
is defined as:

f(Â) =
∥∥∥A− Â

∥∥∥
2

, s.t.
∑

in

(u(n)
in

)2 = 1 (4)

where 1 ≤ n ≤ N .
We apply the Alternative Least Square (ALS) and the La-

grange multipliers techniques to obtain the best rank-1 ten-
sor, i.e., in each iteration we optimize only for one of the
scalars λi and one of the vectors U

(1)
i , U

(2)
i , · · · , U (N)

i , 1 ≤
i ≤ r, while keeping other vectors constant. From the La-
grange equations, we can obtain:

λi = A× 1U
(1)T

i × 2U
(2)T

i × · · · × NU
(N)T

i (5)

The vectors are updated as:

U
(n)
i,j+1 = A× 1U

(1)T

i,j+1 × · · · × n−1U
(n−1)T

i,j+1 ×
n+1U

(n+1)T

i,j × · · · × NU
(N)T

i,j

with the constraint of
∥∥∥U

(n)
i,j

∥∥∥ = 1. This equation can also

be expressed in matrix format for the ease of implementa-
tion:

U
(n)
i,j+1 = A⊗(U (1)

i,j+1⊗· · ·⊗U
(n−1)
i,j+1 ⊗U

(n+1)
i,j ⊗· · ·⊗U

(N)
i,j ),

where ⊗ represents Kronecker product, denoted as
kr(U (1)

i,j+1, · · · , U (n−1)
i,j+1 , U

(n+1)
i,j , · · · , U (N)

i,j ).

We use HOSVD to initialize the U
(0)
n as in [8] even though

this approximation is not necessarily the globally optimal
one. Regalia and Kofidis [11] recently proposed an alternate
initialization strategy and gave a simple convergence proof
for the rank-1 tensor approximation problem.
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Figure 1. The first component (color images)
of the first 4 rank-one tensors obtained by
our algorithm for the video sequence used in
Figure 4.

Our tensor rank-one decomposition algorithm is as fol-
lows:

Algorithm 1: Tensor Rank-One Decomposition
Data: Given an Nth-order tensor, A, and the number

of rank-1 tensors, r

Result: find λi and Uk
i , (1 ≤ i ≤ r, 1 ≤ k ≤ N)

Initialize small positive value, ε, and the maximum
number of iterations, κ;

for i = 1 : r do
U

(0)
n = HOSVD(A), 2 ≤ n ≤ N ; we use

HOSVD to initialize the dominant left singular
vector of unfolded matrices;
while j < κ & (δu1 > ε|δu2 > ε|...|δuN > ε)
do

U
(1)
i,j+1 =

uf(A, 1) · kr(U (2)
i,j , U

(3)
i,j , · · · , U (N)

i,j );

U
(1)
i,j+1 = U

(1)
i,j+1/norm(U (1)

i,j+1);

δu1 = norm(U (1)
i,j+1 − U

(1)
i,j );

· · ·
U

(N)
i,j+1 =

uf(A, N) · kr(U (1)
i,j+1, · · · , U (N−1)

i,j+1 );

U
(N)
i,j+1 = U

(N)
i,j+1/norm(U (N)

i,j+1);

δuN = norm(U (N)
i,j+1 − U

(N)
i,j );

λi = norm(U (N)
i,j+1);

A = A− λiU
(1)
i,j+1 ◦ U

(2)
i,j+1 ◦ · · · ◦ U

(N)
i,j+1;

end
end

The algorithm presented by Shashua and Levin [12] is
a special case of our algorithm in that it can be considered
as an equivalent formulation of the triadic decomposition
problem by considering only the p slices of A as a collect
of matrices A1, A2, . . . , Ap.

The compression ratio provided by our algorithm can be
computed as the ratio of the sizes of the original data and its

Figure 2. Reconstructed video sequence by
rank-1 tensor decomposition and PCA. FIRST

ROW: three frames from original sequence ;
SECOND ROW: Results using tensor rank-1 de-
composition with 126 rank-1 tensors; THIRD

ROW: Results using matrix rank-1 decompo-
sition with 126 rank-1 matrices; FOURTH ROW:
Results using PCA with 1 principle component
(compression ratio fixed at that obtained us-
ing 126 rank-1 tensors)

final representation. For example, a third-order tensor with
dimension (m,n, k) has a compression ratio of (m × n ×
k)/(r + r(m + n + k)) using TROD, while the same ratio
for PCA is (m×n×k)/(m×n×p), where p is the number
of principle components. Our algorithm can be shown to
converge although we will give a proof in a longer version
of this paper. Figure 1 illustrates the first component of the
first 4 rank-one tensors obtained by our algorithm for the
video sequence used in Figure 4.

4. Results and Conclusion

We tested our algorithm using two video sequences. The
first shows a gray-scale, dynamic, texture video composed
of water and fire. The second shows the facial expression of
happiness. In all the experiments1, we choose ε = 1e-12,
and the maximum number of iterations, κ = 500.

For the water-and-fire sequence, we use a third-order ten-
sor with dimensions 220 × 320 × 20 (20-frame sequence).
We compare our results using tensor rank-1 decomposition
with those obtained by PCA and matrix rank-1 decomposi-
tion methods. Figure 2 illustrates the compressed sequences
and Figure 3 shows the corresponding residual errors (mean

1We thank D. Cremers and Jian Yuan for the video sequences.
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Figure 3. Residual errors obtained by our al-
gorithm vs. rank-1 matrix decomposition and
PCA. The horizontal axis represents the num-
ber of rank-1 tensors (For PCA, we find the
corresponding number of rank-1 tensors of
number of principle components having the
same compression ratio)

squared image difference) using the three methods. From
residual error plots, we can see that our algorithm performs
much better than PCA, and only a little better than matrix
rank-1 decomposition. The latter is to be expected since
matrix rank-1 decomposition is a special case of ours.

For the facial expression sequence, we construct a
fourth-order tensor with dimensions 240 × 240 × 3 × 9
(3 channels and 9 frames). We compare our result using
a fourth-order tensor with that obtained using three third-
order tensors with dimensions of 240 × 240 × 9 each. Fig-
ure 4 shows that the fourth-order case has a lower recon-
struction error.

The support of the Office of Naval Research under grant
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